## University of Mumbai <br> Examination 2021 under cluster __ (Lead College: <br> $\qquad$ )

Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to $10^{\text {th }}$ June 2021
Program: BE (COMPUTER ENGINEERING)
Curriculum Scheme: 2016
Examination: SE Semester IV
Course Code: CSC401 and Course Name: Applied Mathematics IV
Time: 2hour
Max. Marks: 80




| 5. | The dual of the following LPP is $\operatorname{Max} z=5 x_{1}+2 x_{2}$ <br> Subject to: $3 x_{1}+2 x_{2} \leq 17$, $\begin{aligned} 2 x_{1}+2 x_{2} & \leq 7 \\ x_{1}+2 x_{2} & \leq 19 \end{aligned}$ |
| :---: | :---: |
| Option A: | $\begin{aligned} & \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ & \text { Subject to : } 3 y_{1}+2 y_{2}+y_{3} \leq 5, \\ & 2 y_{1}+2 y_{2}+2 y_{3} \leq 19 \\ & y_{1}, y_{2}, y_{3} \geq 0 \\ & \hline \end{aligned}$ |
| Option B: | $\begin{aligned} & \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ & \text { Subject to }: 3 y_{1}+2 y_{2}+y_{3} \geq 5, \\ & 2 y_{1}+2 y_{2}+2 y_{3} \leq 19 \\ & y_{1}, y_{2}, y_{3} \geq 0 \end{aligned}$ |
| Option C: | $\begin{aligned} & \operatorname{Min} z=5 y_{1}+2 y_{2}+19 y_{2} \\ & \text { Subject to: } 3 y_{1}+2 y_{2}+y_{3} \geq 17 \\ & 2 y_{1}+2 y_{2}+2 y_{3} \geq 7 \\ & y_{1}, y_{2}, y_{3} \geq 0 \end{aligned}$ |
| Option D: | $\begin{gathered} \operatorname{Min} z=17 y_{1}+7 y_{2}+19 y_{2} \\ \text { Subject to }: 3 y_{1}+2 y_{2}+y_{3} \geq 5 \\ 2 y_{1}+2 y_{2}+2 y_{3} \geq 2 \\ y_{1}, y_{2}, y_{3} \geq 0 \\ \hline \end{gathered}$ |
| 6. | If $A=\left[\begin{array}{ccc}7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4\end{array}\right]$, then the minimal polynomial of a matrix $A$ is |
| Option A: | $x^{2}-5 x+36$ |
| Option B: | $x^{2}-4$ |
| Option C: | $x^{2}-15 x+36$ |
| Option D: | $x^{3}-7 x^{2}+16 x-12$ |
| 7. | Suppose we know that births in a hospital occur randomly at an average rate of 1.8 births per hour. What is the probability that we observe 5 births in a given 2hour interval |
| Option A: | 0.3681 |
| Option B: | 0.1377 |
| Option C: | 0.031 |
| Option D: | 0.0253 |
| 8. | Evaluate $\int_{C} \frac{e^{2 \pi z}}{z+i} d z$, where $c$ is a circle $\|z+i\|=1$ |
| Option A: | $-2 \pi i / e$ |
| Option B: | $2 \pi i$ |
| Option C: | $-2 \pi i e^{3}$ |
| Option D: | $-2 \pi i e^{-3}$ |
| 9. | The optimal solution of the LPP, $\operatorname{Max} . Z=2 x_{1}+5 x_{2}$ subject to $x_{1}+3 x_{2} \leq 3$ <br> $3 x_{1}+2 x_{2} \leq 6, x_{1}, x_{2} \geq 0$ is |
| Option A: | $x_{1}=0, x_{2}=-2, Z=-10$ |
| Option B: | $x_{1}=2, x_{2}=0, Z=-4$ |
| Option C: | $x_{1}=2, x_{2}=0, Z=4$ |


| Option D: | $x_{1}=2, x_{2}=0, Z=2$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10. | If $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -3\end{array}\right]$, the the matrix $e^{A}$ is |  |  |  |  |  |  |  |
| Option A: | $\left[\begin{array}{cc}3^{-A} & 0 \\ 0 & 2^{-A}\end{array}\right]$ |  |  |  |  |  |  |  |
| Option B: | $\left[\begin{array}{cc}2^{A} & 0 \\ 0 & 3^{A}\end{array}\right]$ |  |  |  |  |  |  |  |
| Option C: | $\left[\begin{array}{cc}e^{-2} & 0 \\ 0 & e^{-3}\end{array}\right]$ |  |  |  |  |  |  |  |
| Option D: | $\left[\begin{array}{cc}e^{3} & 0 \\ 0 & e^{2}\end{array}\right]$ |  |  |  |  |  |  |  |
| 11. | In a LPP the constants $c_{1}, c_{2}, \ldots . c_{n}$ in the objective function of the primal appear in $\qquad$ of the dual |  |  |  |  |  |  |  |
| Option A: | Objective function |  |  |  |  |  |  |  |
| Option B: | RHS of constraints |  |  |  |  |  |  |  |
| Option C: | Coefficients of the variables in constraints |  |  |  |  |  |  |  |
| Option D: | Slack variables |  |  |  |  |  |  |  |
| 12. | If a continuous random variable X has a probability density function $f(x)=\frac{x}{2}, 0<x<2$, then find the probability that x is greater than 1 |  |  |  |  |  |  |  |
| Option A: | 1/3 |  |  |  |  |  |  |  |
| Option B: | 1/2 |  |  |  |  |  |  |  |
| Option C: | 1/4 |  |  |  |  |  |  |  |
| Option D: | 3/4 |  |  |  |  |  |  |  |
| 13. | If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$, then the matrix $A^{2}-2 A-3 I$ is |  |  |  |  |  |  |  |
| Option A: | a Null matrix |  |  |  |  |  |  |  |
| Option B: | The matrix A itself |  |  |  |  |  |  |  |
| Option C: | $\left[\begin{array}{cc}-2 & -1 \\ 0 & -1\end{array}\right]$ |  |  |  |  |  |  |  |
| Option D: | $\left[\begin{array}{ll}-2 & -2 \\ -1 & -1\end{array}\right]$ |  |  |  |  |  |  |  |
| 14. | The Eigen values of the Matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ are |  |  |  |  |  |  |  |
| Option A: | 1,1,9 |  |  |  |  |  |  |  |
| Option B: | 0, 1, -1 |  |  |  |  |  |  |  |
| Option C: | 1, 9, 2 |  |  |  |  |  |  |  |
| Option D: | 1,2,-1 |  |  |  |  |  |  |  |
| 15. | The number of the accidents in a city during a week is given as follows. Find the $\chi^{2}$ calculated value and test the hypothesis that accidents are distributed evenly over the week. [given $\chi^{2}=12.59$ at 6 degrees of freedom and 5\% LOS] |  |  |  |  |  |  |  |
|  | Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|  | No. of accidents | 10 | 11 | 9 | 8 | 12 | 9 | 11 |


| Option A: | $\chi^{2}=2.2$, Hypothesis rejected |
| :---: | :---: |
| Option B: | $\chi^{2}=1.2$, Hypothesis rejected |
| Option C: | $\chi^{2}=1.2$, Hypothesis accepted |
| Option D: | $\chi^{2}=2.2$, Hypothesis accepted |
| 16. | The oil paint is marketed in the tin of 12 kgs . If sample of 40 tins showed the mean weight as 11.8 kg with standard deviation 2 kgs . Find the calculated absolute value of test statistic $z$. |
| Option A: | 0.8975 |
| Option B: | 0.6325 |
| Option C: | 0.8124 |
| Option D: | 0.7895 |
| 17. | The residue of $f(z)=\frac{e^{2 z}}{z^{3}}$ at its pole |
| Option A: | 4 |
| Option B: | 2 |
| Option C: | 0 |
| Option D: | -2/3 |
| 18. | If $f(z)=\frac{1}{z-2}-\frac{1}{z-1}$, then the Taylor's seriesof $f(z)$ in the region of convergence $\|z\|<1$ is |
| Option A: | $-\frac{1}{2}\left[1-\frac{z}{2}+\frac{z^{2}}{4}-\frac{z^{3}}{8}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$ |
| Option B: | $-\frac{1}{2}\left[1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots\right]+\left[1-z+z^{2}-z^{3}+\cdots\right]$ |
| Option C: | $-\frac{1}{z}\left[1+\frac{z}{2!}+\frac{z^{2}}{4!}+\frac{z^{3}}{8!}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$ |
| Option D: | $-\frac{1}{2}\left[1+\frac{z}{2}+\frac{z^{2}}{4}+\frac{z^{3}}{8}+\cdots\right]+\left[1+z+z^{2}+z^{3}+\cdots\right]$ |
| 19. | For Diagonalizable matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 3\end{array}\right]$, |
| Option A: | Algebraic Multiplicity $\neq$ Geometric Multiplicity |
| Option B: | Algebraic Multiplicity = Geometric Multiplicity = 1 |
| Option C: | Algebraic Multiplicity $=2$, Geometric Multiplicity $=1$ |
| Option D: | Algebraic Multiplicity = Geometric Multiplicity = 2 |
|  |  |
| 20. | The value of the $\int_{-\infty}^{\infty} \frac{1}{x^{2}+4} d x$ using contour integration is |
| Option A: | $\frac{\pi}{2}$ |
| Option B: | $\pi$ |
| Option C: | $\frac{1}{2 i}$ |
| Option D: | $2 \pi i$ |


| Q2 | Solve any Four out of Six 5 marks each |
| :---: | :---: |
| A | Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)^{3}} d z, \quad c:\|z+i\|=2$ using Cauchy'sResidue theorem |
| B | Find the Eigen values and Eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ |
| C | Find the probability that at most 2 defective fuses will be found in a box of 200 fuses. If experience shows that $2 \%$ of such fuses are defective? |
| D | A Principal at certain school claims that the students in his school are above average intelligence. A random sample of 30 students IQ scores have a mean score of 112.5. Is there sufficient evidence to support the principal's claim? The mean population IQ is 100 with standard deviation of 15 . |
| E | The manufacturer of a certain make of LED bulb claims that his bulbs have a mean life of 20 months. A random sample of 7 such bulbs gave the following values. Life of bulbs in months: $19,21,25,16,17,14,21$. Can you regard the producer's claim to be valid at $1 \%$ level of significance? |
| F | Solve the LPP by simplex method, $\begin{aligned} & \text { Max } Z=4 x_{1}+10 x_{2} \\ & \text { Sub.to. } 2 x_{1}+x_{2} \leq 50 \\ & 2 x_{1}+5 x_{2} \leq 100 \\ & 2 x_{1}+3 x_{2} \leq 90, \quad x_{1}, x_{2} \geq 0 \end{aligned}$ |


| Q3 | Solve any Four out of Six |  | 5 marks each |  |
| :---: | :---: | :---: | :---: | :---: |
| A | Obtain Taylor's and Laurent's expansions of $f(z)=\frac{z-1}{z^{2}-2 z-3}$ about $z=2$ in the region of convergence $\|z-2\|<1$ |  |  |  |
| B | If $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$, obtain the minimal polynomial and Eigen values of $3 A^{-1}$ |  |  |  |
| C | If the probability that an individual suffers a bad reaction from particular infection is 0.001, determine the probability that out of 2000 individuals i) exactly three ii) more than two individuals will suffer a bad reaction. |  |  |  |
| D | In the Normal distribution exactly $30 \%$ of items are below 45 and $8 \%$ of the items are above 64 . Find the mean and variance of normal distribution. |  |  |  |
| E | The following table gives the data of boys and their fathers. Do these figures support hypothesis that educated fathers have intelligent boys? |  |  |  |
|  |  | Intelligent sons | Unintelligent sons | Total |
|  | Educated Fathers | 50 | 45 | 95 |
|  | Uneducated fathers | 45 | 90 | 135 |
|  | Total | 95 | 135 | 230 |

# University of Mumbai <br> Examination June 2021 <br> <br> Examinations Commencing from $1^{\text {st }}$ June 2021 <br> <br> Examinations Commencing from $1^{\text {st }}$ June 2021 <br> Program: Computer Engineering <br> Curriculum Scheme: Rev 2016 <br> Examination: SE Semester IV <br> Course Code: CSC402 and Course Name: Analysis of Algorithm 

Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. <br> All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | For $\mathrm{f}(\mathrm{n})=2 \mathrm{n}^{2}+5$ and $\mathrm{g}(\mathrm{n})=7 \mathrm{n}$ what is the value of n where $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})$ ) |
| Option A: | 1 |
| Option B: | 2 |
| Option C: | 3 |
| Option D: | 4 |
| 2. | For given elements $70,30,20,50,60,10,40$, if sort them using selection sort then what will be the output after iteration (pass) 3 |
| Option A: | 70, 30, 20, 50, 10, 60, 40 |
| Option B: | 70, 30, 20, 50, 60, 10, 40 |
| Option C: | 10, 20, 30, 50, 60, 70, 40 |
| Option D: | 10, 30, 20, 50, 60, 70, 40 |
| 3. | In the problem of finding minimum and maximum using straightforward algorithm, it take $\qquad$ run time |
| Option A: | $\mathrm{O}\left(\mathrm{n}^{2}\right)$ |
| Option B: | $\Omega$ (n) |
| Option C: | $\mathrm{O}(\mathrm{n})$ |
| Option D: | $\theta(\mathrm{n})$ |
| 4. | What is time complexity for following list using Quick sort algorithm If pivot is the last element. <br> $\begin{array}{lllllll}7 & 6 & 10 & 12 & 8 & 3 & 1\end{array}$ |
| Option A: | $\mathrm{O}(\mathrm{n})$ |
| Option B: | $\mathrm{O}(\log \mathrm{n})$ |
| Option C: | $\mathrm{O}(\mathrm{nlogn})$ |
| Option D: | $\mathrm{O}\left(\mathrm{n}^{2}\right)$ |
| 5. | What is the time complexity if binary search algorithm used for finding element from a set of n elements. |
| Option A: | $\mathrm{O}(\mathrm{n})$ |
| Option B: | O(nlogn) |


| Option C: | $\mathrm{O}(\log \mathrm{n})$ |
| :---: | :---: |
| Option D: | $\mathrm{O}\left(\mathrm{n}^{2}\right)$ |
| 6. | In fractional Knapsack Problem, suppose $\mathrm{n}=3$, profit $=(25,24,15)$, Weight (in $\mathrm{kg})=(18,15,10)$ and capacity $=20$, then optimal solution having total profit is |
| Option A: | 28.2 |
| Option B: | 31 |
| Option C: | 31.5 |
| Option D: | 32.2 |
| 7. | What is the cost of following graph using Kruskal's algorithm |
| Option A: | 37 |
| Option B: | 38 |
| Option C: | 36 |
| Option D: | 39 |
| 8. | For a problem, it is strategy that builds a sequence of choices for getting the optimal solution. |
| Option A: | Backtracking and Branch-and-bound |
| Option B: | Divide and Conquer |
| Option C: | Greedy technique |
| Option D: | Dynamic Programming |
| 9. | In assembly line scheduling problem to go in stations at stage 5 what are the probable ways |
| Option A: | 16 |
| Option B: | 25 |
| Option C: | 32 |
| Option D: | 5 |
| 10. | In multistage graphs with source S and sink T , which vertex is backward vertex |


|  | while finding the distance from each vertex $\mathrm{A}, \mathrm{B}, \mathrm{C}$ to vertex T . |
| :---: | :---: |
| Option A: | B |
| Option B: | C |
| Option C: | D |
| Option D: | E |
| 11. | In following graph for the TSP, if the intermediate set $\mathrm{S}=\phi$, then using dynamic programming the $\operatorname{Cost}(\mathrm{B}, \phi, \mathrm{E})$ is $\qquad$ |
| Option A: | 2 |
| Option B: | 3 |
| Option C: | 7 |
| Option D: | 9 |
| 12. | Identify spurious hit in the given text string for pattern of length- 5 window <br> Pattern: 31415 <br> Modulus: 10 <br> Text: 125978631415794321583141568 |
| Option A: | 8-21 |
| Option B: | 13-17 |
| Option C: | 3-7 |
| Option D: | 7-20 |
| 13. | Apply naive string matching algorithm to find the shift count where pattern matches with the Text= abcdabcdyabcdadbadf and pattern=abcdad |
| Option A: | 8 |
| Option B: | 9 |


| Option C: | 10 |
| :---: | :---: |
| Option D: | 11 |
| 14. | In 15 puzzle problem a node currently being expanded is called |
| Option A: | Live node |
| Option B: | E node |
| Option C: | Dead node |
| Option D: | Root node |
| 15. | Which of the following statement about $0 / 1$ knapsack and fractional knapsack problem is correct? |
| Option A: | In 0/1 knapsack problem items are divisible and in fractional knapsack items are indivisible |
| Option B: | 0/1 knapsack and fractional knapsack both are the same |
| Option C: | $0 / 1$ knapsack is solved using a greedy algorithm and fractional knapsack is solved using dynamic programming |
| Option D: | In 0/1 knapsack problem items are indivisible and in fractional knapsack items are divisible |
| 16. | Backtracking algorithm is implemented by constructing a tree of choices called as? |
| Option A: | State-space tree |
| Option B: | State-chart tree |
| Option C: | Backtracking tree |
| Option D: | Node tree |
| 17. | Of the following given options, which one of the following is a correct option that provides an optimal solution for 4 -queens problem? |
| Option A: | (4,3,2,1) |
| Option B: | (2,3,1,4) |
| Option C: | (3,1,4,2) |
| Option D: | (4,2,3,1) |
| 18. | $\qquad$ is the class of decision problems that can be solved by nondeterministic polynomial algorithms? |
| Option A: | P |
| Option B: | NP |
| Option C: | Complete |
| Option D: | Hard |
| 19. | To which of the following class does a CNF-satisfiability problem belong? |
| Option A: | NP class |
| Option B: | P class |
| Option C: | NP hard |


| Option D: | NP complete |
| :---: | :--- |
|  |  |
| 20. | What is vertex coloring of a graph? |
| Option A: | A condition where all vertices should have same color |
| Option B: | A condition where any two vertices having a common edge should always have <br> same color |
| Option C: | A condition where any two vertices having a common edge should not have same <br> color |
| Option D: | A condition where all vertices should have a different color |


| Q2 | Solve any Four out of Six |  |
| :---: | :--- | :--- |
| A | Define $\mathrm{O}, \Omega, \theta$ notations and find complexity of following recurrence relations <br> i) $\quad \mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2} \quad$ ii) $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{3}$ |  |
| B | Find all possible subsets of weight that sum to m , let $\mathrm{n}=6, \mathrm{~m}=30$ and <br> $\mathrm{w}[1: 6]=\{5,10,12,13,15,18\}$ <br> and draw portion of state space tree. |  |
| C | Find the MST and its cost using Prim and Kruskal algorithm |  |
| D | Describe terms P, NP, NP complete and NP hard. Explain the NP completeness <br> and reducibility |  |
| E | Sort following list using Quick sort and show the output in passes. <br> 2 | $7 \quad 1 \quad 3 \quad 5 \quad 6 \quad 4$ |
| F | Describe the String matching with finite automata with suitable example. |  |


| Q3. |  |
| :---: | :---: |
| A | Solve any Two 5 marks each |
| i. | Find an optimal solution to the knapsack instance $\mathrm{n}=7, \mathrm{~W}=15$, Profit - ( $10,5,15,7,6,18,3$ ), Weight - (2,3,5,7,1,4,1) |
| ii. | Describe 8 queen problem using backtracking method and write minimum 2 different ways of keeping the 8 queen where no two queens can attack other. |
| iii. | Using Rabin karp string matching algorithm, find the all position where the string |


|  | matches with given pattern. <br> Text $=$ " $569821987632198 "$ Pattern $=" 2198 "$ and $\mathrm{q}=10$ |
| :--- | :--- |
| B | Solve any One |
| i. | Apply all pair shortest path Floyd-Warshall algorithm to following graph and find <br> the all pair shortest path and draw the final graph. |
| ii. | Determine the LCS of $\mathrm{X}=<101000111010>$ |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC403 and Course Name: Computer Organization and Architecture

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | In restoring division algorithm, after performing operations left shift operation on $\mathrm{A}, \mathrm{Q}$ and $\mathrm{A}=\mathrm{A}-\mathrm{M}$, if MSB of $\mathrm{A}=1$ then |
| Option A: | $\mathrm{Q} 0=1$ |
| Option B: | $\mathrm{Q} 0=0, \mathrm{~A}=\mathrm{A}+\mathrm{M}$ |
| Option C: | $\mathrm{A}=\mathrm{A}+\mathrm{M}$ |
| Option D: | $A=A+Q$ |
| 2. | Exponent overflow is defined as |
| Option A: | a negative exponent exceeds the minimum possible exponent value |
| Option B: | a negative exponent exceeds the maximum possible exponent value |
| Option C: | a positive exponent exceeds the maximum possible exponent value |
| Option D: | a positive exponent exceeds the minimum possible exponent value |
| 3. | Two's complement representation of +18 and -18 using 16 bits are |
| Option A: | 0000000000011010, 1111111111101010 |
| Option B: | 0000000000010011, 1111111111111110 |
| Option C: | 0000000000010110, 1111111111101111 |
| Option D: | 0000000000010010, 1111111111101110 |
| 4. | Arithmetic and logic unit does not consist of |
| Option A: | Status flag |
| Option B: | Complementer |


| Option C: | Shifter |  |
| :---: | :---: | :---: |
| Option D: | Control Unit |  |
| 5. | To minimize main memory references, the machine or assembly language programmer optimize the use of |  |
| Option A: | Control registers |  |
| Option B: | User visible registers |  |
| Option C: | Status registers |  |
| Option D: | Instruction register |  |
| 6. | Identify the correct matching |  |
|  | Addressing Modes | Description |
|  | 1. Direct | a. The address field refers to the address of a word in register, which in turn contains a full-length address of the operand. |
|  | 2. Immediate | b. The address field refers to the address of a word in memory, which in turn contains a full-length address of the operand. |
|  | 3. Indirect | c. Used to define and use constants or set initial values of variables. |
|  | 4. Register Indirect | d. the address field contains the effective address of the operand |
| Option A: | 1-d, 2-c, 3-b, 4-a |  |
| Option B: | 1-a, 2-b, 3-c, 4-d |  |
| Option C: | 1-b, 2-d, 3-a, 4-c |  |
| Option D: | 1-c, 2-a, 3-d, 4-b |  |
| 7. | $\qquad$ contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit. |  |
| Option A: | Instruction Register |  |
| Option B: | Memory Address Register |  |
| Option C: | Memory Buffer Register |  |
| Option D: | Instruction Buffer Register |  |


|  |  |
| :---: | :---: |
| 8. | When an instruction is to be fetched following micro-operations may be performed |
| Option A: | t1: MAR <- (IR(Address)), t2: MBR <- Memory, t3: IR(Address) <- (MBR(Address)) |
| Option B: | t1: MAR <- (PC), t2: MBR <- Memory, PC <- (PC) + 1, t3: IR <- (MBR) |
| Option C: | $\begin{aligned} & \text { t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory } \\ & \text { <- (MBR) } \end{aligned}$ |
| Option D: | t1: MBR <- (PC), t2: MAR <- Save-address, PC <- Routine- address, t3: Memory <- (MAR) |
| 9. | A microprogrammed control unit design method |
| Option A: | contain complex logic for sequencing through the many micro-operations of the instruction cycle. |
| Option B: | is used to implement a control unit that simplifies its design |
| Option C: | is faster than a hardwired unit |
| Option D: | is useful when small programs are to be executed |
| 10. | The set of microinstructions is stored in |
| Option A: | main memory |
| Option B: | cache memory |
| Option C: | interleaved memory |
| Option D: | control memory |
| 11. | Possible approaches to cache coherency does not include |
| Option A: | Non-cacheable memory |
| Option B: | Hardware transparency |
| Option C: | Bus watching with write through |
| Option D: | Associative memory |
| 12. | In Interleaved memory, the upper order bits of the address is used to |
| Option A: | get block address |


| Option B: | get the data |
| :---: | :---: |
| Option C: | select a word within a memory bank |
| Option D: | select the given memory bank. |
| 13. | Which of the following statements is correct in regards of memory |
| Option A: | The memory that is farthest away from processor is the costliest |
| Option B: | The memory that is smallest is the farthest. |
| Option C: | The smallest and fastest memory are always closer to the processor |
| Option D: | As we move away from the processor, the speed increases |
| 14. | Which of the following type of memory is used for cache memory? |
| Option A: | DRAM |
| Option B: | SRAM |
| Option C: | SDRAM |
| Option D: | EPROM |
| 15. | $\qquad$ mapping permits each main memory block to be loaded into any line of the cache |
| Option A: | Associative Mapping |
| Option B: | Direct Mapping |
| Option C: | Set Associative Mapping |
| Option D: | Data Mapping |
| 16. | Interrupt is a signal |
| Option A: | which has highest priority from hardware or software which processor should process its signal immediately |
| Option B: | which has lowest priority from hardware or software which processor should process its signal later |
| Option C: | which has highest priority from hardware or software which processor should process its signal later |
| Option D: | which has lowest priority from hardware or software which processor should process its signal immediately. |


| 17. | Which I/O data transfer technique has direct I/O to memory transfer? |
| :---: | :---: |
| Option A: | I/O module |
| Option B: | Programmed I/O |
| Option C: | Interrupt driven I/O |
| Option D: | DMA |
| 18. | In Flynn's taxonomy, vector and array processors are classified as |
| Option A: | MIMD |
| Option B: | SISD |
| Option C: | SIMD |
| Option D: | MISD |
| 19. | A hazard that occurs if the write operations take place in the reverse order of the intended sequence is |
| Option A: | RAR |
| Option B: | WAW |
| Option C: | RAW |
| Option D: | WAR |
| 20. | In out-of-order processor, the instructions are executed |
| Option A: | original order of the instructions in the program |
| Option B: | different sub-steps of sequential instructions simultaneously |
| Option C: | one after the other as per program sequence |
| Option D: | in an order of availability of operands |


| Q2 <br> (20 Marks) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Write a note on Performance measures for computer system |


| ii. | Explain State table and delay element methods for Hardwired Control Unit <br> Design. |
| :---: | :--- |
| iii. | Explain DMA with diagram |
| B | Solve any One |
| i. | Explain Booth's Algorithm with flowchart. Hence solve -7*-3 each |
| ii. | Explain the concept of paging with allocation of free frames |


| Q3 <br> (20 Marks) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Explain IEEE 754 floating point number representation. Hence represent <br> 186.42 in single precision format |
| ii. | Explain Cache Coherency with Write Policies |
| iii. | Explain Flynn's Classification with examples and diagrams |
| B | Solve any One |
| i. | Explain 6 stages instruction pipelining with effect of conditional branch |
| ii. | Explain Multi-core processor architecture with diagram |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: CSC404 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80


| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
| 1. | The anti-aliasing procedure that increases the number of intensity levels for each <br> pixel to the total number of sub-pixels is called <br> Option A: |
| Pixel shaping |  |
| Option B: | Area-sampling |
| Option C: | Pixel Phasing |
| Option D: | Super-sampling |
| 2. | Random (vector) scan display uses <br> information and they are mainly used for applications like store the picture/image <br> Option A: <br> Bitmap file, Color drawing application <br> Option B: <br> Data file, pixel drawing application <br> Option C: Frame buffer, image drawing application |
| Op: | Display file, line drawing application |
| Option B: | Y = - X |
| Option C: | $\mathrm{X}=\mathrm{Y}$ |
| Option D: | $\mathrm{X}+\mathrm{Y}=1$ |
|  | Reflection of a point about x-axis ,followed by a counter-clockwise rotation of $90^{\circ}$ <br> is equivalent to reflection about the line |


|  |  |
| :---: | :---: |
| 4. | By applying properties of $\qquad$ computations are reduced in Scan Line Polygon Fill Algorithm. |
| Option A: | Relativity |
| Option B: | Coherence |
| Option C: | Reference |
| Option D: | Symmetry |
| 5. | A picture is stored in the computer's memory in ___ . |
| Option A: | PDCS |
| Option B: | WCS |
| Option C: | NDC |
| Option D: | WDS |
| 6. | Which curve can be controlled locally? |
| Option A: | B-Spline |
| Option B: | Bezier curve |
| Option C: | Helmite curve |
| Option D: | Bezier Surface |
| 7. | The projection in which the projection plane is allowed to intersect the $\mathrm{x}, \mathrm{y}$ and $\mathrm{z}-$ axes at equal distances. |
| Option A: | Wire frame model |
| Option B: | Constructive solid geometry methods |
| Option C: | Isometric projection |
| Option D: | Back face removal |
| 8. | The process of representing continuous graphics object as a collection of discrete pixels is called: |
| Option A: | Rasterization |
| Option B: | Scan conversion |
| Option C: | Rendering |


| Option D: | Discretization |
| :---: | :---: |
| 9. | Shear transformations can be expressed in terms of ___ |
| Option A: | Rotation only |
| Option B: | Reflection only |
| Option C: | Scaling only |
| Option D: | Product of scaling and rotation |
| 10. | If we rasterize a line segment AB with $\mathrm{A}(-3,3)$ and $\mathrm{B}(4,-4)$ using DDA line algorithm, which are the points that will lie on the line segment? |
| Option A: | $(-3,3),(-3,2),(-2,1),(1,0),(1,-1),(2,-2),(3,-3),(4,-4)$ |
| Option B: | $(-3,3),(-2,2),(-1,1),(1,1),(1,-1),(2,-2),(3,-3),(4,-4)$ |
| Option C: | $(-3,3),(-2,2),(-1,1),(0,0),(1,-1),(2,-2),(3,-3),(4,-4)$ |
| Option D: | $(-3,3),(-2,2),(-1,1),(1,0),(1,-1),(2,-2),(3,-3),(4,-4)$ |
| 11. | The scale factor of view-port transformation for x co-ordinate is |
| Option A: | Sx $=(\mathrm{xvmax}-\mathrm{xvmin}) /(\mathrm{xwmax}-\mathrm{xwmin})$ |
| Option B: | $\mathrm{Sx}=(\mathrm{xvmax}-\mathrm{xvmin}) /(\mathrm{xwmax}+\mathrm{xwmin})$ |
| Option C: | Sx $=(\mathrm{xvmin}-\mathrm{xvmax}) /(\mathrm{xwmax}-\mathrm{xwmin})$ |
| Option D: | $\mathrm{Sx}=(\mathrm{xvmax}+\mathrm{xvmin}) /(\mathrm{xwmax}-\mathrm{xwmin})$ |
| 12. | are the three dimensional analogs of quad trees. |
| Option A: | Quadric |
| Option B: | Octrees |
| Option C: | Geometry |
| Option D: | Wireframe models |


| 13. | Painter's algorithm is also called as: |
| :---: | :---: |
| Option A: | Wornock algorithm |
| Option B: | Area subdivision algorithm |
| Option C: | Z-buffer algorithm |
| Option D: | Depth-sort algorithm |
| 14. | Given a circle with radius of 6 -units centered at $(10,15)$, the following are the points that will lie on the $1 / 8$ th part of the circle: |
| Option A: | $(10,21),(11,21),(12,21),(13,20),(14,19)$ |
| Option B: | (0,6), (1,6), (2,6), (3,5), (4,4) |
| Option C: | $(0,6),(1,6),(2,5),(3,5),(4,4)$ |
| Option D: | $(10,21),(11,21),(12,20),(13,20),(14,19)$ |
| 15. | Back face detection is: |
| Option A: | Object space method |
| Option B: | Image space method |
| Option C: | Coordinate space method |
| Option D: | Geometry space method |
| 16. | A triangle ABC with coordinates $\mathrm{A}(4,3), \mathrm{B}(1,1)$ and $\mathrm{C}(7,1)$ is translated by 3units in x-direction and 2-units in y-direction, followed by anticlockwise rotation of the triangle by 90 degrees. The resulted triangle is further scaled to double in $x$ direction without any scaling in $y$-direction. What will be the resultant position of the triangle? |
| Option A: | $\mathrm{A}^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,-10)$ |
| Option B: | $\mathrm{A}^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,-4), \mathrm{C}^{\prime}(-6,10)$ |
| Option C: | $\mathrm{A}^{\prime}(-10,-7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,10)$ |
| Option D: | $\mathrm{A}^{\prime}(-10,7), \mathrm{B}^{\prime}(-6,4), \mathrm{C}^{\prime}(-6,10)$ |
| 17. | The phenomenon of apparent increase in the number of available intensities by considering combine intensity of multiple pixels is known as $\qquad$ |
| Option A: | Dithering |


| Option B: | Half toning |
| :---: | :---: |
| Option C: | Printing |
| Option D: | Scanning |
| 18. | $\qquad$ is used to calculate the intensity of light that is reflected at a given point on surface. |
| Option A: | Illumination model |
| Option B: | Rendering model |
| Option C: | Diffusion model |
| Option D: | Warn model |
| 19. | In Liang-Barsky line clipping algorithm, if $\mathrm{pk}=0$ and $\mathrm{qk}>=0$, then |
| Option A: | line is parallel to any one clipping boundary and is completely inside the clipping boundary. |
| Option B: | line is parallel to any one clipping boundary and is completely outside the clipping boundary. |
| Option C: | The line is an entering line (outside to inside). |
| Option D: | The line is exiting line (inside to outside). |
| 20. | Construct the Bezier curve of order-3 with the polygon vertices $\mathrm{A}(0,0), \mathrm{B}(1,2)$, $\mathrm{C}(3,2)$, and $\mathrm{D}(2,0)$. Generate at least 5 points on the curve. (Consider $\mathrm{t}=0.15,0.35,0.5,0.65,0.85)$ |
| Option A: | (0.50,0.76), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76) |
| Option B: | (0.60,0.76), (1.4,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76) |
| Option C: | (0.50,0.76), (1.24,1.36), (2.75,1.5), (2.12,2.36), (2.14,0.76) |
| Option D: | (0.50,0.96), (1.24,1.36), (1.75,1.5), (2.12,1.36), (2.14,0.76) |


| Q2. |  |
| :---: | :--- |
| A | Solve any Two |
| i. | If an ellipse with x-radius of 4-units and y-radius of 3-units is rasterized <br> using mid-point ellipse algorithm, find the points that lie on the ellipse in <br> the first quadrant. |


|  |  |
| :---: | :--- |
| ii. | Explain Depth buffer algorithm. |
| iii. | Write a short note on sweep representations. |
| B | Solve any One |
| i. | Triangle PQR has vertices as P(4,3), Q(6,5) and R(5,7). It is Desired to <br> reflect through an arbitrary line $L$ whose equation is $y=x$ <br> the new vertices of triangle. Calculate |
| ii. | Explain any one polygon clipping algorithm in detail. |


| Q3. |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Given a circle with radius of 6-units centered at (10,15), Find the points <br> that will lie on the 1/8th part of the circle. |
| ii. | Write a short note on fractals. |
| iii. | Explain any one shading techniques in detail. |
| B | Solve any One |
| i. | Find the clipping co-ordinates to clip the line segment AB against the <br> window using any one line clipping algorithm A(5,12), B(70,50) and the <br> window co-ordinates are lower left corner of the window is (10,10) and <br> upper right corner is (60,60). |
| ii. | Explain 3D clipping in detail. |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: BE Semester IV
Course Code: CSC405 and Course Name: Operating System
Time: 2 hour

| Q1. | A program is called as |
| :--- | :--- |
| Option A: | Active |
| Option B: | Passive |
| Option C: | Running |
| Option D: | Dead |
|  |  |
| Q2. | Which of following is not the function of the Kernel? |
| Option A: | Process Management |
| Option B: | Memory Management |
| Option C: | Device Management |
| Option D: | Program Compilation |
|  |  |
| Q3. | A Binary semaphore is restricted to values of |
| Option A: | 0 or 1 |
| Option B: | 1 or 2 |
| Option C: | -1 or +1 |
| Option D: | 0 or -1 |
|  |  |
| Q4. | What is a shell script? |
| Option A: | Group of commands |
| Option B: | A file containing special symbols |
| Option C: | A file containing a series of commands |
| Option D: | Group of functions |
|  |  |
| Q5. |  |



| Option C: | 368ms |
| :---: | :---: |
| Option D: | 750ms |
| Q10. | A counting semaphore was initialized to 13 . Then 10 P (wait) operations and 4 V (signal) operations were completed on this semaphore. The resulting value of the semaphore is |
| Option A: | 10 |
| Option B: | 8 |
| Option C: | 7 |
| Option D: | 16 |
| Q11. | In Dinning Philosopher Problem, deadlock can occur |
| Option A: | If all philosophers pick their left chopstick simultaneously and wait for the other chopstick to be available |
| Option B: | If all philosophers pick up both the sticks |
| Option C: | If no philosopher picks up sticks |
| Option D: | If only two philosophers pick up two sticks |
| Q12. | Three processes having burst time of 3,10 and 7 time units each arrive simultaneously at time 0 . Using non-preemptive SJF scheduling, their total waiting time is |
| Option A: | 4 |
| Option B: | 3 |
| Option C: | 20 |
| Option D: | 10 |
| Q13. | Consider a disk where blocks $1,2,3,4,5,8,9,10,11,12,13,17,18,25,26$ and 27 are free and the rest of the blocks are allocated. Then the free space bitmap would be |
| Option A: | 10000110000001110011111100011111... |
| Option B: | 110000110000001110011111100011111... |
| Option C: | 01111001111110001100000011100000... |
| Option D: | 11111001111110001100000011100000... |
| Q14. | Which of following two atomic operations semaphore uses for process synchronization. |
| Option A: | Wait, Signal |
| Option B: | add, del |
| Option C: | W,X |
| Option D: | not wait , not signal |
| Q15. | In segmentation, each address is specified by |
| Option A: | An offset \& value |
| Option B: | A value \& segment number |
| Option C: | A key \& value |
| Option D: | A segment number \& offset |
|  |  |
| Q16. | Working set model for page replacement is based on the assumption of |
| Option A: | Modularity |


| Option B: | Locality |
| :--- | :--- |
| Option C: | Globalization |
| Option D: | Random access |
|  |  |
| Q17. | Thrashing occurs when |
| Option A: | When a page fault occurs |
| Option B: | Processes on system frequently access pages not memory |
| Option C: | Processes on system are in running state |
| Option D: | Processes on system are in waiting state |
|  |  |
| Q18. | Which statement is true for indexed file allocation method? |
| Option A: | Each file must occupy a set of contiguous blocks on the disk |
| Option B: | All the pointers to scattered blocks are placed together in one location |
| Option C: | All pointer are NULL |
| Option D: | Entire file is stored in one block |
|  |  |
| Q19. | Which of following is responsible for all file I/O initiation and termination. |
| Option A: | Device drivers |
| Option B: | Physical I/O |
| Option C: | Basic I/O supervisor |
| Option D: | Logical I/O |
|  |  |
| Q20. | A Translation look aside buffer can be used to |
| Option A: | To reduce the time taken to access the page table again and again. |
| Option B: | To increase the time taken to access the page table again and again. |
| Option C: | To equalize the time taken to access the page table again and again. |
| Option D: | To moderate the time taken to access the page table again and again. |


| Q2 |  |
| :--- | :--- |
| A | Solve any Two |
| Describe the Producer and Consumer synchronization problems. |  |
| i. | Explain the difference between preemptive and non-preemptive scheduling. |
| ii. | Write about Banker's Algorithm for Single \& Multiple Resources to avoid <br> deadlock. |
| iii. | Solve any One <br> each |
| B | Assume you have the following jobs to execute with one processor, with <br> the jobs arriving in the order listed here: <br> i |
| T(pi) | 80 |
| 1 | 20 |
| 2 | 10 |
| 3 | 20 |
| 4 | 50 |
| i. Suppose a system uses FCFS scheduling .Create a Gantt chart illustrating |  |
| the execution of these processes? |  |
| b. What is the turnaround time for process p3? |  |
| c. What is the average wait time for the processes? |  |


| ii. | A system uses 3 page frames for storing process pages in main memory. It <br> uses the First in First out (FIFO) page replacement policy. Assume that all <br> the page frames are initially empty. What is the total number of page faults <br> that will occur while processing the page reference string given below- <br> $4,7,6,1,7,6,1,2,7,2$ <br> Also calculate the hit ratio and miss ratio. |
| :--- | :--- |


| Q3. | Solve any Four out of Six |
| :--- | :--- |
| A | Describe Inter process communication (IPC) in brief. |
| B | Define and describe the Memory Allocation Strategies Best-Fit, First Fit, <br> and Worst Fit \& Next Fit. |
| C | List the various functions of operating system and describe any one in <br> brief. |
| D | Differentiate between paging and segmentation. |
| E | List the different accessing methods of a file and describe any one in detail. |
| F | Compare the various Disk-Scheduling algorithms. |

## University of Mumbai

Examination 2021 under cluster _ (Lead College: $\qquad$
Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021 to 10 ${ }^{\text {th }}$ June 2021
Program: S.E.(Computer Engineering)
Curriculum Scheme: Rev-2019 ‘C’ Scheme
Examination: S.E. Semester IV
Course Code: CSC401 Course Name: Engineering Mathematics IV
Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. | The region of rejection of the null hypothesis $H_{0}$ is known as |  |  |  |
| Option A: | Critical region |  |  |  |
| Option B: | Favourable region |  |  |  |
| Option C: | Domain |  |  |  |
| Option D: | Confidence region |  |  |  |
| 2. | Sample of two types of electric bulbs were tested for length of life and the following data were obtained |  |  |  |
|  |  | Size | Mean | SD |
|  | Sample 1 | 8 | 1234 h | 36 h |
|  | Sample 2 | 7 | 1036 h | 40 h |
|  | The absolute value of test statistic in testing the significance of difference between means is |  |  |  |
| Option A: | $\mathrm{t}=10.77$ |  |  |  |
| Option B: | $\mathrm{t}=9.39$ |  |  |  |
| Option C: | $\mathrm{t}=8.5$ |  |  |  |
| Option D: | $\mathrm{t}=6.95$ |  |  |  |
| 3. | If X is a poisson variate such that $P(X=1)=P(X=2)$, then $P(X=3)$ is |  |  |  |
| Option A: | $\frac{4 e^{2}}{3}$ |  |  |  |
| Option B: | $4 e^{2}$ |  |  |  |
| Option C: | $\frac{4}{3 e^{2}}$ |  |  |  |
| Option D: |  |  |  |  |


| 4. | If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$, Then following is not the eigenvalue ofadj $A$. |
| :---: | :---: |
| Option A: | 6 |
| Option B: | 2 |
| Option C: | 4 |
| Option D: | 3 |
| 5. | For the matrix $\left[\begin{array}{llr}2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ the eigenvector corresponding to the distinct eigenvalue $\lambda=2$ is |
| Option A: | $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ |
| Option B: | $\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ |
| Option C: | $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ |
| Option D: | $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ |
| 6. | The necessary and sufficient condition for a square matrix to be diagonalizable is that for each of it's eigenvalue |
| Option A: | algebraic multiplicity > geometric multiplicity |
| Option B: | algebraic multiplicity $=$ geometric multiplicity |
| Option C: | algebraic multiplicity < geometric multiplicity |
| Option D: | algebraic multiplicity $\neq$ geometric multiplicity |
|  |  |
| 7. | If the characteristic equation of a matrix A of order $3 \times 3$ is $\lambda^{3}-7 \lambda^{2}+11 \lambda-$ $5=0$, then by the Cayley-Hamilton theorem $A^{-1}$ is equal to |
| Option A: | $\frac{1}{5}\left(A^{3}-7 A^{2}+11 \mathrm{~A}\right)$ |
| Option B: | $\frac{1}{5}\left(A^{2}+7 A+11 \mathrm{I}\right)$ |
| Option C: | $\frac{1}{5}\left(A^{3}+7 A^{2}+11 \mathrm{~A}\right)$ |
| Option D: | $\frac{1}{5}\left(A^{2}-7 A+11 \mathrm{I}\right)$ |
| 8. | Value of an integral $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x^{2}$ is |
| Option A: | $\frac{5}{6}-\frac{i}{6}$ |
| Option B: | $-\frac{5}{6}-\frac{i}{6}$ |
| Option C: | $\frac{5}{6}+\frac{i}{6}$ |
| Option D: | $\frac{-5}{6}+\frac{i}{6}$ |


| 9. | Integral $\int \frac{5 z^{2}+7 z+1}{z+1} d z$ along a circle $\|z\|=\frac{1}{2}$ is equal to |
| :---: | :---: |
| Option A: | 1 |
| Option B: | -1 |
| Option C: | 3/2 |
| Option D: | 0 |
| 10. | Analytic function gets expanded as a Laurent series if the region of convergence is |
| Option A: | rectangular |
| Option B: | triangular |
| Option C: | circular |
| Option D: | annular |
|  |  |
| 11. | Residue of $f(z)=\frac{z^{2}}{(z+1)^{2}(z-2)}$ at a pole $z=2$ is |
| Option A: | 4/9 |
| Option B: | 2/9 |
| Option C: | 1/2 |
| Option D: | 0 |
|  |  |
| 12. | z-transform of an unit impulse function $\delta(k)=\begin{aligned} & 1, \quad \text { at } k=0 \\ & 0, \text { otherwise }\end{aligned}$ is |
| Option A: | 1 |
| Option B: | 0 |
| Option C: | -1 |
| Option D: | k |
|  |  |
| 13. | $z\{\sin (3 k+5)\}, k \geq 0$ is |
| Option A: | $\frac{z^{2} \sin 2-z \sin 5}{z^{2}-2 z \cos 3+1}$ |
| Option B: | $\frac{z^{2} \sin 5+z \sin 2}{z^{2}-2 z \cos 3+1}$ |
| Option C: | $\frac{z^{2} \sin 5-z \sin 2}{z^{2}-2 z \cos 3+1}$ |
| Option D: | $\frac{z^{2} \sin 2+z \sin 5}{z^{2}-2 z \cos 3+1}$ |
| 14. | The inverse z-transform of $f(z)=\frac{z}{(z-1)(z-2)} \quad,\|z\|>2$ is |
| Option A: | $2^{k}-2$ |
| Option B: | $2^{k}-1$ |
| Option C: | $2^{k}+1$ |
| Option D: | $2^{k}+2$ |
|  |  |
| 15. | If the basic solution of LPP is $x=1, y=0$ then the solution is |
| Option A: | Feasible and non-Degenerate |
| Option B: | Non-Feasible and Degenerate |
| Option C: | Feasible and Degenerate |
| Option D: | Non-Feasible and non-Degenerate |


| 16. | If the primal LPP has an unbounded solution then the dual has |
| :---: | :---: |
| Option A: | Unbounded solution |
| Option B: | Bounded solution |
| Option C: | Feasible solution |
| Option D: | Infeasible solution |
| 17. | Dual of the following LPP is $\begin{gathered} \text { Maximize } z=2 x_{1}+9 x_{2}+11 x_{3} \\ x_{1}-x_{2}+x_{3} \geq 3 \\ \text { Subject to }-3 x_{1}+2 x_{3} \leq 1 \\ 2 x_{1}+x_{2}-5 x_{3}=1 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$ |
| Option A: | $\begin{array}{cc} \text { Minimize } w=-3 y_{1}+y_{2}+y^{\prime} \\ & -y_{1}-3 y_{2}+2 y^{\prime} \geq 2 \\ \text { Subject to } & y_{1}+y^{\prime} \geq 9 \\ -y_{1}+2 y_{2}-5 y^{\prime} \geq 11 \end{array}$ $y_{1}, y_{2} \geq 0, \text { y }^{\prime} \text { unrestricted }$ |
| Option B: | $\begin{array}{\|c} \text { Minimize } w=-3 y_{1}+y_{2}+y_{3} \\ \\ -y_{1}-3 y_{2}+2 y_{3} \geq 2 \\ \text { Subject to } \quad y_{1}+y_{3} \geq 9 \\ \\ \quad-y_{1}+2 y_{2}-5 y_{3} \geq 11 \\ y_{1}, y_{2}, y_{3} \geq 0 \end{array}$ |
| Option C: | $\begin{array}{cc} \text { Minimize } & w=2 y_{1}+9 y_{2}+11 y^{\prime} \\ & -y_{1}-3 y_{2}+2 y^{\prime} \geq 3 \\ \text { Subject to } \begin{array}{c}  \\ y_{1}+y^{\prime} \geq 1 \end{array} \\ -y_{1}+2 y_{2}-5 y^{\prime} \geq 1 \end{array}$ $y_{1}, y_{2} \geq 0, \text { y }^{\prime} \text { unrestricted }$ |
| Option D: |  |
| 18. | Consider the NLPP: <br> Maximize $z=f\left(x_{1}, x_{2}\right)$, subject to the constraint $h=g\left(x_{1}, x_{2}\right)-b \leq 0$. <br> Let $L=f-\lambda g$, then the Kuhn-Tucker conditions are |
| Option A: | $\frac{\partial L}{\partial x_{1}} \geq 0, \quad \frac{\partial L}{\partial x_{2}} \geq 0, \quad \lambda h \geq 0, \quad h \geq 0, \quad \lambda \geq 0$ |
| Option B: | $\frac{\partial L}{\partial x_{1}}=0, \quad \frac{\partial L}{\partial x_{2}}=0, \quad \lambda h=0, \quad h \leq 0, \quad \lambda \geq 0$ |
| Option C: | $\frac{\partial L}{\partial x_{1}}=0, \quad \frac{\partial L}{\partial x_{2}}=0, \quad \lambda h \geq 0, \quad h \leq 0, \quad \lambda \leq 0$ |
| Option D: | $\frac{\partial L}{\partial x_{1}} \geq 0, \quad \frac{\partial L}{\partial x_{2}} \geq 0, \quad \lambda h \geq 0, \quad h \geq 0, \quad \lambda=0$ |
| 19. | In a non-linear programming problem, |
| Option A: | All the constraints should be linear |
| Option B: | All the constraints should be non-linear |


| Option C: | Either the objective function or atleast one of the constraints should be non-linear |
| :---: | :--- |
| Option D: | The objective function and all constraints should be linear. |
|  |  |
| 20. | Pick the non-linear constraint |
| Option A: | $x y+y \geq 7$ |
| Option B: | $2 x-y \leq 5$ |
| Option C: | $x+y \leq 6$ |
| Option D: | $x+2 y=9$ |

## Subjective/descriptive questions

| $\begin{gathered} \mathbf{Q 2} \\ \text { (20 Marks ) } \\ \hline \end{gathered}$ | Solve any Four out of Six 5 marks each |
| :---: | :---: |
| A | In an exam taken by 800 candidates, the average and standard deviation of marks obtained (normally distributed) are $40 \%$ and $10 \%$ respectively. What should be the minimum score if 350 candidates are to be declared as passed |
| B | If $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, By using Cayley-Hamilton theorem find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}+2 A+I$ |
| C | Evaluate the following integral using Cauchy-Residue theorem. $I=\int_{C} \frac{z^{2}+3 z}{\left(z+\frac{1}{4}\right)^{2}(z-2)} d z$ where c is the circle $\left\|z-\frac{1}{2}\right\|=1$ |
| D | Obtain inverse z-transform $\frac{z+2}{z^{2}-2 z-3}, \quad 1<\|z\|<3$ |
| E | Solve by the Simplex method Maximize $z=10 x_{1}+x_{2}+x_{3}$ Subject to $\begin{aligned} & x_{1}+x_{2}-3 x_{3} \leq 10 \\ & 4 x_{1}+x_{2}+x_{3} \leq 20\end{aligned}$ $x_{1}, x_{2}, x_{3} \geq 0$ |
| F | Using Lagrange's multipliers solve the following NLPP Optimise $z=4 x_{1}+8 x_{2}-x_{1}^{2}-x_{2}^{2}$ <br> Subject to $x_{1}+x_{2}=2$ $x_{1}, x_{2} \geq 0$ |


| $\begin{gathered} \text { Q3 } \\ \text { (20 Marks ) } \end{gathered}$ | Solve any Four out of Six 5 marks each |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | When the first proof of 392 pages of a book of 1200 pages were read, the distribution of printing mistakes were found to be as follows. |  |  |  |  |  |
|  | No of <br> mistakes in <br> page (X)  | 0 | 1 | 2 | 3 | 4 |
|  | No. of pages (f) | 275 | 72 | 30 | 7 | 5 |
|  | Fit a poisson distribution to the above data and test the goodness of fit. |  |  |  |  |  |


| B | Show that the matrix $\left[\begin{array}{crc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$ is not diagonalizable. |
| :---: | :---: |
| C | If $f(z)=\frac{z-1}{(z-3)(z+1)}$ obtain Taylor's and Laurent's series expansions of $\mathrm{f}(\mathrm{z})$ in the domain $\|z\|<1 \& 1<\|z\|<3$ respectively. |
| D | If $f(k)=\frac{1}{2^{k}} * \frac{1}{3^{k}} \quad$ find $z\{f(k)\}, k \geq 0$ |
| E | $\begin{gathered} \text { Solve using dual simplex method } \\ \text { Minimize } z=2 x_{1}+2 x_{2}+4 x_{3} \\ 2 x_{1}+3 x_{2}+5 x_{3} \geq 2 \\ \text { Subject to } 3 x_{1}+x_{2}+7 x_{3} \leq 3 \\ \\ x_{1}+4 x_{2}+6 x_{3} \leq 5 \\ \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$ |
| F | Solve following NLPP using Kuhn-Tucker method Maximize $z=2 x_{1}^{2}-7 x_{2}^{2}-16 x_{1}+2 x_{2}+12 x_{1} x_{2}+7$ <br> Subject to $2 x_{1}+5 x_{2} \leq 105$ $x_{1}, x_{2} \geq 0$ |

Standard Normal Distribution Table


| $z$ | . 00 | 01 | . 02 | . 03 | 04 | . 06 | . 06 | 07 | 08 | . 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 0000 | . 0040 | . 0080 | . 0120 | . 0100 | . 0199 | . 0233 | 0.027 | . 031 | . 0359 |
| 0.1 | . 039 | . 043 | . 04 | . 0517 | . 05 | . 06 | . 0636 | . 0675 | . 0714 | . 0753 |
| 0.2 | . 0793 | . 0832 | . 0871 | . 0910 | . 0948 | . 088 | . 102 | . 1054 | . 1103 | . 1141 |
| 0.3 | . 1179 | . 1217 | . 1255 | . 1293 | . 1331 | . 1368 | . 1406 | . 1443 | 1480 | . 1517 |
| 0.4 | . 1554 | . 1591 | . 1628 | . 1664 | . 1700 | . 1736 | . 1772 | . 1808 | . 1844 | . 1879 |
| 0.5 | . 1915 | . 1950 | . 1985 | 2019 | . 2054 | . 2088 | . 2123 | 2157 | . 2190 | . 2224 |
| 0.6 | 2257 | . 2291 | . 2324 | 2357 | . 238 | . 242 | . 245 | 248 | 2517 | . 2549 |
| 0.7 | 2580 | 2611 | . 264 | 267 | . 270 | . 273 | . 27 | 279 | . 282 | . 2852 |
| 0.8 | 2881 | . 2910 | . 2939 | 296 | . 2995 | . 302 | . 305 | . 307 | . 310 | . 3133 |
| 0.9 | . 3159 | . 3185 | . 3212 | . 3238 | . 3200 | . 328 | . 331 | 33 | . 3365 | . 3389 |
| 1.0 | 3413 | . 3438 | . 3461 | 3485 | . 3508 | . 3531 | . 3554 | 3577 | . 3599 | . 3621 |
| 1.1 | 3643 | . 30 | . 368 | 3 | . 37 | . 37 | . 37 | 37 | . 38 | . 38 |
| 1.2 | . 3849 | . 3809 | . 388 | . 390 | . 392 | . 394 | . 396 | . 39 | . 39 | . 4015 |
| 1.3 | 4032 | . 4049 | . 406 | A082 | . 409 | . 411 | . 413 | A14 | . 41 | . 4177 |
| 1.4 | A192 | . 4207 | . 4222 | . 4236 | . 425 | . 426 | . 427 | A29 | . 430 | . 4319 |
| 1.5 | A332 | . 4345 | . 4357 | A370 | . 4382 | . 439 | . 440 | A418 | . 4429 | . 4441 |
| 1.6 | A452 | . 4463 | . 4474 | A484 | . 4495 | . 4505 | . 451 | 45 | . 45 | . 45 |
| 1.7 | A554 | . 4564 | . 4573 | A58 | . 459 | . 459 | . 460 | A61 | . 46 | . 4633 |
| 1.8 | A64 | . 4 | . 4656 | A664 | . 4671 | . 4678 | . 4686 | A693 | . 4699 | . 4706 |
| 1.9 | A713 | . 4719 | . 4726 | . 4732 | . 4738 | . 474 | . 475 | A7 | . 47 | . 476 |
| 2.0 | A772 | . 4778 | . 47 | A788 | . 4793 | . 479 | . 8803 | A80 | . 4812 | . 8817 |
| 2.1 | A82 | A | . 4830 | A834 | A | . 48 | . 488 | A8 | 48 | . 8857 |
| 2.2 | A861 | . 480 | . 48 | A87 | 48 | . 48 | . 48 | A88 | . 48 | . 489 |
| 2.3 | A89 | . 4895 | . 4898 | A901 | . 490 | . 4906 | . 4909 | . 4911 | . 4913 | 16 |
| 2.4 | . 4918 | . 4920 | . 4922 | A 4225 | . 492 | . 4929 | . 493 | A93 | . 493 |  |
| 2.5 | A93 | . 4940 | . 4941 | A 4 | . 49 | . 49 | . 49 | A9 | . 495 | . 4952 |
| 2.6 | A95 | A | . 4966 |  | . 4959 | . 496 | . 49 | 49 |  | . 8964 |
| 2.7 | A9 | . 49 | . 4967 | A968 | . 4909 | . 4970 | . 49 | . 4972 | . 4973 | . 4974 |
| 2.8 | A974 | . 4975 | . 4976 | A 4977 | . 497 | . 497 | . 497 | A97 | . 498 | . 4981 |
| 2.9 | A981 | . 4 | . 4982 | A983 | . 4984 | . 4984 | . 4985 | 4985 | . 4985 | . 4986 |
| 3.0 | 4987 | . 4987 | . 4987 | A988 | . 498 | . 4988 | . 4989 | 4989 | 4990 | . 4990 |
| 3.1 | A9 | A 4 | A 4991 | A 4991 | 4992 | . 4992 | . 4992 | A992 | A993 | . 4993 |
| 3.2 | 499 | . 4993 | . 4994 | . 4994 | . 4994 | . 4 | . 4994 | A 4 | . 4995 | . 49 |
| 3.3 | 4995 | . 4995 | . 4995 | . 4996 | . 499 | . 4996 | . 4996 | A990 | . 499 | . 4997 |
| 3.4 | A 4997 | . 4997 | . 4997 | . 4997 | . 4997 | .4997 | . 4997 | . 4997 | . 499 | . 4998 |
| 3.5 | A998 | . 4998 | . 4998 | A998 | . 4998 | . 4998 | . 4998 | . 499 | 499 | . 499 |

## t-Distribution Table



The shadod aron is oqual to $\alpha$ for $t-t_{a}$.

| df | t.100 | t.ceso | t.00s | $t$.mo | $t_{\text {cms }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.1332 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 |
| 8 | 1.397 | 1.850 | 2.306 | 2.896 | 3.355 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 |
| 12 | 1.356 | 1.782 | 2179 | 2.681 | 3.055 |
| 13 | 1.350 | 1.771 | 2.160 | 2.6*0 | 3.012 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 |
| 15 | 1.341 | 1.753 | 2131 | 2.602 | 2.947 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 |
| 17 | 1.333 | 1.740 | 2110 | 2.567 | 2.896 |
| 18 | 1.330 | 1.734 | 2101 | 2.552 | 2.878 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 |
| 21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 |
| 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 |
| 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 |
| 32 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 |
| 34 | 1.307 | 1.691 | 2.032 | 2.441 | 2.728 |
| 36 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 |
| 38 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 |

table C: Chi-Squared Distribution Values for Various Right-Tail Probabilities


|  | Right-Tail Probability |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $d f$ | 0.250 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1 | 1.32 | 2.71 | 3.84 | 5.02 | 6.63 | 7.88 | 10.83 |
| 2 | 2.77 | 4.61 | 5.99 | 7.38 | 9.21 | 10.60 | 13.82 |
| 3 | 4.11 | 6.25 | 7.81 | 9.35 | 11.34 | 12.84 | 16.27 |
| 4 | 5.39 | 7.78 | 9.49 | 11.14 | 13.28 | 14.86 | 18.47 |
| 5 | 6.63 | 9.24 | 11.07 | 12.83 | 15.09 | 16.75 | 20.52 |
| 6 | 7.84 | 10.64 | 12.59 | 14.45 | 16.81 | 18.55 | 22.46 |
| 7 | 9.04 | 12.02 | 14.07 | 16.01 | 18.48 | 20.28 | 24.32 |
| 8 | 10.22 | 13.36 | 15.51 | 17.53 | 20.09 | 21.96 | 26.12 |
| 9 | 11.39 | 14.68 | 16.92 | 19.02 | 21.67 | 23.59 | 27.88 |
| 10 | 12.55 | 15.99 | 18.31 | 20.48 | 23.21 | 25.19 | 29.59 |
| 11 | 13.70 | 17.28 | 19.68 | 21.92 | 24.72 | 26.76 | 31.26 |
| 12 | 14.85 | 18.55 | 21.03 | 23.34 | 26.22 | 28.30 | 32.91 |
| 13 | 15.98 | 19.81 | 22.36 | 24.74 | 27.69 | 29.82 | 34.53 |
| 14 | 17.12 | 21.06 | 23.68 | 26.12 | 29.14 | 31.32 | 36.12 |
| 15 | 18.25 | 22.31 | 25.00 | 27.49 | 30.58 | 32.80 | 37.70 |
| 16 | 19.37 | 23.54 | 26.30 | 28.85 | 32.00 | 34.27 | 39.25 |
| 17 | 20.49 | 24.77 | 27.59 | 30.19 | 33.41 | 35.72 | 40.79 |
| 18 | 21.60 | 25.99 | 28.87 | 31.53 | 34.81 | 37.16 | 42.31 |
| 19 | 22.72 | 27.20 | 30.14 | 32.85 | 36.19 | 38.58 | 43.82 |
| 20 | 23.83 | 28.41 | 31.41 | 34.17 | 37.57 | 40.00 | 45.32 |
| 25 | 29.34 | 34.38 | 37.65 | 40.65 | 44.31 | 46.93 | 52.62 |
| 30 | 34.80 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67 | 59.70 |
| 40 | 45.62 | 51.80 | 55.76 | 59.34 | 63.69 | 66.77 | 73.40 |
| 50 | 56.33 | 63.17 | 67.50 | 71.42 | 76.15 | 79.49 | 86.66 |
| 60 | 66.98 | 74.40 | 79.08 | 83.30 | 88.38 | 91.95 | 99.61 |
| 70 | 77.58 | 85.53 | 90.53 | 95.02 | 100.4 | 104.2 | 112.3 |
| 80 | 88.13 | 96.58 | 101.8 | 106.6 | 112.3 | 116.3 | 124.8 |
| 90 | 98.65 | 107.6 | 113.1 | 118.1 | 124.1 | 128.3 | 137.2 |
| 100 | 109.1 | 118.5 | 124.3 | 129.6 | 135.8 | 140.2 | 149.5 |
|  |  |  |  |  |  |  |  |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program：Computer Engineering
Curriculum Scheme：Rev2019
Examination：SE Semester IV
Course Code：CSC402 and Course Name：Analysis of Algorithm
Time： 2 hour
Max．Marks： 80
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ＝ニ＝

| Q1． | Choose the correct option for following questions．All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Which of the following is not $\mathrm{O}\left(\mathrm{n}^{2}\right)$ ？ |
| Option A： | $\left(5^{10}\right) * \mathrm{n}+990$ |
| Option B： | $\mathrm{N}^{1.45}$ |
| Option C： | $\mathrm{n}^{3} /(\sqrt{n})$ |
| Option D： | $\left(3^{50}\right) * n$ |
| 2. | If A is asymptotically less efficient than B ，it means？ |
| Option A： | B will be a better choice for all inputs |
| Option B： | B will be a better choice for all inputs except possibly small inputs |
| Option C： | B will be a better choice for all inputs except possibly large inputs |
| Option D： | B will be a better choice for small inputs |
| 3. | In Quicksort algorithm，there is a procedure for finding a pivot element that splits the array into two sub－arrays，each of which contains at least Two－fifth of the elements．Let $\mathrm{T}(\mathrm{n})$ be the number of comparisons required to sort n elements． Then |
| Option A： | $\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(\mathrm{n} / 5)+\mathrm{n}$ |
| Option B： | $\mathrm{T}(\mathrm{n})<=\mathrm{T}(2 \mathrm{n} / 5)+\mathrm{T}(3 \mathrm{n} / 5)+\mathrm{n}$ |
| Option C： | $\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(4 \mathrm{n} / 5)+\mathrm{n}$ |
| Option D： | $\mathrm{T}(\mathrm{n})<=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$ |
| 4. | What is the result of following recurrences $\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{n}^{\mathrm{c}}$ ？ |
| Option A： | $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log \mathrm{b}^{\text {a }}}\right.$ ） |
| Option B： | $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{c}} \log \mathrm{n}\right)$ |
| Option C： | $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})$ ） |
| Option D： | $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$ |
| 5. | The class of decision problems that can be solved by non－deterministic polynomial algorithms are called as． |
| Option A： | NP |
| Option B： | P |
| Option C： | Hard |
| Option D： | Complete |
| 6. | If you are sorting in ascending order with insertion sort，average case running time it will take is？ |
| Option A： | $\mathrm{O}(\mathrm{N})$ |


| Option B: | $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ |
| :---: | :---: |
| Option C: | $\mathrm{O}(\log \mathrm{N})$ |
| Option D: | $\mathrm{O}\left(\mathrm{N}^{2}\right)$ |
| 7. | Worst case time complexity of merge sort is |
| Option A: | $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ |
| Option B: | $\mathrm{O}\left(\mathrm{n}^{2}\right)$ |
| Option C: | $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ |
| Option D: | $\mathrm{O}\left(\mathrm{n} \log \mathrm{n}^{2}\right)$ |
| 8. | Apply Quick sort on a given sequence 61013583211 . What is the sequence after first phase, pivot is first element? |
| Option A: | 53261081311 |
| Option B: | 52368131011 |
| Option C: | 65131083211 |
| Option D: | 65328131011 |
| 9. | Consider the graph M with 3 vertices. Its adjacency matrix is shown below. Which of the following is true? |
| Option A: | Graph M has no minimum spanning tree |
| Option B: | Graph M has a unique minimum spanning trees of cost 4 |
| Option C: | Graph M has 3 distinct minimum spanning trees, each of cost 4 |
| Option D: | Graph M has 3 spanning trees of different costs |
| 10. | Given items as $\{$ value, weight $\}$ pairs $\{\{60,10\},\{20,10\},\{40,5\}\}$. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible. |
| Option A: | 110 |
| Option B: | 80 |
| Option C: | 100 |
| Option D: | 40 |
|  |  |
| 11. | A graph with negative weight cycle is having ___ no. of shortest paths |
| Option A: | One |
| Option B: | Two |
| Option C: | Zero |
| Option D: | Infinite |
|  |  |
| 12. | Floyd Warshall Algorithm falls into |
| Option A: | Greedy technique |
| Option B: | Dynamic Programming |
| Option C: | Linear Programming |
| Option D: | Backtracking |
|  |  |
| 13. | In assembly line scheduling problem, ___ lookup tables are required. |
| Option A: | 0 |
| Option B: | 1 |
| Option C: | 2 |
| Option D: | 3 |


| 14. | A travelling salesman problem with 55 cities has $\qquad$ no. of feasible tours. |
| :---: | :---: |
| Option A: | 37 arcs |
| Option B: | 54 arcs |
| Option C: | 55 arcs |
| Option D: | 990 arcs |
| 15. | is not a branch and bound strategy to generate branches |
| Option A: | LIFO branch and bound |
| Option B: | FIFO branch and bound |
| Option C: | Lowest cost branch and bound |
| Option D: | Highest cost branch and bound |
| 16. | Of the following given options, which one of the following is a correct option that provides an optimal solution for 4-queens problem? |
| Option A: | (3,1,4,2) |
| Option B: | (2,3,1,4) |
| Option C: | (4,3,2,1) |
| Option D: | (4,2,3,1) |
| 17. | Chromatic number of a graph is $\qquad$ no of colors required to color the vertices in graph. |
| Option A: | Maximum |
| Option B: | Same |
| Option C: | Minimum |
| Option D: | More than Number of vertices |
| 18. | In Rabin and Karp Algorithm, preprocessing can be done in |
| Option A: | $\theta\left(\mathrm{m}^{2}\right)$ |
| Option B: | $\theta$ (mlogn) |
| Option C: | $\theta$ (m) |
| Option D: | $\mathrm{O}(\mathrm{n})$ |
| 19. | What happens when the modulo value (q) is taken large? |
| Option A: | Complexity increases |
| Option B: | Spurious hits occur frequently |
| Option C: | Cost of extra checking is low |
| Option D: | Matching time increases |
| 20. | Given a pattern of length- 5 window, find the spurious hit in the given text string. <br> Pattern: 73992 <br> Modulus: 13 <br> Index: 01234567891011121314151617181920 <br> Text: 23590231415 2 67139192139 |


|  |  |
| :--- | :--- |
| Option A: | $6-10$ |
| Option B: | $12-16$ |
| Option C: | $3-7$ |
| Option D: | $13-17$ |


| Q2 | Solve any Four out of Six |
| :---: | :--- |
| A | Explain Master theorem with example |
| B marks each |  |
| C | Define P, NP, NP-Hard and NP-Complete Complexity Classes. |
| D | Discuss Complexity of Quicksort Algorithm in all cases. |
| E | Rewrite Binary Search Algorithm and Explain its complexity |
| F | Write short note on Rabin Karp Algorithm |


| Q3. | Solve any Two Questions out of Three 10 marks each |
| :---: | :---: |
| A | Apply Dijkstra algorithm on following graph. Show all intermediate steps. |
| B | Explain 15 Puzzle problem with Branch and Bound method |
| C | Find a minimum cost path from A to L in the following multistage graph |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: SE SEM IV R2019 C Scheme May 2021
Curriculum Scheme: Rev2019
Examination: SE Semester IV
Course Code: CSC403 and Course Name: Database Management System
Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Which of the following is true about Data Independence? It is the ability: |
| Option A: | To modify schema definition in one level without affecting schema definition in the next lower level. |
| Option B: | To modify schema definition in one level without affecting schema definition in the next higher level. |
| Option C: | To modify data in one level without affecting the data in the next lower level. |
| Option D: | To modify data in one level without affecting the data in the next higher level. |
| 2. | Data redundancy leads to higher storage and access cost. It may lead to |
| Option A: | Data isolation |
| Option B: | Data inconsistency |
| Option C: | Integrity problem |
| Option D: | Atomicity |
| 3. | The an attribute (say X ) of entity set is calculated from other attribute value (say Y ). The attribute X is called |
| Option A: | Single valued |
| Option B: | Multi valued |
| Option C: | Composite |
| Option D: | Derived |
| 4. | A weak entity type always has a total participation constraint w.r.t. its identifying relationship, because |


| Option A: | Weak entity have a partial key |
| :---: | :---: |
| Option B: | Weak entity cannot be identified with an owner entity. |
| Option C: | Weak entity cannot be identified without an owner entity. |
| Option D: | Weak entity cannot identified without an identifying relationship |
| 5. | In an Entity-Relationship (ER) model, suppose R is a one-to-many relationship from entity set E1 to entity set E2. Assume that E1 and E2 participate totally in R and that the cardinality of E2 is greater than the cardinality of E1. Which one of the following is true about R ? |
| Option A: | Every entity in E1 is associated with exactly one entity in E2. |
| Option B: | Some entities in E1 are associated with more than one entity in E2. |
| Option C: | Every entity in E2 is associated with exactly one entity in E1. |
| Option D: | Every entity in E2 is associated with at most one entity in E1. |
| 6. | The type of operation which extends the Projection operation by allowing functions of attributes to be included in the projection list. |
| Option A: | Join |
| Option B: | Generalized Projection |
| Option C: | Projection |
| Option D: | Aggregate functions |
| 7. | What is union compatibility ? |
| Option A: | Two or more table share the same number of columns |
| Option B: | Two or more tables share the same number of columns and same domain |
| Option C: | Two or more tables have the same degree |
| Option D: | Two or more tables share the same domains |
| 8. | $\mathrm{r} \cap \mathrm{s}=$ |
| Option A: | $\mathrm{r}-(\mathrm{r}-\mathrm{s})$ |
| Option B: | $\mathrm{s}-(\mathrm{r}-\mathrm{s})$ |
| Option C: | (rus)-(r-s) |
| Option D: | ( rus ) /( sur ) |


| 9. | Let E1 and E2 be two entities in an E-R diagram with one multi-valued attribute in E1,R1 and R2 are two relationships between E1 and E2, where R1 is one-tomany and R2 is many-to-many,R1 and R2 do not have any attributes of their own, What is the minimum number of tables required to represent this situation in the relational model. |  |
| :---: | :---: | :---: |
| Option A: | 2 |  |
| Option B: | 4 |  |
| Option C: | 3 |  |
| Option D: | 5 |  |
| 10. | Write a que | et defaul |
| Option A: | UPDATE | ee MOD |
| Option B: | UPDATE | ee SET |
| Option C: | ALTER TA | employe |
| Option D: | ALTER TA | employe |
| 11. | Consider the employee table:employee ( employee id, name, dept name, salary )Create a new employee `E-101', named `Ashwin singh', with 50,000 salary for department `developer'. Identify the appropriate SQL.} \\ \hline Option A: & \multicolumn{2}{\|l|}{INSERT INTO TABLE employee VALUES ('E-101',’Ashwin Singh','Wireless', 100000)} \\ \hline Option B: & \multicolumn{2}{|l|}{INSERT INTO employee ('E-101','Ashwin Singh',`DEVELOPER', 50000) |  |
| Option C: | INSERT INTO employee VALUES('E-101','Ashwin Singh','DEVELOPER',50000) |  |
| Option D: | INSERT INTO employee table(employee id, name, dept name, salary) VALUES ('E-101','Ashwin Singh','DEVELOPER', 50000) |  |
| 12. | Consider the following instance: |  |
|  | Name | Price |
|  | IPHONE | 5000 |
|  | PHONE | 1500 |
|  | LAPTOP | 1000 |
|  | IPAD | 5500 |


|  | The following Query is executed <br> SELECT Price from Product order by Name DESC; <br> Find out correct order of tuple numbers in the output ,if the tuple numbers in the above table are 1,2,3,4 |
| :---: | :---: |
| Option A: | 2,3,4,1 |
| Option B: | 3,4,2,1 |
| Option C: | 4,1,2,3 |
| Option D: | 2,3,1,4 |
| 13. | Which of the following statement is CORRECT ? |
| Option A: | Every relation in 3NF is also in BCNF |
| Option B: | A relation R is in 3 NF if every non-prime attribute of R is fully functionally dependent on every key of $R$ |
| Option C: | Every relation in BCNF is also in 3NF |
| Option D: | No relation can be in both BCNF and 3NF |
| 14. | Let $\mathrm{R}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})$ be a relation with the following dependencies. C->F, $\mathrm{E}-$ $>A, E C->D, A->B$. Which of the following is a key for $R$ |
| Option A: | CD |
| Option B: | EC |
| Option C: | AE |
| Option D: | AC |
| 15. | Consider relational schema <br> Member(phone,name,address,room,floor,stay) <br> which satisfies following FDs: <br> phone,name->address <br> Phone->Room <br> name->floor,stay. The given relation satisfies which highest normal form? |
| Option A: | 1NF |
| Option B: | 2NF |
| Option C: | 3NF |


| Option D: | BCNF |
| :---: | :---: |
| 16. | What is true about timestamp based ordering protocol |
| Option A: | Ensure both conflict serializability and freedom from deadlock |
| Option B: | Ensure only conflict serializability |
| Option C: | Ensure only freedom from deadlock |
| Option D: | Ensure only view serializability |
| 17. | Identify correct rules in growing phase (first phase) in two-phase locking protocol. |
| Option A: | Transaction can only acquire shared lock(lock-s) and exclusive (lock-X) |
| Option B: | transaction can only acquire shared lock(lock-s) ,exclusive (lock-X) and covert lock-s to lock-X |
| Option C: | transaction can release shared lock(lock-s) ,release exclusive (lock-X) and covert lock-s to lock-X |
| Option D: | transaction can acquire only shared lock(lock-s) and release exclusive (lock-X) |
| 18. | Suppose in a database, there are three transactions T1, T2 and T3 with timestamp 10,20 and 30 respectively. T2 is holding a data item which T 1 and T 3 are requesting to acquire. Which of the following statement is correct in respect of Wait-die Deadlock Prevention scheme? |
| Option A: | Transaction T 1 will wait for T 2 to release the data item. |
| Option B: | Transaction T 1 will be aborted. |
| Option C: | Transaction T3 will wait for T 2 to release the data item. |
| Option D: | Transaction T 2 will wait for T 1 to release the data item. |
| 19. | Choose correct statement regarding immediate database modification method of $\log$ based recovery method |
| Option A: | Only Redo operation is performed |
| Option B: | Redo and undo operations are performed |
| Option C: | Only undo operation is performed |
| Option D: | No redo and undo operations are performed |


| 20. | When transactions execute properly without interference from concurrently <br> executing transactions then this property is referred to as. |
| :---: | :--- |
| Option A: | Atomicity |
| Option B: | Concurrency |
| Option C: | Consistency |
| Option D: | Isolation |


| Q2 | Solve any Two Questions out of Three 10 marks each |
| :---: | :---: |
| A | What are different database users? Give responsibilities of DBA |
| B | Produce ER Diagram from the following relational database Schema. <br> BOOK_LOANS <br> Book_jd Branch_id Card_no Date_out Due_date <br> LIBRARY_BRANCH <br> Branch_id Branch_name Address <br> BORROWER <br> Card_no Name Address Phone <br>     <br> 4 |
| C | Book( book_id, title,author, cost) <br> Store(store_no, city, state, inventory_val) <br> Stock(store_no, book_id,quantity) <br> Consider above relational schema and formulate SQL queries for the following: <br> (i)Modify the cost of DBMS books by $10 \%$ <br> (ii)Find the author of the books which are available in Mumbai store <br> (iii)Find the title of the most expensive book <br> (iv)Find the total quantity of books in each store <br> (v) Add a new record in Book(Assume values as per requirement) |


| Q3 | Solve any Two Questions out of Three 10 marks each |
| :--- | :--- |
| A | Consider a dependency diagram of relation R and normalize it up to third <br> normal form. |


|  |  |
| :---: | :---: |
| B | Explain conflict and view serializability with suitable examples |
| C | Explain deadlock handling in DBMS with suitable examples. |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2019 "C" Scheme
Examination: SE Semester IV
Course Code: CSC404 and Course Name: Operating System
Time: 2 hour

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
| 1. | Core of operating system is _- |
| Option A: | Shell |
| Option B: | Script |
| Option C: | Commands |
| Option D: | Kernel |
| 2. | Multiprogramming systems_-_ mode |
| Option A: | Are easier to develop than single programming systems |
| Option B: | Execute each job faster |
| Option C: | Execute more jobs in the same time period |
| Option D: | Are used only one large mainframe computers |
|  |  |
| 3. | Once operating system is loaded, execution of applications is in |
| Option A: | Kernel |
| Option B: | User |
| Option C: | Read-Only |
| Option D: | Standalone |
| 4. | We want to keep the CPU as busy as possible, This criteria refers to as |
| A: | Burst Time |


| Option B: | CPU utilization |
| :--- | :--- |
| Option C: | Response time |
| Option D: | Throughput |
|  |  |
| 5. | A Process Control Block (PCB) does not contain which of the following? |
| Option A: | Code |
| Option B: | Data |
| Option C: | Stack |
| Option D: | Bootstrap program |
|  |  |
| 6. | Which of the following state transitions is not possible? |
| Option A: | Blocked to running |
| Option B: | Ready to running |
| Option C: | Running to blocked |
| Option D: | Blocked to ready |
| Option C: | semaphore, wait |
| 7. |  |
| Option A: | Preemptive scheduling |
| Option B: | Non preemptive scheduling |
| Option C: | Multi level scheduling |
| Option D: | Non blocking scheduling |
| Option A: | thread, wait |
|  |  |
|  |  |


| Option D: | socket, signal |
| :---: | :---: |
| 9. | A scenario in which thread $A$ performs an action that causes thread $B$ to perform an action that in turn causes thread $A$ to perform its original action is called |
| Option A: | Spinlock |
| Option B: | Livelock |
| Option C: | Belady's anomaly |
| Option D: | Deadlock |
| 10. | Which algorithm requires that the system must have some additional a priori information available about resources? |
| Option A: | Deadlock prevention |
| Option B: | Deadlock recovery |
| Option C: | Deadlock avoidance |
| Option D: | Deadlock allocation |
| 11. | Which one is Reusable resource in the system? |
| Option A: | Interrupts |
| Option B: | Main memory |
| Option C: | Signals |
| Option D: | Information in I/O buffers |
| 12. | What is the name of the memory allocation strategy in which the OS allocates the smallest free partition that is big enough to hold the process? |
| Option A: | Worst Fit |
| Option B: | Best Fit |
| Option C: | First Fit |
| Option D: | Next Fit |


| 13. | If the size of the logical address space is $2^{\wedge} \mathrm{m}$, and a page size is $2^{\wedge} \mathrm{n}$ addressing units then how many high order bits of a logical address designate the page number? |
| :---: | :---: |
| Option A: | m-n |
| Option B: | m |
| Option C: | n |
| Option D: | m+n |
| 14. | What is the name of the system where processes initially reside in secondary memory and when it needs to execute a process OS swaps it into main memory? |
| Option A: | Internal fragmentation |
| Option B: | Context Switch |
| Option C: | Demand Paging |
| Option D: | External Fragmentation |
| 15. | Instruction or data near to the current memory location that is being fetched, may be needed soon in near future. this is the principal of $\qquad$ |
| Option A: | Spatial Locality |
| Option B: | Temporal Locality |
| Option C: | Buffering |
| Option D: | Branching |
| 16. | A low-level integer used to identify an opened file at the kernel level, in Linux called as $\qquad$ |
| Option A: | Spin lock |
| Option B: | file pointer |
| Option C: | file descriptor |
| Option D: | Signal |
| 17. | a named collection of related information that is recorded on secondary storage is called as $\qquad$ |


| Option A: | Process |
| :---: | :--- |
| Option B: | Memory |
| Option C: | Interrupt |
| Option D: | File |
|  |  |
| 18. | Which one is not the correct purpose of the device controller? |
| Option A: | Detect/Correct errors |
| Option B: | Accept commands from software |
| Option C: | Control arm motion |
| Option D: | Buffering |
| 19. | If the drive controller is busy and a process needs I/O to or from a disk, then |
| Option A: | the request will be ignored |
| Option B: | the request will be placed in the queue of pending requests for that drive |
| Option C: | the request will be processed immediately |
| Option D: | the request will be transferred to different controller |
| Option A: | LOOK |
| Option B: | SCAN |
| Option C: | C-LOOK |
| Option D: | C-SCAN |
| In which of the following algorithms, the disk head moves from one end to the |  |
| other, servicing requests along the way, when the head reaches the other end, it |  |
| immediately returns to the beginning of the disk without servicing any requests on |  |
| the return trip? |  |
|  |  |
|  |  |

## subjective/ descriptive questions

| Q2 | Solve any Four out of Six | 5 marks each |
| :--- | :--- | :--- |
|  |  |  |


| A | Describe microkernel operating system structure |
| :---: | :--- |
| B | What is thread? Describe any four advantages of multithreading model. |
| C | Why is semaphore known as a synchronisation tool?Give an example. |
| D | Describe how logical address is converted into physical address when the <br> program and its associated data is divided into segments |
| E | Summarize various File Attributes |
| F | With the help of a diagram explain I/O management. |


| Q3. | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Compare short term, medium term and long term scheduler along with <br> diagram |
| B | Consider a disk with 51(0 to 50) cylinders. While the seek to cylinder 11 is <br> in progress, the request comes for the following cylinders, in the order 1, <br> $36,16, ~ 34, ~ 9, ~ 12 ~ a n d ~ 40 . ~ T h e ~ a r m ~ m o v e s ~ i n ~ a n ~ i n c r e a s i n g ~ n u m b e r ~ o f ~$ <br> cylinders. What is the total distance the arm moves to complete pending <br> requests using FCFS and LOOK algorithms? |
| C | describe in detail requirements that intends to achieve memory <br> Management |

## University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: SE Semester IV
Course Code: CSC405 and Course Name: Microprocessor
Time: 2 hour
Max. Marks: 80


| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
| 1. | In protected mode of 80386, the VM flag is set by using |
| Option A: | IRET instruction or task switch operation |
| Option B: | IRET instruction |
| Option C: | Task switch operation |
| Option D: | NOP |
|  |  |
| 2. | The instructions that are used for reading an input port and writing an output port <br> respectively are |
| Option A: | MOV, XCHG |
| Option B: | MOV, IN |
| Option C: | IN, MOV |
| Option D: | IN, OUT |
| Option |  |
| 3. | While CPU is executing a program, an interrupt exists then it |
| Option A: | follows the next instruction in the program |
| Option B: | jumps to instruction in other registers |
| Option C: | breaks the normal sequence of execution of instructions |
| Option D: | stops executing the program |
| Option A: | 512 KB |
|  |  |


| Option B: | 1MB |
| :---: | :---: |
| Option C: | 2MB |
| Option D: | 256KB |
| 5. | Because of Pentium's superscalar architecture, the number of instructions that are executed per clock cycle is |
| Option A: | 1 |
| Option B: | 2 |
| Option C: | 3 |
| Option D: | 4 |
| 6. | The paging unit is enabled only in |
| Option A: | virtual mode |
| Option B: | addressing mode |
| Option C: | protected mode |
| Option D: | Real Mode |
| 7. | In 8257 register format, the selected channel is disabled after the terminal count condition is reached when |
| Option A: | Auto load is set |
| Option B: | Auto load is reset |
| Option C: | TC STOP bit is reset |
| Option D: | TC STOP bit is set |
| 8. | All the functions of the ports of 8255 are achieved by programming the bits of an internal register called |
| Option A: | data bus control |
| Option B: | read logic control |
| Option C: | control word register |
| Option D: | Status Register |
| 9. | When non-specific EOI command is issued to 8259A it will automatically |


| Option A: | set the ISR |
| :---: | :---: |
| Option B: | reset the ISR |
| Option C: | set the INTR |
| Option D: | reset the INTR |
| 10. | For a single task in protected mode, the 80386 can address the virtual memory of |
| Option A: | 32 GB |
| Option B: | 64 MB |
| Option C: | 32 TB |
| Option D: | 64 TB |
| 11. | The recurrence of the numerical values or constants in a program code is reduced by |
| Option A: | EQU |
| Option B: | ASSUME |
| Option C: | LOCAL |
| Option D: | LABEL |
| 12. | The hyperthreading technology automatically involves the |
| Option A: | decrease of die area |
| Option B: | increase of die area |
| Option C: | decrease of die area to half |
| Option D: | increase of die area to half |
| 13. | The 80386 enables itself to organize the available physical memory into pages, which is known as |
| Option A: | segmentation |
| Option B: | Paging |
| Option C: | memory division |
| Option D: | Virtual memory |


| 14. | The number of debug registers that are available in 80386, for hardware debugging and control is |
| :---: | :---: |
| Option A: | 2 |
| Option B: | 4 |
| Option C: | 8 |
| Option D: | 16 |
| 15. | The instruction, JMP 5000H:2000H; is an example of |
| Option A: | intrasegment direct mode |
| Option B: | intrasegment indirect mode |
| Option C: | intersegment direct mode |
| Option D: | intersegment indirect mode |
| 16. | The salient feature of Pentium is |
| Option A: | superscalar architecture |
| Option B: | superpipelined architecture |
| Option C: | superscalar and superpipelined architecture |
| Option D: | multiple instruction issue |
| 17. | The speed of integer arithmetic of Pentium is increased to a large extent by |
| Option A: | on-chip floating point unit |
| Option B: | superscalar architecture |
| Option C: | 4-stage pipelines |
| Option D: | instruction cache |
| 18. | For 8086 microprocessor, the stack segment may have a memory block of a maximum of |
| Option A: | 32 K bytes |
| Option B: | 64 K bytes |
| Option C: | 16 K bytes |


| Option D: | 128 K bytes |
| :---: | :--- |
|  |  |
| 19. | Which of the following is not a module of Pentium 4 architecture? |
| Option A: | front end module |
| Option B: | execution module |
| Option C: | control module |
| Option D: | Memory subsystem module |
|  |  |
| 20. | The type of the interrupt may be passed to the interrupt structure of CPU from |
| Option A: | interrupt service routine |
| Option B: | Stack |
| Option C: | interrupt controller |
| Option D: | Segments |


| Q2 | Solve any Four out of Six $\quad$ 5 marks each |
| :---: | :--- |
| A | Explain different types of Interrupts? Explain Interrupt Vector table for <br> 8086 |
| B | Draw and explain the internal block diagram of 8257? How DMA <br> operations are performed? |
| C | Explain what is Branch Prediction Logic in Pentium? Explain working of <br> Branch Prediction with suitable diagram? |
| D | Compare the 8086, 80386, Pentium Processor. |
| E | Draw and explain the internal architecture of 80386 microprocessor? |
| F | Explain the operating modes of 80386? |


| Q3. | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Explain the internal architecture of 8086 microprocessor? Differentiate the <br> functioning of Minimum mode and Maximum mode? |
| B | Write an assembly language program to find the largest number from an |


|  | unordered array of 8-bit numbers? |
| :--- | :--- |
| C | Interface 32K word of memory to 8086 microprocessor system. Available <br> memory chips are 16K*8 RAM. Use suitable decoder for generating chip <br> logic. |

