## University of Mumbai

## Examination 2020 under cluster 8 (Lead College: PHCET, Rasayani)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021
and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Automobile Engineering
Curriculum Scheme: R2016
Examination: TE Semester: VI
Course Code: AEC604 and Course Name: Mechanical Vibrations
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | A mass of 1 kg rests on a sponge having only damping properties and has a damping coefficient of $100 \mathrm{Ns} / \mathrm{m}$. Estimate the undamped natural frequency in $\mathrm{rad} / \mathrm{s}$. |
| Option A: | 0 |
| Option B: | 10 |
| Option C: | 50 |
| Option D: | 100 |
|  |  |
| 2. | A steel cantilever beam has ___ number of degrees of freedom. |
| Option A: | 0 |
| Option B: | infinite |
| Option C: | 5 |
| Option D: | 10 |
|  |  |
| 3. | A system has a mass 5 kg , and a spring of stiffness $1 \mathrm{kN} / \mathrm{m}$. The undamped time period is $\qquad$ seconds. |
| Option A: | 0.444 |
| Option B: | 14.14 |
| Option C: | 1.414 |
| Option D: | 4.44 |
|  |  |
| 4. | Which is an example of Deterministic Vibrations? |
| Option A: | Earthquakes |
| Option B: | Winds |
| Option C: | Frequency-squared excitations |
| Option D: | Random vibrations |
|  |  |
| 5. | The ratio of successive amplitudes of a viscously damped single degree of freedom system is found to be 18: 1 . The ratio of the successive amplitudes if the amount of damping is doubled will be approximately $\qquad$ |
| Option A: | 14265 |
| Option B: | 15000 |
| Option C: | 12500 |
| Option D: | 10685 |
|  |  |
| 6. | The theoretical mean position for the case of Coulomb damping is |
| Option A: | is always zero |


| Option B: | is always 1 |
| :---: | :---: |
| Option C: | never exists |
| Option D: | varies alternatively between $\mathrm{F} / \mathrm{k}$ and -F/k for each half cycle |
| 7. | In a vibrating system, if the actual damping coefficient is $40 \mathrm{~N}-\mathrm{s} / \mathrm{m}$ and critical damping coefficient is $420 \mathrm{~N}-\mathrm{s} / \mathrm{m}$, the logarithmic decrement is equal to |
| Option A: | 0.2 |
| Option B: | 0.4 |
| Option C: | 0.6 |
| Option D: | 0.8 |
| 8. | $\qquad$ is the most suited for the determination of natural frequencies of structures. |
| Option A: | Holzer's method |
| Option B: | Dunkerleys method |
| Option C: | Rayleigh method |
| Option D: | Matrix Iteration method |
| 9. | Rayleigh's method can be used for estimation of natural frequency for $\qquad$ |
| Option A: | Random vibration |
| Option B: | Transverse vibration |
| Option C: | Torsional vibration |
| Option D: | Nonlinear vibration |
|  |  |
| 10. | A shaft carrying three rotors will have ___ nodes. |
| Option A: | 3 |
| Option B: | 2 |
| Option C: | 1 |
| Option D: | 0 |
| 11. | In vibration isolation system, if ( $\omega / \omega \mathrm{n}$ ) greater than one, then the phase difference between the transmitted force and disturbing force is |
| Option A: | 270 degree |
| Option B: | 90 degree |
| Option C: | 180 degree |
| Option D: | 0 degree |
|  |  |
| 12. | the speed at which resonance occurs is called |
| Option A: | low speed |
| Option B: | high speed |
| Option C: | critical speed |
| Option D: | maximum speed |
|  |  |
| 13. | In the case of support or base excitation, if frequency ratio is greater than $\sqrt{2}$, |
| Option A: | the magnitude of displacement transmissibility is small irrespective of damping in the system |
| Option B: | the magnitude of displacement transmissibility is large irrespective of damping in the system |
| Option C: | the magnitude of displacement transmissibility is small if damping ratio is greater than 2 |


| Option D: | the magnitude of displacement transmissibility is large if damping ratio is greater than 2 |
| :---: | :---: |
| 14. | An automobile, weighing 1500 kg , vibrates in a vertical direction while traveling at $90 \mathrm{~km} / \mathrm{h}$ on a rough road having a sinusoidal waveform with an amplitude 0.1 m and wavelength 3.7 m . Assuming that the automobile can be modeled as a single-degree-of-freedom system with stiffness $450 \mathrm{kN} / \mathrm{m}$ and damping ratio $\xi=0.2$, determine the amplitude of vibration of the automobile. |
| Option A: | 2.7 cm |
| Option B: | 5.6 cm |
| Option C: | 7.5 cm |
| Option D: | 10.2 cm |
| 15. | In vibrometer, the relative motion between the mass and vibrating body is converted into proportional $\qquad$ |
| Option A: | current |
| Option B: | voltage |
| Option C: | resistance |
| Option D: | ampere |
|  |  |
| 16. | In FFT Spectrum Analyzer, the filter is used to |
| Option A: | reject unwanted signals |
| Option B: | sets the level of the signals to be fed to the A/D converter |
| Option C: | convert analog signals into digital signals |
| Option D: | converts digital signals into analog signals |
|  |  |
| 17. | From the following, which one is also known as low-frequency Transducer? |
| Option A: | Stroboscope |
| Option B: | Accelerometer |
| Option C: | Vibrometer |
| Option D: | Tachometer |
| 18. | The primary unbalanced force is maximum when the angle of inclination of the crank with the line of stroke is |
| Option A: | $0^{\circ}$ |
| Option B: | $90^{\circ}$ |
| Option C: | $180^{\circ}$ |
| Option D: | $360^{\circ}$ |
| 19. | A body of mass 10 kg with its C.G. 200 mm from the axis of rotation is to be completely balanced by another mass B of 5 kg placed in the same plane. The radius at which the C.G. of mass B should be is |
| Option A: | 500 mm |
| Option B: | 400 mm |
| Option C: | 300 mm |
| Option D: | 200 mm |
| 20. | A disturbing mass m 1 , radius r 1 attached to a rotating shaft may be balanced by a single mass m 2 attached radius r 2 in the same plane of rotation as that of m 1 such that |
| Option A: | $\mathrm{m} 1 * \mathrm{r} 2=\mathrm{m} 2 * \mathrm{r} 1$ |


| Option B: | $\mathrm{m} 1 * \mathrm{r} 1=\mathrm{m} 2 * \mathrm{r} 2$ |
| :---: | :--- |
| Option C: | $\mathrm{m} 1=\mathrm{m} 2 * 2 * \mathrm{r} 1$ |
| Option D: | $\mathrm{m} 2=\mathrm{m} 1 * \mathrm{r} 2 * \mathrm{r} 1$ |


| Q2 | Solve any four questions out of six: $\quad$ 5 marks each |
| :---: | :--- |
| A | Briefly explain the steps involved in vibration analysis. |
| B | A semi-definite system consists of 2 lumped masses 2 kg each and a helical <br> spring of stiffness 100 N/m connecting them. Estimate the values of natural <br> frequencies in rad/s, and draw the corresponding model shape. Find the <br> position of nodes, if any. |
| C | Draw displacement vs. time plots for over damped, critically-damped, <br> under-damped and undamped cases, all superimposed to a common scale. <br> Comment on the nature of time period of oscillations for increasing values <br> of damping. |
| D | Explain what do you mean by the term 'critical speed' of rotating shaft? <br> Derive necessary formulae for undamped system. |
| E | Show that the inertia effect of a shaft of mass moment of inertia Js can be <br> taken into effect by adding 1/3rd of its value to the mass moment of inertia <br> of the disc J fitted at its end, in order to compute the natural frequency of <br> the system. |
| F | Explain vibration-based condition monitoring and fault diagnosis in <br> rotating machine. |


| Q3 | Solve any two questions out of three: 10 marks each <br> A <br> BAn automobile is modeled as a single degree of freedom system vibrating <br> in the vertical direction while travelling over a rough road. The vehicle has <br> a mass of 1000 kg. The suspension system has a spring constant of 350 <br> KN/m and a damping ratio of 0.4. If the vehicle speed is $25 \mathrm{~km} / \mathrm{hr}$, <br> determine the displacement amplitude of the vehicle. The road surface <br> varies sinusoidally with an amplitude of Y=0.04 m and a wavelength of 5 <br> m. |
| :---: | :--- |
| C | An air-condition weighs 200kg and is driven by a motor at 500 r.p.m. what <br> is the required static deflection of an undamped isolator to achieve $80 \%$ <br> isolation? |
| Four pulleys are equally spaced along a shaft and each has an out of <br> balance mass at the same radius. The out of balance mass in second pulley <br> is 3 kg and the third and fourth out of balance masses are at $72^{\circ}$ and 220 to <br> it. Determine the masses in the first, third and the fourth pulleys and also <br> the angle of the first mass relative to second. if the complete balance is to <br> be obtained. |  |

# University of Mumbai 

Examination 2020 under cluster 09(Lead College: FAMT)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: BE AUTOMOBILE Engineering
Curriculum Scheme: Rev2016
Examination: Third Year Semester VI
Course Code: AEDLO6021 and Course Name: Mechatronics
Time: 2hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | PLC is |
| Option A: | Analog electronic device |
| Option B: | Digital electronic device |
| Option C: | Digital mechanical device |
| Option D: | Analog mechanical device |
| 2. | The capacity of conventional relay systems for compound operations is $\qquad$ that of the PLCs |
| Option A: | poor than |
| Option B: | excellent than |
| Option C: | as good as |
| Option D: | unpredictable as |
|  |  |
| 3. | An AND function implemented in ladder logic uses: |
| Option A: | Normally-closed contacts in series |
| Option B: | Normally-open contacts in series |
| Option C: | Normally-closed contacts in parallel |
| Option D: | Normally-open contacts in parallel |
|  |  |
| 4. | When the number of zeroes is equal to the number of poles, how many branches of root locus tends towards infinity? |
| Option A: |  |
| Option B: | 2 |
| Option C: | 0 |
| Option D: | Equal to number of poles |
|  |  |
| 5. | For a stable closed loop system, the gain at phase crossover frequency should always be |
| Option A: | less than 20 dB |
| Option B: | less than 6 dB |
| Option C: | more than 6 dB |
| Option D: | more than 0 dB |
| 6. | In a bode magnitude plot, which one of the following slopes would be exhibited at high frequencies by a 4th order all-pole system |
| Option A: | - 80dB/decade |


| Option B: | - $40 \mathrm{~dB} /$ decade |
| :---: | :---: |
| Option C: | $20 \mathrm{~dB} /$ decade |
| Option D: | $60 \mathrm{~dB} /$ decade |
| 7. | Which is the best example of a single channel data acquisition system? |
| Option A: | APM |
| Option B: | BPM |
| Option C: | CPM |
| Option D: | DPM |
| 8. | Which of the scientific principle makes hydraulic systems feasible ? |
| Option A: | Pascal's principle |
| Option B: | Boyle's law |
| Option C: | Bernoulli's principle |
| Option D: | The fluid flow principle |
|  |  |
| 9. | What does the numbers in $4 / 2$ valve mean |
| Option A: | 4 positions and 2 ports |
| Option B: | 4 ports and 2 positions |
| Option C: | 4 positions and 4 ports |
| Option D: | 2 ports and 2 positions |
|  |  |
| 10. | In pneumatic systems, AND gate is used for |
| Option A: | Check Valve |
| Option B: | Shuttle Valve |
| Option C: | Dual Pressure Valve |
| Option D: | Gate Valve |
|  |  |
| 11. | Micro-controllers are _ than the PLCs. |
| Option A: | Bulky And Expensive |
| Option B: | Bulky But Cheaper |
| Option C: | Cheaper And Portable |
| Option D: | Portable But Expensive |
|  |  |
| 12. | In the real world, Data acquisition of all the physical quantities is done in |
| Option A: | Random mode |
| Option B: | Digital mode |
| Option C: | Analog mode |
| Option D: | Either analog mode or digital mode |
| 13. | The capacity of data acquisition system (DAQ) can be specified in terms of number of |
| Option A: | Control Elements |
| Option B: | Channels |
| Option C: | Interfaces |
| Option D: | Functions |
|  |  |
| 14. | Inductive proximity sensors can be effective only when the objects are of $\qquad$ materials |
| Option A: | Ferro magnetic |


| Option B: | Diamagnetic |
| :---: | :---: |
| Option C: | Para magnetic |
| Option D: | Trimagnetic |
| 15. | A piezo-electrical crystal generates voltage when subjected to following type of force |
| Option A: | Electrical |
| Option B: | Mechanical |
| Option C: | Gravity |
| Option D: | Fluid |
|  |  |
| 16. | Following acts as detector in Optical sensor |
| Option A: | Light emitting diode |
| Option B: | Photo diode |
| Option C: | Transistor |
| Option D: | Amplifier |
| 17. | The mechatronics is an integrative field in which the disciplines those act together are |
| Option A: | Mechanical and Electronic systems |
| Option B: | Mechanical, Electronic systems and Information technology |
| Option C: | Electronic systems and Information technology |
| Option D: | Mechanical and Information technology |
|  |  |
| 18. | Which of the following is not advantage of Mechatronics system? |
| Option A: | Products are of good quality |
| Option B: | High degree of flexibility |
| Option C: | Greater extent of machine utilization |
| Option D: | Initial cost |
|  |  |
| 19. | The function of actuator is to |
| Option A: | Produce motion or cause some action |
| Option B: | Detect the state of system parameters |
| Option C: | Control the system |
| Option D: | Provide visual feedback to users. |
|  |  |
| 20. | Ratio of Laplace transformation of controlled output to reference input is known as |
| Option A: | Transfer function |
| Option B: | Closed loop system |
| Option C: | Open loop system |
| Option D: | Block diagram |



Q3 | Solve any Two Questions out of Three 20 marks |
| :--- | :--- |

A Two double acting pneumatic cylinders A and B are selected for an industrial application. The sequence of movement for piston of the cylinder is proposed as below. (AB)+ Delay ( 5 sec ) B- Delay ( 5 sec ) A-
Develop the electro-pneumatic circuit using $5 / 2$ double solenoid as final directional control valves. The piston motion mentioned in bracket is simultaneous.
B Obtain the root locus for a unity feedback system with open loop transfer function. Comment on the stability of the system.
$\mathrm{G}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}(\mathrm{s}+4)(\mathrm{s}+5)}$
C $\quad$ Material A and Material B are collected in a tank. These materials are mixed for a while. Mixed product is then drained out through Outlet valve.

- To detect level of Material A and Material B, two separate level switches are used.
- To detect low level, one more level switch is used at the bottom of the tank.
- This gives output in digital terms that is when corresponding levels are detected.
- To control level of this system, Single Acting Piston valve (1 and 2) can be used which has two states, either fully open or fully close.
- To control mixing, agitator is used which is connected with Motor shaft.
- Particular time delay is used to mix the materials for a 60 sec .
- Outlet valve is then operated to drain the mixed product.


Develop a ladder logic diagram.

# University of Mumbai <br> Examination 2020 under cluster 9(Lead College: FAMT) <br> Program: AUTOMOBILE Engineering <br> Curriculum Scheme: Rev2016 <br> Examination: TESemester VI <br> Course Code:AEDLO6022 and Course Name: Robotics 

Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry two mark each. |
| :---: | :---: |
| 1. | Which part of the Robot provides motion to the manipulator and end-effector? |
| Option A: | Controller |
| Option B: | Sensor |
| Option C: | Actuator |
| Option D: | Links |
| 2. | The rotation matrix about z axis is |
| Option A: | $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$ |
| Option B: | $\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$ |
| Option C: | $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ |
| Option D: | $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right]$ |
| 3. | Which among the following is not the functionality of Robots |
| Option A: | Reprogrammability |
| Option B: | Multifunctinality |
| Option C: | Efficient Performance |
| Option D: | Responsibility |
| 4. | According to Denavit-Hartenberg's notations, Joint Angle can have |
| Option A: | positive value only |
| Option B: | negative value only |
| Option C: | zero value only |
| Option D: | either positive or negative or zero value |
| 5. | According to Denavit-Hartenberg notations, joint angle is defined as the |
| Option A: | Angle between two Z axes measured about X axis |
| Option B: | Angle between two X axes measured about Z axis |


| Option C: | Angle between two Y axes measured about X axis |
| :---: | :---: |
| Option D: | Angle between two X axes measured about Y axis |
| 6. | Motion planning aims to |
| Option A: | Provide teaching to a robot |
| Option B: | Control a robot |
| Option C: | Determine collision free path for the robot |
| Option D: | Ensure smooth variation of joint angles of a robot |
| 7. | The twist angle for the second frame for 2-DOF serial manipulator shown below, is $\qquad$ —. |
| Option A: | 0 degree |
| Option B: | 90 degree |
| Option C: | 180 degree |
| Option D: | 45 degree |
| 8. | Spot welding and Arc welding are the examples of |
| Option A: | Point-to-point tasks |
| Option B: | Continuous path tasks |
| Option C: | Continuous path task and point-to-point tasks, respectively |
| Option D: | Point-to-point and continuous path tasks, respectively |
| 9. | In which of the following operations Continuous Path System is used? |
| Option A: | Pick and Place |
| Option B: | Loading and Unloading |
| Option C: | Continuous welding |
| Option D: | Conveyor |
| 10. | Determine the Nyquist rate of the signal $\mathrm{x}(\mathrm{t})=1+\cos 2000 \pi \mathrm{t}+\sin 4000 \pi \mathrm{t}$. |
| Option A: | 2000 Hz |
| Option B: | 4000 Hz |
| Option C: | 1 Hz |
| Option D: | 6000 Hz |
| 11. | Joint space technique are used for |
| Option A: | Spline motion |
| Option B: | Point to point motion |
| Option C: | Continous motion |


| Option D: | Hapazard motion |
| :---: | :---: |
| 12. | SCARA robot is very suitable in which kind of operation |
| Option A: | Single Operations |
| Option B: | Assembly Operations |
| Option C: | Rotary Operations |
| Option D: | Translatory Operations |
|  |  |
| 13. | Ability of sensor to reproduce the results for same input is known as |
| Option A: | Accuracy |
| Option B: | Precision |
| Option C: | Resolution |
| Option D: | Linearity |
|  |  |
| 14. | Which of the following is NOT static characteristics of sensor? |
| Option A: | Threshold |
| Option B: | Drift |
| Option C: | Sensitivity |
| Option D: | Fidelity |
|  |  |
| 15. | Optical encoder is used to detect |
| Option A: | Linear displacement |
| Option B: | Angular displacement |
| Option C: | Linear speed |
| Option D: | Angular speed |
|  |  |
| 16. | Any vision system apart from capturing images also perform |
| Option A: | Image extraction and compression |
| Option B: | Image processing and image analysis |
| Option C: | Image capture and compression |
| Option D: | Image capture and storage |
|  |  |
| 17. | If a rotor pitch of hybrid stepper motor is $36^{\circ}$ and step angle is $9^{\circ}$, the number of phases will be $\qquad$ |
| Option A: | 4 |
| Option B: | 2 |
| Option C: | 3 |
| Option D: | 6 |
|  |  |
| 18. | The difference between the actual-state and the target-state leads to |
| Option A: | Motive |
| Option B: | Gaze |
| Option C: | Balancing |
| Option D: | Movement |
|  |  |
| 19. | A single-turn rotary potentiometer with a $330^{\circ}$ measurement range is used to provide angular-position feedback information for a positioning application. A 5V DC voltage is applied across the potentiometer leads, and the potentiometer output is connected to a 12 -bit A/D convertor with a 5 V range. The |


|  | potentiometer resistance is 50 . Determine the effective resolution of this sensor. |
| :---: | :--- |
| Option A: | $1.61^{\circ}$ |
| Option B: | $16.1^{\circ}$ |
| Option C: | $0.161^{\circ}$ |
| Option D: | $161^{\circ}$ |
|  |  |
| 20. | Recognition of known object and pattern is performed using |
| Option A: | Force sensor |
| Option B: | Laser sensor |
| Option C: | Vision sensor |
| Option D: | Optical sensor |


| Q.2 | Solve any Four out of Six, 5 marks each |
| :---: | :--- |
| Q2. A | Describe the term Degrees of freedom of planer robot. |
| Q2. B | Find out the D-H parameter for 3-DOF manipulator shown in figure |
| Q.2. C | Explain the working principle of servomotor. Why servomotor is preferred in <br> the joint for positioning. |
| Q.2. D | Explain degree of maneuverability about Mobile robot <br> Qefine the terms sensors and transducers. How Sensors are selected for <br> particular applications? |
| Q.2. E | Explain applications of Humanoids in medical field. Explain the <br> lassification of medical robots with examples. |


| Q. 3 | Solve any Two Questions out of Three, 10 marks each |
| :--- | :--- |
|  | Determine the transformation matrix for end point P for a 2-DOF planner <br> manipulator arm as shown in figure |
| A |  |
| B | Design a single polynomial trajectory which starts from the initial position |


|  | of $\theta(0)=10^{\circ}$, passes via a point $\theta(1)=5^{\circ}$, and then stops at final angular <br> position $\Theta(2)=50^{\circ}$. The velocity at start and stop are zero. |
| :---: | :--- |
| C | Explain ten Principles and considerations in material handling systems <br> design |

University of Mumbai<br>Examination 2020 under cluster 8 (Lead College: Rasayani)<br>Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021<br>to 20 ${ }^{\text {th }}$ January 2021<br>Program: Automobile Engineering<br>Curriculum Scheme: 2016<br>Examination: TE Semester VI<br>Course Code: AEDLO6023 and Course Name: AUTOMOTIVE MATERIALS<br>Time: 2-hour<br>Max. Marks: 80<br>

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2Marks each) 40 |
| :---: | :---: |
| 1. | Aluminum is about ----- times lighter than steel per unit volume, but can be made just as strong using certain |
| Option A: | 6 |
| Option B: | 5 |
| Option C: | 3 |
| Option D: | 1.5 |
| 2. | Which process is most preferably used for of manufacturing of cylindrical shape composites? |
| Option A: | Pultrusion Process |
| Option B: | Filament Winding |
| Option C: | Hand layup |
| Option D: | Open Mold Process |
| 3. | The basic mechanism of pultrusion system is similar to that of the metal process. |
| Option A: | Sheet metal forming |
| Option B: | Hydro forming |
| Option C: | Extrusion |
| Option D: | Forging |
|  |  |
| 4. | What is the need of shift to new material for car body design |
| Option A: | Competition |
| Option B: | For fuel economy \& reduction in $\mathrm{CO}_{2}$ emission |
| Option C: | Regulation by government |
| Option D: | Comfort |
|  |  |
| 5. | What is difference between stress strain diagram of Aluminium \& Steel |
| Option A: | Aluminium has continuous stress strain curve |
| Option B: | Steel has continuous stress strain curve |
| Option C: | Aluminium has discontinuous stress strain curve |
| Option D: | No difference |


| 6. | What is the key function of airbag cushion |
| :---: | :---: |
| Option A: | To absorb the impact |
| Option B: | To provide comfort to passenger |
| Option C: | To adjust the load |
| Option D: | For smooth driving |
|  |  |
| 7. | To impart heat stability in brake pad which filler material is used? |
| Option A: | Mica |
| Option B: | Cashew dust |
| Option C: | Rubber dust |
| Option D: | Barium sulphate |
|  |  |
| 8. | Polyester fiber is ------ heavier than the fabric made from Nylon6,6 |
| Option A: | 80\% |
| Option B: | 60\% |
| Option C: | 40\% |
| Option D: | 20\% |
|  |  |
| 9. | Following which is not the output of compression molding |
| Option A: | High volume production |
| Option B: | High quality surface finish |
| Option C: | Short cycle time |
| Option D: | High machine cost |
|  |  |
| 10. | Ceramic friction material is made from which of the 2 main ingredients? |
| Option A: | Aluminium + Ceramic Fiber |
| Option B: | Copper + Ceramic Fiber |
| Option C: | Nickel + Ceramic Fiber |
| Option D: | Mild steel + Ceramic Fiber |
|  |  |
| 11. | Hand lay-up process predominantly uses |
| Option A: | unidirectional fibers |
| Option B: | bidirectional fibers |
| Option C: | multidirectional fibers |
| Option D: | Tridirectionally fibers |
|  |  |
| 12. | The basic method of moulding thermo plastics is |
| Option A: | Compression moulding |
| Option B: | Injection moulding |
| Option C: | Transfer moulding |
| Option D: | Sand moulding |
|  |  |
| 13. | Not an example for laminar composite |
| Option A: | Wood |
| Option B: | Bimetallic |
| Option C: | Coatings/Paints |
| Option D: | Claddings |
|  |  |
| 14. | Manufacturing of components having continuous lengths and the constant cross- |


|  | sectional shape is done by -------------process. |
| :---: | :--- |
| Option A: | Roving |
| Option B: | Pultrusion |
| Option C: | Curing |
| Option D: | Pulling |
|  |  |
| 15. | Composite materials can be |
| Option A: | Light |
| Option B: | Strong |
| Option C: | Light \& strong |
| Option D: | Soft |
|  |  |
| 16. | Coating the nano crystals with the ceramics is carried that leads to ---------- |
| Option A: | Corrosion |
| Option B: | Corrosion resistant |
| Option C: | Wear and tear |
| Option D: | Soft |
|  |  |
| 17. | What is 96\% silica glass used for? |
| Option A: | Heat shield |
| Option B: | Combustion tubes |
| Option C: | Electronic tubes |
| Option D: | Temperature thermometers |
|  |  |
| 18. | What is the maximum service temperature of aluminosilicate glass? |
| Option A: | $220^{\circ} \mathrm{C}$. |
| Option B: | $460^{\circ} \mathrm{C}$. |
| Option C: | $650^{\circ} \mathrm{C}$. |
| Option D: | $1200^{\circ} \mathrm{C}$. |
|  |  |
| 19. | Brake Pads require to maintain a sufficiently $---------~ f r i c t i o n ~ c o e f f i c i e n t ~ w i t h ~ t h e ~$ <br> brake disc. <br> Option A: |
| high |  |
| Option B: | Low |
| Option D: | equal |
|  | negative |
| 20. | Aluminum alloy is characterized by a ----------specific gravity approximately one <br> third that of steel and a ----------specific strength. <br> Option A: <br> Option B: <br> Option C: <br> low, high <br> high, low high |
|  | low, low |


| Q2 | Solve any Two Questions out of Three (10 marks each) |
| :---: | :--- |
| A | Briefly describe need to shift new materials and risk in adopting new materials |
| B | Explain different characteristic features of Plastics. |
| C | What are characteristics of Composite materials? Explain in brief. |


| Q3 | Solve any Two Questions out of Three (10 marks each) |
| :---: | :--- |
| A | Explain various approaches in tempering of glass for improved toughness. |
| B | What is MR fluid. Enlist application of MR fluid in Automobile Industry. |
| C | Write a case study of materials development by Honda in the making of <br> automobiles |

## University of Mumbai

Examination 2020 under cluster 8 (Lead College: PHCET,Rasayani)
Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: AUTOMOBILE
Curriculum Scheme: Rev2016
Examination: TE Semester VI
Course Code: AEC601 and Course Name: Chassis \& Body Engineering
Time: 2 hour
Max. Marks: 80


| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | $\qquad$ is a French term and was initially used to denote the frame parts or Basic Structure of the vehicle. |
| Option A: | Body |
| Option B: | Chassis |
| Option C: | Aerodynamics |
| Option D: | Sub frame |
| 2. | The metal cover over the engine compartment is known as |
| Option A: | Bonnet |
| Option B: | Grill |
| Option C: | Wheel Arch |
| Option D: | Door |
| 3. | What is the advantage of Front Engine Front wheel drive over Front Engine Rear wheel drive? |
| Option A: | Tends to have a higher towing capacity |
| Option B: | Front-wheel drive cars tend to under steer. |
| Option C: | CV joints/boots in FWD vehicles tend to wear out sooner |
| Option D: | Provide better traction when climbing hills |
| 4. | ............... buses are used for mass transport. |
| Option A: | Single-decker |
| Option B: | Mini |
| Option C: | Double-decker |
| Option D: | Split Level |
| 5. | Classification of different type of vehicle structure is based on |
| Option A: | shear forces at the edges of panels |
| Option B: | Forces acting at front axle |
| Option C: | Forces acting at rear axle |
| Option D: | Forces acting on components of Engine |
| 6. | In Double skin Construction ........ skin will take part in load carrying , $\ldots \ldots \ldots$. skin will be fixed in such a way that it can be replaced easily. |
| Option A: | outer, inner |
| Option B: | inner, outer |


| Option C: | inner, middle |
| :---: | :---: |
| Option D: | outer, side |
| 7. | Boat tailing helps to ___ the drag. |
| Option A: | Increase |
| Option B: | Amplify |
| Option C: | decrease |
| Option D: | keep constant |
|  |  |
| 8. | The friction drag along the underside of the vehicle is reduced with the aid of |
| Option A: | friction free bumper |
| Option B: | flat mudguard |
| Option C: | front radiator grill |
| Option D: | a front spoiler |
|  |  |
| 9. | The aerodynamic drag D , as well as the other force components and moments, increases with |
| Option A: | the cube of the vehicle |
| Option B: | the vehicle speed |
| Option C: | square root of the vehicle speed |
| Option D: | the square of the vehicle speed V |
|  |  |
| 10. | What is formula Price per unit tare weight in the running cost |
| Option A: | Pay load/ Tare Weight |
| Option B: | Vehicle power/ vehicle weight |
| Option C: | Usable surface area/total surface area |
| Option D: | Price of vehicle/tare weight |
|  |  |
| 11. | $\qquad$ parameters include the contour of seat and relative position and orientation of the seat cushion and backrest. |
| Option A: | Support |
| Option B: | Design |
| Option C: | Feel |
| Option D: | Fit |
|  |  |
| 12. | Sensitive manikins are used for measuring $\qquad$ which based on distribution of small load cells over the contacting surface |
| Option A: | Seat comfort |
| Option B: | Seat Discomfort |
| Option C: | Seat normal position |
| Option D: | Adjustable seat |
|  |  |
| 13. | During cornering, loads on vehicles are balanced by...... |
| Option A: | Centrifugal force |
| Option B: | Axial force |
| Option C: | Side wind force |
| Option D: | Drag force |
|  |  |
| 14. | The product of Static load, Dynamic load factor and Safety factor is known as |


| Option A: | Cornering Force |
| :---: | :---: |
| Option B: | Equivalent load |
| Option C: | Drag |
| Option D: | Lift |
| 15. | When both wheels of a car encountered an obstruction simultaneously, vertical inertia force is $\qquad$ with respect to longitudinal of the vehicle. |
| Option A: | normal |
| Option B: | asymmetrical |
| Option C: | symmetrical |
| Option D: | zero |
| 16. | Which one of these is a common parameter when vehicle is in operating condition having instantaneous overloads and fatigue damage |
| Option A: | Large bump |
| Option B: | Panic braking |
| Option C: | Service loads |
| Option D: | Large potholes |
| 17. | Which of the following is a latest trend in Manufacturing of Vehicles |
| Option A: | Milling |
| Option B: | Welding |
| Option C: | Rapid Prototyping |
| Option D: | Sheet stamping |
| 18. | External Panels such as fenders and bonnet are commonly made by which manufacturing process? |
| Option A: | Milling |
| Option B: | 3D printing |
| Option C: | Stamping |
| Option D: | Casting |
| 19. | What does SSS panel stand for? |
| Option A: | Simple Structural surface |
| Option B: | Soft Structural surface |
| Option C: | Single Structural surface |
| Option D: | Strong Structural surface |
| 20. | $\qquad$ -series aluminum contains both silicon and magnesium which forms magnesium silicide and makes the aluminum alloy heat-treatable. |
| Option A: | 5000 |
| Option B: | 6000 |
| Option C: | 600 |
| Option D: | 500 |


| Q2 <br> (20 Marks Each) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Write a short note on Rolling moment. |
| ii. | Write a short note on spot welding. |
| iii. | Explain the different loads to which chassis is subjected? |
| B | Solve any One |
| i. | Explain with neat sketch vertical symmetric loading showing all <br> calculations for condition of maximum height. |
| ii. | Draw and explain various types of Bus body styles. |


| Q3. <br> (20 Marks Each) | Please delete the instruction shown in front of every sub question |
| :---: | :--- |
| A | Solve any Two |
| i. | Explain Longitudinal loading case. |
| ii. | Write a note on vehicle weight distribution. |
| iii. | Explain any five car body styles. |
| B | Solve any One |
| i. | Explain latest trend in manufacturing of automobile |
| ii. | Explain overall design criteria for the comparison of the vehicle. |

## University of Mumbai

## Examination 2020 under cluster 09 (FAMT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: BE automobile Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester VI
Course Code: AEC602 and Course Name: Machine Design-I
Time: 2 hours
Max. Marks: 80

## Question Paper Set No. 1

Note : Each question is for 2 marks.

| Multiple Choice Questions (MCQ) |  |
| :---: | :---: |
| Q.1. | Choose the correct option for following questions. <br> All the Questions are compulsory and carry equal marks |
| 1. | Which design consideration deals with appearance of the product? |
| Option A: | Ergonomics |
| Option B: | Aesthetics |
| Option C: | System design |
| Option D: | Creative design |
|  |  |
| 2. | A cotter joint is transmitting a load of 60 KN , cotter thickness is 13 mm and allowable shear stress is $32 \mathrm{~N} / \mathrm{mm}^{2}$ find the mean width of cotter considering double shear failure. |
| Option A: | 72.11 mm |
| Option B: | 85 mm |
| Option C: | 65.11 mm |
| Option D: | 60 mm |
|  |  |
| 3. | The criterion of failure for machine parts subjected to fluctuating stresses is |
| Option A: | Ultimate tensile strength |
| Option B: | Yield strength |
| Option C: | Endurance limit |
| Option D: | Modulus of elasticity |
|  |  |
| 4. | Find diameter of a shaft if torque transmitted by the shaft is $150 \mathrm{kN}-\mathrm{mm}$ and permissible shear stress for shaft material is $52 \mathrm{~N} / \mathrm{mm}^{2}$. |
| Option A: | 38 mm |
| Option B: | 25 mm |
| Option C: | 18 mm |
| Option D: | 48 mm |
|  |  |
| 5. | A symbol Fe 360 indicates a steel with |
| Option A: | Minimum Tensile Strength $360 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option B: | Maximum Tensile Strength $360 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option C: | Minimum shear Strength $360 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option D: | Maximum shear Strength $360 \mathrm{~N} / \mathrm{mm}^{2}$ |
|  |  |
| 6. | In the assembly of pulley, key and shaft : |
| Option A: | pulley is made the weakest |
| Option B: | key is made the weakest |
| Option C: | key is made the strongest |
| Option D: | all the three are designed for equal strength |


| 7. | In a thick cylindrical shell, the maximum radial stress at the outer surfaces of the shell is |
| :---: | :---: |
| Option A: | Zero |
| Option B: | P |
| Option C: | $\mathrm{p} / 2$ |
| Option D: | 2p |
| 8. | In case of leaf spring, find the load exerted on the band after assembling the spring for a load $(2 \mathrm{~W})=70 \mathrm{kN}$, total number of leaves $=18$, number of graduates leaves $=15$. |
| Option A: | 9860 N |
| Option B: | 7256 N |
| Option C: | 5690 N |
| Option D: | 4487 N |
|  |  |
| 9. | A self-locking screw has |
| Option A: | Fine threads |
| Option B: | Coarse threads |
| Option C: | Friction angle >helix angle |
| Option D: | Hole for insertion of split pin |
|  |  |
| 10. | The resistance to fatigue of a material is measured by |
| Option A: | Elastic limit |
| Option B: | Young's modulus |
| Option C: | Ultimate tensile strength |
| Option D: | Endurance limit |
| 11. | The thickness of thick cylindrical shell with closed ends and made of brittle material is determined by |
| Option A: | Barlow's equation |
| Option B: | Clavarino's equation |
| Option C: | Birnie's equation |
| Option D: | Lame's equation |
|  |  |
| 12. | A Rigid Flange coupling is used to two shafts |
| Option A: | Which are perfectly aligned. |
| Option B: | Which are not in exact alignment. |
| Option C: | Have lateral misalignment. |
| Option D: | Whose axes intersect at a small angle. |
|  |  |
| 13. | The solid length of the spring is given by $\qquad$ . Where, $\mathrm{n}=$ total number of coils; $\mathrm{d}=$ diameter of wire |
| Option A: | nd |
| Option B: | $(\mathrm{n}+1) \mathrm{d}$ |
| Option C: | $(\mathrm{n}+3) \mathrm{d}$ |
| Option D: | $(\mathrm{n}+4) \mathrm{d}$ |
|  |  |
| 14. | Which of the following is a permanent fastening |
| Option A: | Bolts |
| Option B: | Keys |
| Option C: | Cotter |
| Option D: | rivets |
|  |  |
| 15. | A key way lowers |
| Option A: | the strength of the shaft |
| Option B: | the rigidity of the shaft |
| Option C: | both the strength and rigidity of the shaft |


| Option D: | the ductility of the shaft |
| :---: | :--- |
|  |  |
| 16. | Wahl's stress factor |
| Option A: | is independent of change in spring index |
| Option B: | decreases first and then starts increasing with the increase in spring index |
| Option C: | increases more rapidly as spring index decreases |
| Option D: | increases more rapidly as spring index increases |
|  |  |
| 17. | The ------------- is used to adjust axial length between two rods. |
| Option A: | Cotter joint |
| Option B: | Knuckle joint |
| Option C: | Turn buckle |
| Option D: | Coupling |
|  |  |
| 18. | Spring index for a helical spring is 5 and diameter of the wire is 6 mm. Calculate outer <br> diameter of the coil. <br> Option A: 10 mm |
| Option B: | 24 mm |
| Option C: | 36 mm |
| Option D: | 16 mm |
|  |  |
| 19. | A Bolt of M24×2 means that |
| Option A: | The pitch of thread is 24 mm and depth is $2 \mathrm{mm}.$. |
| Option B: | The cross sectional area of the thread is $24 \mathrm{~mm}{ }^{2}$ |
| Option C: | Nominal diameter of bolt is 24mm and pitch is 2 mm. |
| Option D: | Effective diameter of bolt is 24mm and there are 2 threads per cm. |
|  |  |
| 20. | Flexible coupling is used because....... |
| Option A: | It is easy to disassemble |
| Option B: | It is easy to engage and disengage |
| Option C: | It transmits shocks gradually |
| Option D: | It prevents shock transmission and eliminates stress reversals |


| SUBJECTIVE/DESCRIPTIVE QUESTIONS |  |
| :---: | :--- |
| Q2 | Solve any Four Questions out of Six <br> Each question is for 5 marks. |
| A | Explain Notch sensitivity and Endurance limit related to design of machine elements <br> subjected to variable loads. |
| B | What is preferred number? Explain use of preferred number in engineering design? |
| C | Explain the nipping of the leaf spring with neat sketch. |
| D | What are the assumptions made in analysis of curved beam |
| E | Explain aesthetic consideration in design with suitable examples. |
| F | What is the necessity of theories of failure? List different theories of failure |


| Q3 | Solve any Two Questions out of Three <br> Each question is for 10 marks. |
| :---: | :--- |
| A | Design screw, nut, and handle of screw jack to lift a load of 90kN through a height of <br> 400mm. select suitable material and factor of safety to design screw jack. |
| B | Design flange coupling to connect the output shaft of an electrical motor to the shaft of <br> centrifugal pump. The motor delivers a power of 20KW at 960rpm. The overall torque <br> for motor is 18\% higher of mean torque. |
| C | Design socket and spigot joint for a load of 100kN. Select suitable material, factor of <br> safety and draw neat sketch. |

## University of Mumbai

Examination 2020 under cluster 09 (Lead College: FAMT)
Program: BE AUTOMOBILE Engineering
Curriculum Scheme: Rev 2016
Examination: TE $\quad$ Semester VI
Course Code: AEC603 and Course Name: Finite Element Analysis
Time: 2 hour

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | Which one of the following is not the recent proposed modified FEM? |
| Option A: | Partition of Unity Method |
| Option B: | h-p Cloud Method |
| Option C: | Meshless Method |
| Option D: | Point Cloud Method |
|  |  |
| 2. | The order and degree of differential equation is |
| $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d s}+8=0$ |  |
| Option A: | 0 and 1 respectively |
| Option B: | 1 and 2 respectively |
| Option C: | 2 and 1 respectively |
| Option D: | 2 and 2 respectively |
|  |  |
| 3. | The art of subdividing the structure into a convenient number of smaller elements <br> is known as |
| Option A: | Assemblage |
| Option B: | Continuum |
| Option C: | Traction |
| Option D: | Discretization |
|  |  |
| 4. | Number of node/s in a quadratic bar element is/are |
| Option A: | 2 |
| Option B: | 3 |
| Option C: | 4 |
| Option D: | 1 |
|  |  |
| Option A: | Beam element is |
| Option B: | 1 1D element with 1degree of freedom with 2 degree of freedom |
| Option C: | 2 D element with 1degree of freedom |


| Option D: | 2D element with 2 degree of freedom |
| :---: | :---: |
| 6. | The order of shape functions for CST element is |
| Option A: | Linear |
| Option B: | Quadratic |
| Option C: | Constant |
| Option D: | Either quadratic or constant |
| 7. | Which one of the following is not a part of steps involved in assembly of different matrices? |
| Option A: | Rules for primary variables |
| Option B: | Rules for secondary variables |
| Option C: | Rules for stiffness matrix |
| Option D: | Impose local boundary conditions |
| 8. | The governing equation for horizontal bar is |
| Option A: | $\frac{d}{d x}\left[E A \frac{d u}{d x}\right]+f=0$ |
| Option B: | $\frac{d}{d x}\left[E A \frac{d u}{d x}\right]=1$ |
| Option C: | $\frac{d}{d x}\left[E A \frac{d u}{d x}\right]-f=0$ |
| Option D: | $\frac{d}{d x}\left[E A \frac{d u}{d x}\right]=0$ |
| 9. | What is the approximate function to be assumed? |
| Option A: | A polynomial function only |
| Option B: | A trigonometric function only |
| Option C: | Either polynomial or trigonometric function |
| Option D: | Neither polynomial nor trigonometric function |
| 10. | Which of the following method is nothing but finite element method? |
| Option A: | Rayleigh Ritz method |
| Option B: | Piece-wise Rayleigh Ritz method |
| Option C: | Galerkin method |
| Option D: | Collocation method |
| 11. | The element stiffness matrix equation for a eight node 2D element is of order |
| Option A: | $4 \times 4$ |
| Option B: | 6x6 |
| Option C: | 8x8 |
| Option D: | 16x16 |
| 12. | Plane stress conditions are preferred when |


| Option A: | Thickness is very large compared to size of the domain |
| :---: | :---: |
| Option B: | Thickness is very less compared to size of the domain |
| Option C: | Thickness is negligible compared to size of the domain |
| Option D: | Thickness is same as compared to size of the domain |
|  |  |
| 13. | The degree of freedom of 4-noded quadrilateral element at each node is |
| Option A: | 1 |
| Option B: | 3 |
| Option C: | 2 |
| Option D: | 4 |
|  |  |
| 14. | The ratio of biggest side of element to its smallest side is called |
| Option A: | Path ratio |
| Option B: | Element ratio |
| Option C: | Coordinate ratio |
| Option D: | Aspect ratio |
|  |  |
| 15. | The Stress-Strain Relation (D) Matrix for 2D Plane Stress Condition is of the order |
| Option A: | 2x2 |
| Option B: | 3x3 |
| Option C: | $4 \times 4$ |
| Option D: | 6x6 |
|  |  |
| 16. | The element Stiffness matrix is given by |
| Option A: | $\int[B]^{T}[D][B] d v$ |
| Option B: | $\int_{t}[B]^{T}[D][B] d t$ |
| Option C: | $\int_{a}[B]^{T}[D][B] d a$ |
| Option D: | $\int_{x}[B]^{T}[D][B] d x$ |
| 17. | For a beam element, the Consistent mass matrices is given by, |
| Option A: | $\frac{\rho A l}{420}\left[\begin{array}{cccc}156 & 22 l & -54 & 13 l \\ 22 l & 4 l^{2} & -13 l & 3 l^{2} \\ -54 & -13 l & 156 & -22 l \\ 13 l & 3 l^{2} & -22 l & 4 l^{2}\end{array}\right]$ |
| Option B: | $\frac{\rho A l}{420}\left[\begin{array}{cccc}156 & 22 l & 54 & -13 l \\ 22 l & 4 l^{2} & -13 l & 3 l^{2} \\ 54 & -13 l & 156 & -22 l \\ -13 l & 3 l^{2} & -22 l & 4 l^{2}\end{array}\right]$ |


|  |  |
| :---: | :---: |
| Option C: | $\frac{\rho A l}{420}\left[\begin{array}{cccc}156 & 22 l & 54 & -13 l \\ 22 l & 4 l^{2} & 13 l & -3 l^{2} \\ 54 & 13 l & 156 & -22 l \\ -13 l & -3 l^{2} & -22 l & 4 l^{2}\end{array}\right]$ |
| Option D: | $\frac{\rho A A l}{420}\left[\begin{array}{cccc}156 & 22 l & 54 & 13 l \\ 22 l & 4 l^{2} & 13 l & 3 l^{2} \\ 54 & 13 l & 156 & 22 l \\ 13 l & 3 l^{2} & 22 l & 4 l^{2}\end{array}\right]$ |
| 18. | Jacobian matrix for 2D analysis is a |
| Option A: | 2x2 matrix |
| Option B: | 3x3 matrix |
| Option C: | $4 \times 4$ matrix |
| Option D: | 6x6 matrix |
| 19. | Which of the following analysis is not an example of dynamic analysis |
| Option A: | Crash Analysis of a Car |
| Option B: | Impact Analysis of a missile |
| Option C: | Earthquake Excitation |
| Option D: | Truss Analysis |
|  |  |
| 20. | The mass matrices as a result considering the mass of the element at the nodes is |
| Option A: | Lumped mass matrices |
| Option B: | Consistent mass matrices |
| Option C: | Diagonal mass matrices |
| Option D: | Singular mass matrices |


| Q2 <br> (20 Marks ) | Solve any Two Questions out of Three (10 marks each) |
| :---: | :--- |
| A | Solve the following differential equation and determine y at $\mathrm{x}=0.5 \mathrm{using}$ <br> Galerkin Method. <br> $-\frac{d^{2} y}{d x^{2}}-9 y+2 x^{2}=0$ in the domain $0 \leq x \leq 1$ <br> Boundary conditions are: $\mathrm{y}(0)=0$ and $\frac{d y}{d x}(1)=1$ |
| B | Determine the nodal displacement and stress for the step bar shown in figure. <br> Consider, $\mathrm{L} 1=\mathrm{L} 2=200 \mathrm{~mm}, \mathrm{~A} 1=200 \mathrm{~mm} 2, \mathrm{~A} 2=100 \mathrm{~mm} 2, \mathrm{E} 1=\mathrm{E} 2=200$ <br> GPa and $\mathrm{P}=10,000 \mathrm{~N}$. |
| C | Determine the natural Frequency of axial vibration of bar $\left(\mathrm{E}=2.3 \times 10^{\mathrm{II}} \mathrm{N} / \mathrm{m}^{2}\right.$, <br> $\left.\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~L}=1 \mathrm{~m}\right)$ <br> using two fixed at one end using lumped mass matrices and |


| Q3. <br> (20 Marks) | Solve any Four out of Six, $\mathbf{5}$ marks each |
| :---: | :--- |
| A | What are the major five limitations of the FEA? |
| B | State the properties of the shape function. Write the shape functions $\phi_{1}$ and $\phi_{2}$ <br> for a linear element at node 1 and 2 and show its variation over the element. |
| K | Find the displacement at internal nodes of the system shown. <br> $\mathrm{K} 1=2 \mathrm{~N} / \mathrm{mm}, \mathrm{K} 2=4 \mathrm{~N} / \mathrm{mm}, \mathrm{K} 3=6 \mathrm{~N} / \mathrm{mm}$ and $\mathrm{P}=20 \mathrm{~N}$. |
| D | The shape function at a point P inside a CST element is $0.3,0.4$ and 0.3 <br> respectively. If the nodal temperature values (T) at the nodes are $[102,85,128]$ <br> degrees respectively, determine the value of temperature in degree Celsius at <br> point P. |
| E | Explain convergence and state the convergence criteria. |
| F | Explain lumped mass matrix. |

