| Examination: | May-June 2018        |        | Date:       | 11/5/2018 |
|--------------|----------------------|--------|-------------|-----------|
| Branch:      | Computer Engineering |        | Subject:    | DSP       |
| Class/SEM:   | BE/VII               |        | Paper Code: | 22975     |
| Examination: | May-June 2018        |        | Date:       | 17-5-18   |
| Branch:      | Computer Engineering |        | Subject:    | CSS       |
| Class/SEM:   | BE/VII               |        | Paper Code: | 24643     |
| Examination: | May-June 2018        | BE/VII | Date:       | 25-5-18   |
| Branch:      | Computer Engineering |        | Subject:    | Al        |
| Class/SEM:   | BE/VII               |        | Paper Code: | 24612     |
| Examination: | May-June 2018        |        | Date:       | 29-5-18   |
| Branch:      | Computer Engineering |        | Subject:    | SC        |
| Class/SEM:   | BE/VII               |        | Paper Code: | 35522     |

#### COMP/ STE/ CBSGS/ DSP/ 11/05/18 **OP CODE** (3 hours) Total Marks: 80 N.B. 1. Question No. 1 is compulsory 2. Attempt any three out of remaining 3. Assume suitable data if necessary and justify the assumptions 4. Figures to the right indicate full marks Q1 A Evaluate DFT of $x(n) = cos(0.25 \prod n)$ . B Determine the energy and power of signal given by $x(n) = (1/3)^n u(n)$ . С Find the circular Convolution of the following causal signals $x_1(n) = \{3, 2, 4, 1\}$ and $x_2(n) = \{2, 1, 3\}$ D Define BIBO Stable system. 05 Q2 A State the following DFT properties: 10 1.Linearity 2.Periodicity 3.Scaling 4.Convolution 5. Time Reversal B Consider the following analog signal $x(t)=5 \cos 2 \prod (1000,t) + 10 \cos 2 \prod (5000t)$ to be sampled. I) Evaluate the Nyquist rate for this signal. II) If the signal is sampled at 4 kHz, will the signal be recovered from its samples? A For the causal LTI digital filter with impulse response given by Q3 10 $h(n) = \delta(n) - 2\delta(n-1) + \delta(n-2) + 2\delta(n-3)$ sketch the magnitude response of the filter. B Design radix 2FFT flow graph for $x(n)=\{2, 1, 3, 1\}$ 10 O4 A Check whether the system y[n] = x[n] + 2x[n-2] is: 10 i)Static or Dynamic ii)Linear or Non-linear iii)Causal or Non-Casual iv) Shift variant or Shift Invariant

B Compute linear convolution of the causal sequences  $x[n] = \{3, 4, 2, 1, 2, 2, 1, 1\}$  10 and  $h[n] = \{1, -1\}$  using overlap add method.

[TURN OVER]

6F9211178067637865353A2FB88A6315

1

## QP CODE : 22975

Q5 A For  $x(n) = \{3, 2, 1, 6, 4, 5\}$ , plot the following Discrete Time signals: 10 1.) x(n+1) 2.) x(-n)u(-n) 3.) x(n-1)u(-n-1) 4.) x(n-1)u(n) 5.) x(n-2) B Perform Cross correlation of the causal sequences  $x(n) = \{3, 3, 1, 1\} y(n) = \{1, 2, 1\}$ 10 A Write a detailed note on TMS 320 Q6 10 B Explain the significance of Carl's Correlation Coefficient Algorithm in digital signal processing. Evaluate Carl's Coefficient for two causal sequences 10 x[n]={1, 3, 4, 2} and y[n]={1, 2, 2, 1}.

1.

#### Scanned by CamScanner

2

MP/VII/CBSQS/CLSS/17105/18



# Q. P. Coder 24643 5 35

# [Total Marks: 80]

### (3 Hours)

1. Question No. 1 is compulsory.

!

;

4

1211 112

- 2. Attempt any three out of the remaining five questions.
- 3. Assume suitable data if necessary
- 4. Figures to right indicate full marks.

|            | 그는 것 같은 것 같                                                                                                                                       | -    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (a)        | What is the purpose of S-boxes in DES? Explain the avalanche effect?                                                                                                            | [05] |
| (b)        | Give examples of replay attacks. List three general approaches for dealing                                                                                                      | [05] |
|            | with replay attacks.                                                                                                                                                            |      |
| (c)        | Why is the segmentation and reassembly function in PGP(Pretty Good                                                                                                              | [05] |
|            | Privacy) needed?                                                                                                                                                                |      |
| (d)        | List and explain various types of attacks on encrypted message.                                                                                                                 | [05] |
|            | · 사람은 동안 가슴이 있는 것은 동안 가슴이 있다. 그는 것은 것은 것은 것은 것을 하는 것을 수 있다.<br>동안 모두 같은 것은 것을 수 있다. 것은 것은 것은 것은 것을 수 있다. 것은 것은 것은 것은 것은 것을 수 있다. 것은 것은 것은 것은 것은 가 |      |
| (a)        | What is the need for message authentication? List various techniques used                                                                                                       | [10] |
|            | for message authentication. Explain any one.                                                                                                                                    |      |
| (b)        | Explain Kerberos protocol that supports authentication in distributed system.                                                                                                   | [10] |
| • -        |                                                                                                                                                                                 |      |
| <b>(a)</b> | What characteristics are needed in secure hash function? Explain the                                                                                                            | [10] |
| •          | operation of secure hash algorithm on 512 bit block.                                                                                                                            |      |
| (b)        | What is a nonce in key distribution scenario? Explain the key distribution                                                                                                      | [10] |
|            | scenario if A wishes to establish logical connection with B. A and B both                                                                                                       |      |
| 2 - 2<br>2 | have a master key which they share with itself and key distribution center.                                                                                                     |      |
|            |                                                                                                                                                                                 |      |
| (a)        | Why E-commerce transactions need security? Which tasks are performed by                                                                                                         | [10] |
|            | payment gateway in E-commerce transaction? Explain the SET (Secure                                                                                                              |      |
| -<br>-     | Electronic Transaction) protocol.                                                                                                                                               |      |
| .(b)       | In RSA system the public key of a given user e=7 & n=187.                                                                                                                       | [10] |

Page 1 of 2

2F4A7267688055B483146CAF05441B9F

- 1) What is the private key of this user?
- 2) If the intercepted CT=11 and sent to a user whose public key e=7 n=187. What is the PT?

Coder 22

- 3) Elaborate various kinds of attacks on RSA algorithm?
- Q.5 (a) How can we achieve web security? Explain with example.
  - (b) Use Hill cipher to encrypt the text "short". The key to be used is "hill". [10]
- Q.6 (a) Explain IPSec protocol in detail. Also write applications and advantages of [10] IPSec.

Page 2 of 2

(b) Differentiate between i) MD-5 and SHA ii) Firewall and IDS. [10]





## Q. P. Code: 24612



Q.4 a) Apply Alpha-Beta pruning on following example considering first node as MAX

Page 2 of 2

361A37300AC6F639BFBB71DBD22F8429

COMPICOSAS/ VII) SC/ 20.5.18

: (1) Question No. 1 is compulsory

N.B

ï

Q.P. Code: 35522

## (3 Hours)

#### Total Marks:80

| (2) Attempt any three questions out of remaining five.                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>1. (a) The formation of algal solutions in surface water is strongly dependent on pH of water, temperature and oxygen content. T is a set of water temperatures from a lake given by T = {50, 55, 60} and O is a set of oxygen content values in water given by O = {1, 2, 6}. The fuzzy sets of T and O are T = {0.7/50 + 0.8/55 + 0.9/60} O = {0.1/1 + 0.6/2 + 0.8/6}. Given I = {0.5/50 + 1/55 + 0.7/60} and R = T x O, find <ol> <li>A = I o R</li> <li>B = I • R</li> </ol> </li> </ul> | (05) |
| (b) What is competitive learning? Explain winner take all learning rule.                                                                                                                                                                                                                                                                                                                                                                                                                              | (05) |
| (c) What are hybrid systems? Explain any 2 types of hybrid systems.                                                                                                                                                                                                                                                                                                                                                                                                                                   | (05) |
| (d) Explain with example any 5 operations performed in Genetic Algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                             | (05) |
| 2. (a) Write Extension Principle and explain with an example. How do you perform<br>fuzzy addition using extension principle?                                                                                                                                                                                                                                                                                                                                                                         | (10) |
| (b) With a neat diagram explain the architecture of ANFIS.                                                                                                                                                                                                                                                                                                                                                                                                                                            | (10) |
| Design a fuzzy logic controller to determine the amount of detergent required<br>for a washing machine. Assume the input as dirt and grease on the clothes.<br>Use 4 descriptors for input as well as output. Derive a set of rules for control<br>action and appropriate defuzzification. The design should be supported by<br>figures. Prove that when the clothes are soiled to a larger extent the amount<br>of detergent required is also more.                                                  | (20) |
| (a) Compare Mamdani, Tsukamoto and Sugeno models w.r.t number and type of<br>i/p and o/p, fuzzy rules created, defuzzification methods.                                                                                                                                                                                                                                                                                                                                                               | (10) |
| (b) Explain with algorithm Kohonen's Self Organizing Feature Maps.                                                                                                                                                                                                                                                                                                                                                                                                                                    | (10) |
| (a) Explain the method of Steepest Descent of optimization.                                                                                                                                                                                                                                                                                                                                                                                                                                           | (10) |
| (b) Explain McCulloch-Pitts model with an example of AND functionality.                                                                                                                                                                                                                                                                                                                                                                                                                               | (10) |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (10) |

Page 1 of 2

# Q.P. Code: 35522

(20)

- 6. Write short notes on:
  - (a) LVQ algorithm
    - (b) Multi Continuous Perceptron Training Algorithm
    - (c) Defuzzification techniques
    - (d) Characteristics of Soft Computing



