University of Mumbai
 Examination 2021 under cluster __(Lead College:
 \qquad)

Examinations Commencing from 1st June 2021 to 14th June 2021

Program: Computer Engineering_
Curriculum Scheme: Rev 2016
Examination: TE Semester VI
Course Code: CSC601 and Course Name:Software Engineering
Time: 2 hours

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	COCOMO-II model is an example of :
Option A:	Risk Management
Option B:	Estimation Models
Option C:	Requirement Analysis
Option D:	software testing
2.	Empirical Estimations model are constructed on:
Option A:	Expert judgment based on past projects
Option B:	Regression models derived from historical project data
Option C:	Expected value estimation
Option D:	Trial and error parameter values
3.	Which of the following does not fall under project scheduling?
Option A:	Effort validation
Option B:	Market assessment
Option C:	Compartmentalization
Option D:	Time allocation
	Which of the following software process models couples the iterative nature of
4.	What prototyping with the controlled and systematic factors of the linear sequential model?
Option A:	The Spiral Model.
Option B:	The Waterfall Model.
Option C:	The Incremental Model.
Option D:	The Revolutionary Model
5.	A Person is anyone within the company that has business interest in the product to be built and might be rewarded for the outcome or criticized if the attempt fails. Option A:
Option B:	Stakeholder
Option C:	Coder

Option D:	Proprietor
6.	A technique for handling the introduction of products with an emphasis on chronic transparency and not overburdening the development team is --------
Option A:	Kanban
Option B:	Scrum
Option C:	Agile
Option D:	Development
7.	Which of the following is a useful measure for measuring the quality of a system?
Option A:	integrity, sales, usability, maintainability
Option B:	Stakeholders ,integrity, usability, sales
Option C:	correctness, usability, maintainability, integrity
Option D:	Correctness ,size ,usability ,maintainability
8.	The 3 P's in Project management are:
Option A:	Process, Performance and Product
Option B:	Process, Product and People
Option C:	Product, Performance and People
Option D:	People, Process and Performance
9.	In LOC Estimation techniques Problem decompositions are based on:
Option A:	project schedule
Option B:	process activities
Option C:	product specification
Option D:	software function
10.	SRS is said to be consistent if and only if
Option A:	its structure and style are such that any changes to the requirements can be made easily while retaining the style and structure
Option A:	Software Developer
Option B:	Project Manager
Option C:	Software Configuration Manager
Option C:	every requirement stated therein is verifiable
Option D:	every requirement stated therein is one that the software shall meet
	no subset of individual requirements described in it conflict with each other
Option A:	Are all independent paths within a module exercised?
Option B:	Is the system particularly sensitive to certain input values?
Option C:	Does the internal structure to ensure their validity are exercised?
Option D:	Do all loops at their boundaries and within their operational bounds are exercised?

Option D:	Change Control authority
13.	Which design concept defines a direct outgrowth of modularity and the concepts of abstraction and information hiding?
Option A:	Refinement
Option B:	Architectural Patterns
Option C:	Functional Independence
Option D:	Refactoring
14.	The reverse engineering is concerned with
Option A:	Any adaptation of the system
Option B:	Any reconstruction of the system
Option C:	Any maintenance of the system
Option D:	Documentation change of the software
15.	Estimate the risk exposure, if the risk probability is given as $70 \%, 15$ components need to be developed from scratch and the average component is 100 LOC with software engineering cost for each LOC is Rs.12.
Option A:	Rs.10,500
Option B:	Rs.18,000
Option C:	Rs.8,400
Option D:	Rs.12, 600
16.	Which one among the following provides the upper bound on the number of test cases that will be required to guarantee that every statement in the program has been executed at least once
Option A:	Cyclomatic Complexity
Option B:	Flowchart and flow graph
Option C:	Boundary value analysis
Option D:	Independent Program Paths
17.	Which of the following errors should not be tested when error handling is evaluated?
Option A:	Error description is impossible to understand
Option B:	Error noted does not correspond to error encountered
Option C:	Error condition causes system intervention
Option D:	Error description provide enough information to assist in the location of the cause of the error
18.	Which of the following is not a SQA plan for a project?
Option A:	evaluations to be performed
Option B:	duration of technical work
Option C:	audits and reviews to be performed
Option D:	procedures for error reporting and tracking

19.	Which of the following is not the golden rule for user interface design?
Option A:	Place the user in control
Option B:	Reduce the user's memory load
Option C:	Make the interface consistent
Option D:	Risk identification
20.	Independence of a module is measured using the following 2 qualitative criteria :
Option A:	Module and modularity
Option B:	Cyclomatic complexity and modularity
Option C:	Cohesion and coupling
Option D:	Abstraction and function point

Q2.	Solve any Two Questions out of Three 10 marks each
A	Differentiate between Spiral and Agile process models. Explain which process model is appropriate for developing any Mobile application.
B	Explain the SCM Process. Differentiate between Quality Assurance and Quality control
C	Describe the various testing strategies for a conventional system. Also discuss the different testing methods applicable for Web application.

Q3.	Solve any Two Questions out of Three 10 marks each
A	Is Risk can be quantified? Justify your answer. How to practice risk management? Explain in detail.
B	Explain COCOMO II Model with a suitable example. A project size of 200 KLOC is to be developed. Software development team has average experience on similar types of projects. The project schedule is not very tight. Calculate the Effort, development time, average staff size, and productivity for the project.
C	Describe verification and validation with example. What comes first? Justify

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: TE Semester VI
Course Code: CSC602 and Course Name: System Programming \& Compiler Construction Time: 2 hour Max. Marks: 80
$\left.\begin{array}{|l|l|}\hline \text { Q1. } & \begin{array}{l}\text { Choose the correct option for following questions. All the Questions are } \\ \text { compulsory and carry equal marks }\end{array} \\ \hline & \text { Which language processor bridges an execution gap but not translator? } \\ \hline 1 . & \text { Preprocessor } \\ \hline \text { Option A: } & \text { Pre } \\ \hline \text { Option B: } & \text { Assembler } \\ \hline \text { Option C: } & \text { Compiler } \\ \hline \text { Option D: } & \text { Loader } \\ \hline & \begin{array}{l}\text { What are the fields present in MOT used in two pass assembler design? } \\ \text { 1. Mnemonic opcode } \\ \text { 2. Binary opcode }\end{array} \\ \hline \text { 3. Instruction length }\end{array}\right\}$

	$\begin{array}{l}\text { A 2, \&AR2 } \\ \text { MEND }\end{array}$
OpAR3	

12.	In which Code Optimization technique, variables are replaced with constants that have been assigned to them?
Option A:	loop optimization
Option B:	constant folding
Option C:	local optimization
Option D:	Constant propagation
13.	Which technique is applicable to optimize the given code? $\begin{aligned} & a=10 ; \\ & \text { for }(j=0 ; j<a * 2 ; j++) \\ & \{\quad x=j+2 ;\} \end{aligned}$
Option A:	Code Motion
Option B:	Copy Propagation
Option C:	Induction Variable Reduction
Option D:	Common Sub-expression Elimination
14.	Which of the following cannot be used as intermediate code form?
Option A:	Post fix notification
Option B:	Three address code
Option C:	Abstract Syntax tree
Option D:	Token
15.	What of the following graph represents flow of control among the set of basic blocks?
Option A:	Hamiltonian graph
Option B:	Control graph
Option C:	Flow graph
Option D:	DAG
16.	What will be the FOLLOW(A) for following grammar? $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{AaAb} \\ & \mathrm{~S} \rightarrow \mathrm{BaBb} \\ & \mathrm{~A} \rightarrow \varepsilon \\ & \mathrm{~B} \rightarrow \varepsilon \end{aligned}$
Option A:	Only a
Option B:	a, b
Option C:	Only b
Option D:	Only ε
17.	Which of the following grammar is appropriate for operator precedence grammar?
Option A:	S-> EF
Option B:	S-> E*F\| ε
Option C:	S-> E+F
Option D:	S-> +EF
18.	Which of the following statement are correct for Syntax Directed Definition? i. The terminals do not have inherited attributes. ii. The non-terminal can have both inherited and synthesized attributes.

	iii. Each grammar symbol is associated with a set of attributes.
Option A:	i only
Option B:	i, ii and iii
Option C:	ii and iii
Option D:	iii only
19.	Which of the following approach is used to evaluate the attributes in L-attributed SDTs?
Option A:	DFS with left-to-right Parsing
Option B:	BFS with left-to-right Parsing
Option C:	DFS with right-to-left Parsing
Option D:	BFS with right-to-left Parsing
20.	Which sentence/s is correct with respesct to lexical analyzer? 1. Recognizing the tokens 2. To organize the variables in a lexical order 3. Building a literal and identifier table
Option A:	1 only
Option B:	2 \& 3 only
Option C:	1,2 \& 3
Option D:	$1 \& 3$ only

Q2.	Solve any Two 10 marks each
A	Generate SLR parsing table for the following grammar. S \rightarrow DD D \rightarrow dD \mid e
B	Explain databases used in Single pass assembler design with suitable example.
C	What is Macro call, Macro expansion, Macro definition? How is macro different from subroutine?
Q3.	Solve any Two 5 marks each A
i.	Explain the process of elimination of left recursion with example.
ii.	Compare application software and system software. Generate Three address code. For(i=0;i<10;i++) $\{$
iii.	If (i<5) a=b+c*3; else x=y+z; $\}$
B	Solve any One
i.	What is fundamental process of a loader? Explain dynamic loading in detail.
ii.	Explain loop optimization techniques with example.

University of Mumbai

Examination June 2021
Examinations Commencing from $1^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: TE Semester VI
Course Code: CSC603and Course Name: Data Warehousing and Mining
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
	R.
1.	The purpose of the operational system is used to
Option A:	Run the business in real time and is based on historical data
Option B:	Takes strategic decisions for business
Option C:	Support decision making and is based on historical data
Option D:	Run the business in real time and is based on current data
2.	Which of following describes a data warehouse well?
Option A:	Can be updated by end users.
Option B:	Contains numerous naming conventions and formats.
Option C:	Organized around important subject areas.
Option D:	Contains only current data
3.	Expected amount of information (in bits) needed to assign a class to a randomly drawn object is Option A: Gain ratio
Option B:	Gini Index
Option C:	Entropy
Option D:	Information Gain
4.	Which of the following achieves data reduction by detecting redundant attributes
Option A:	Data cube aggregation
Option B:	Dimension reduction
Option C:	Data compression
Option D:	Numerosity reduction
5.	The fraudulent usage of credit card-scan be detected using data mining task should be used
Option A:	Prediction
Option B:	Outlier analysis
Option C:	Association analysis
Option D:	Correlation
6.	Given the record of users and movies viewed. Using Jaccard similarity measures, find similarity between $\{$ A-B,A-C,B-C \}

	tables D1, D2, D3, D4 then fact table will have how many foreign keys?
Option A:	2
Option B:	4
Option C:	3
Option D:	5
13.	$\begin{array}{r}\text { If Mean salary is } 54,000 \text { Rs. and } \begin{array}{r}\text { standard } \\ \text { find } z \text { score value of } 73,600 \text { Rs. salary }\end{array} \\ \hline\end{array}$
Option A:	1.225
Option B:	0.351
Option C:	1.671
Option D:	1.862
14.	The generalization of cross-tab which is represented visually is \qquad which is also called as data cube.
Option A:	Two-dimensional cube
Option B:	Multidimensional cube
Option C:	N-dimensional cube
Option D:	Cuboid
15.	In KDD and Data mining, noise is referred to as
Option A:	Complex data
Option B:	Meta data
Option C:	Error
Option D:	Repeated data
16.	Find the IQR of the data set $\{3,7,8,5,12,14,21,13,18\}$.
Option A:	6
Option B:	12
Option C:	16
Option D:	10
17.	Which of the following is not a method to estimate a classifier's accuracy
Option A:	Holdout method
Option B:	Random Sampling
Option C:	Information Gain
Option D:	Bootstrap
18.	For questions given below consider the data Transactions : T1 \{F, A, D, B $\}$ T2 \{D, A, C, E, B $\}$ T3 $\{\mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{E}\}$ T4 $\{\mathrm{B}, \mathrm{A}, \mathrm{D}\}$ With minimum support is 60% and the minimum confidence is 80%. Which of the following is not valid association rule?
Option A:	A -> B
Option B:	B \rightarrow A
Option C:	D $->$ A
Option D:	A -> D

19.	To calculate distance between two isotheticrectangles, \qquad is efficient approach and produces cluster of high quality
Option A:	CLARA
Option B:	PAM
Option C:	Spatial mining
Option D:	IR Approximation
20.	Geographers typically model the world with objects located at different places on surface of the earth. Through \qquad model, the real word entities are represented by lines, points and polygons
Option A:	Vector data model
Option B:	Raster data model
Option C:	Network data model
Option D:	Topology data model

Q2	Solve any Four out of Six 5 marks each
A	Consider Metadata as an equivalent of Amazon book store, where each data element is book. What this meta data will contain. Explain.
B	Suppose a group of sales price records has been sorted as follows: 6, 9, 12, 13, 15, 25, 50, 70, 72, 92, 204, 232. Partition them into three bins by equalfrequency (Equi-depth) partitioning method. Perform data smoothing by bin mean.
C	Suppose that the data for analysis includes the attribute age. The age values for the data tuples are (in increasing order): $13,15,16,16,19,20,23,29,35,41,44,53,62,69,72$ Use min-max normalization to transform the value 45 for age onto the range [0:0, 1:0].
D	Use K-means algorithm to create 3 - clusters for given set of values: $\{2,3,6,8,9,12,15,18,22\}$
E	Transaction database is given Below. Min Support $=2$. Draw FP-Tree .
	TID List of item_Ids
	T100 I1, I2, I5
	T200 I2, I4
	T300 I2, I3
	T400 I1, I2, I4
	T500 I1, I3
	T600 I2, I3
	T700 I1, I3
	T800 I1, I2, I3, I5
	T900 I1, I2, I3
F	Write short note on Spatial Clustering Techniques : CLARANS .
Q3	Solve any Two Questions out of Three 10 marks each
A	For a Supermarket Chain consider the following dimensions, namely Product, store, time , promotion. The schema contains a central fact tables sales facts with three measures unit_sales, dollars_sales and dollar_cost.

University of Mumbai

Examination June 2021
Examinations Commencing from 1 ${ }^{\text {st }}$ June 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: TE Semester VI
Course Code: CSC604 and Course Name: Cryptography and System Security
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	\qquad defines a security service as a service that is provided by a protocol layer of communicating open systems and that ensures adequate security of the systems or of data transfers.
Option A:	X. 800
Option B:	X. 809
Option C:	X. 832
Option D:	X. 802
2.	\qquad are fundamental to a number of public-key algorithms, including and the digital signature algorithm (DSA).
Option A:	Discrete logarithms
Option B:	Chinese remainder theorem
Option C:	Fermat's theorem
Option D:	Miller and Rabin algorithm
3.	Plain text message is: "meet me after the toga party" with a rail fence of depth 2. Compute cipher text.
Option A:	MEMATRHTGPRYETEFETEOAAT
Option B:	MEMATRHTGPRYETEFETFOAAT
Option C:	MEMATRHTHPRYETEFETEOAAT
Option D:	MEMATRHTGPRYETEFFTEOAOT
4.	In \qquad mode, the same plaintext value will always result in the same cipher text value.
Option A:	Cipher Block Chaining
Option B:	Cipher Feedback
Option C:	Electronic code book
Option D:	Output Feedback
5.	DES encrypting the plaintext as block of ___ bits.
Option A:	64
Option B:	56
Option C:	128
Option D:	32
6.	\qquad is a symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications.
Option A:	AES

Option B:	RSA
Option C:	MD5
Option D:	RC5
7.	The number of rounds in RC5 can range from 0 to
Option A:	127
Option B:	63
Option C:	31
Option D:	255
8.	How many rounds does the AES-192 perform?
Option A:	10
Option B:	14
Option C:	16
Option D:	12
9.	For the Knapsack: $\{1681524\}$, Find the cipher text value for the plain text 10011.
Option A:	40
Option B:	15
Option C:	14
Option D:	39
10.	Which of the following is not possible through hash value?
Option A:	Password check
Option B:	Data integrity check
Option C:	Data retrieval
Option D:	Digital signature
11.	Which of the following is not an element/field of the X. 509 certificates?
Option A:	Issuer Name
Option B:	Serial Modifier
Option C:	Issue unique identifier
Option D:	Signature
12.	\qquad is responsible for distributing keys to pairs of users (hosts, processes, applications) as needed
Option A:	Key distribution center
Option B:	Key analysis center
Option C:	UKey storing center
Option D:	HKey storing center
13.	A digital certificate system is
Option A:	uses third-party CAs to validate a user's identity
Option B:	uses digital signatures to validate a user's identity
Option C:	uses tokens to validate a user's identity
Option D:	are used primarily by individuals for personal correspondence
14.	Hashed message is signed by a sender using
Option A:	His public key
Option B:	His private key

Option C:	Receivers public key
Option D:	Receivers private key
15.	The man-in-the-middle attack can endanger the security of the Diffie-Hellman method if two parties are not
Option A:	Authenticated
Option B:	Joined
Option C:	Submit
Option D:	Separate
16.	Which of the following does authorization aim to accomplish?.
Option A:	Restrict what operations/data the user can access
Option B:	Determine if the user is an attacker
Option C:	Flag the user if he/she misbehaves
Option D:	Determine who the user is
17.	operates in the transport mode or the tunnel mode.
Option A:	IPSec
Option B:	SSL
Option C:	PGP
Option D:	BGP
18.	When a hash function is used to provide message authentication, the hash function value is referred to as
Option A:	Message Field
Option B:	Message Digest
Option C:	Message Score
Option D:	Message Leap
19.	Which of the following tool would NOT be useful in figuring out what spyware or viruses could be installed on a client's computer?
Option A:	Wireshark
Option B:	Malware Bytes
Option C:	HighjackThis
Option D:	HitmanPro
20.	What is honey pot attack?
Option A:	dummy device put into the network to attract attackers
Option B:	single line threat
Option C:	Ip spoofing bypass
Option D:	recognition attack

Q2	Solve any Two
A	Explain Security Services and Mechanisms in detail. Explain the relationship between them.
B	What is meant by the Diffie-Hellman key exchange algorithm? Explain with example.
C	Describe HMAC algorithm. Comment on the security of HMAC.
Q3	Solve any Two
A	Describe signing and verification in Digital Signature Algorithm.

C \quad Explain Man-in-the-Middle and Flooding attacks concept in detail.

University of Mumbai
 Examination June 2021
 Examinations Commencing from 1* June 2021
 Program: Computer Engineering
 Curriculum Scheme: Rev2016
 Examination: TE Semester VI
 Course Code: CSDLO6021 and Course Name: Machine Learning

Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following are examples of unsupervised learning? i. Modeling a spam filter from a set of labeled emails as spam and not spam ii. Given a set of news articles found on the web, group them into articles under different categories iii. Given a database of customer data, automatically discover market segments and group customers into different market segments iv. Given a database of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not
Option A:	Both i and iv
Option B:	Both i and iii
Option C:	Both ii and iii
Option D:	Both iii and iv
2.	Which of the following options are true about Machine Learning? 1. Machine learning is automatic learning based on experience 2. Machine learning is programmed so that it learns, and past experience is not required. 3. It can learn and improve from the past experience without being explicitly programmed. 4. Machines can learn from past experience, but it must be explicitly programmed.
Option A:	1 and 2
Option B:	2 and 4
Option C:	1 and 4
Option D:	3 and 4
3.	Which of the following is an example of reinforcement learning?
Option A:	Stock price prediction
Option B:	Sentiment analysis
Option C:	Customer segmentation

Option D:	Robot in a maze
4.	In Downhill Simplex method, if $f(x)$ at the reflected point is greater than $f(x)$ at worst point (N) then the new point is obtained by
Option A:	Contraction
Option B:	Multiple Reflection
Option C:	Expansion
Option D:	Multiple contraction
5.	In classical Newton's Method, having Hessian Matrix H, Gradient G, $\mathrm{X}_{\mathrm{K}+1}$ is computed using
Option A:	$\mathrm{X}_{\mathrm{K}+1}=\mathrm{X}_{\mathrm{K}}+\mathrm{H}_{\mathrm{K}}{ }^{-1} * \mathrm{G}_{\mathrm{K}}$
Option B:	$\mathrm{X}_{\mathrm{K}+1}=\mathrm{X}_{\mathrm{K}}-\mathrm{H}_{\mathrm{K}}{ }^{\text {t }} \mathrm{G}_{\mathrm{K}}$
Option C:	$\mathrm{X}_{\mathrm{K}+1}=\mathrm{X}_{\mathrm{K}}-\mathrm{H}_{\mathrm{K}} * \mathrm{G}_{\mathrm{K}}$
Option D:	$\mathrm{X}_{\mathrm{K}+1}=\mathrm{X}_{\mathrm{K}}+\mathrm{H}_{\mathrm{K}} * \mathrm{G}_{\mathrm{K}}$
6.	Which of the following is not true about the derivative free techniques?
Option A:	They use evolutionary concepts.
Option B:	The objective function has to be differentiable
Option C:	These methods use an empirical approach for analysis.
Option D:	Random search and Downhill Simplex are examples of Derivative free techniques.
7.	Given $\mathrm{X}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right] \mathrm{W}=\left[\begin{array}{llll}1 & 1 & -1 & -1\end{array}\right]$ compute f (net) given lambda $=0.5$ using i. Bipolar continuous ii. Unipolar continuous activation function
Option A:	$\begin{array}{ll}\text { i. } 0.7615 & \text { ii. } 0.880\end{array}$
Option B:	i. 0.880 ii. 0.7615
Option C:	i. -0.7615 ii. 0.1192
Option D:	i. 0.119 ii. -0.7615
8.	Hebbian learning is an example of \qquad and perceptron learning is an example of
Option A:	Feedforward supervised learning, supervised binary response
Option B:	Feedforward unsupervised learning, supervised binary response
Option C:	Feedback supervised learning, unsupervised binary response
Option D:	Feedback unsupervised learning, supervised multivariate response
9.	_ is a type of learning rule which works with a layer of neurons.
Option A:	Perceptron
Option B:	Hebbian
Option C:	Widrow Hoff
Option D:	Winner takes all
10.	Which of these statements are false with respect to the metrics in linear regression? a. For a strong linear regression R^{2} value should be high b. Multiple R value of 1 represents perfect positive relationship

Option B:	A Kernel Trick is a method of transforming the original (non-linear) input data into a higher dimensional space (as a linear representation of data).
Option C:	The Kernel Trick allows us to take linear Support Vector Machines and extend their functionality to classify non-linear data sets.
Option D:	A Kernel Trick is a method which can easily separates the data points in a lower dimensionality space
14.	The difference between naïve Bayesian classifier and Bayesian belief networks is
Option A:	The joint conditional probability distributions are considered in Bayesian Belief networks
Option B:	The joint conditional probability distribution is not considered in Bayesian Belief networks
Option C:	Class conditional independence is always considered in Bayesian Belief networks
Option D:	Class conditional independence is sometimes considered in Bayesian Belief Networks
15.	Today's weather \| Tomorrow's weather Initial Probability values Sunny 0.25 Rainy 0.75 Foggy 0.30 Given that today is sunny what is the probability that tomorrow is sunny and the day after is rainy
Option A:	0.01
Option B:	0.004
Option C:	0.04
Option D:	0.32

16.	What is true about Markov Property I. Markov Property is very useful for explaining events, and it cannot be the true model of the underlying situation in most cases. II. The state of the system at time $t+1$ depends only on the state of the system at time t III. The advantages of Markov property are complexity and forecasting accuracy. IV. Markov property is used to forecast the value of a variable whose predicted value is influenced only by its current state
Option A:	i and ii
Option B:	ii and iii
Option C:	ii and iv
Option D:	iii and iv
17.	A square matrix is \qquad if all eigen values are \qquad Positive definite, Positive Negative definite, Negative Positive definite, Negative Negative definite, positive
Option A:	Both ii and i are correct
Option B:	Both iii and iv are correct
Option C:	All four options are wrong
Option D:	Either iii or iv is right
18.	Identify the correct options regarding Principal Component Analysis (a) Principal component analysis (PCA) can be used with variables of any mathematical types: quantitative, qualitative, or a mixture of these types (b) The major principal component axis has dimensions having the maximum variance. (c) The major principal component axis has dimensions having the minimum variance (d) The most information is retained among the top few principal axes.
Option A:	Both a and b
Option B:	Both b and d
Option C:	Both a and d
Option D:	Both c and d

19.	Compute the eigen values for matrix $\mathrm{A}=\left[\begin{array}{cc}7 & 3 \\ 3 & -1\end{array}\right]$
Option A:	$\lambda 1=8 ; \lambda 2=-2$
Option B:	$\lambda 1=-8 ; \lambda 2=2$
Option C:	$\lambda 1=4 ; \lambda 2=-4$
Option D:	$\lambda 1=-4 ; \lambda 2=4$
20.	 In the graphs 1,2 and 3 which is best fitted and which is overfitted?
Option A:	2 is best-fitted and 1 is over-fitted
Option B:	1 is best-fitted and 2 is over-fitted
Option C:	2 is best-fitted and 3 is over-fitted
Option D:	1 is best-fitted and 3 is over-fitted

Q3. (20 Marks Each)	Solve any Two
A	Define logit function. Explain the importance of logit function in logistic regression with appropriate example
i.	Given
ii.	Compute output Z using binary bipolar activation function. Also compute the new weights $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{w}_{11}, \mathrm{w}_{12}, \mathrm{w}_{21}, \mathrm{w}_{22}$
iii.	Define covariance ? For the given dataset, compute the covariance matrix

	X_{1}	X_{2}
	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
	3.1	3.0
2.3	2.7	
	2.0	1.6
	1.0	1.1
	1.5	1.6
	1.2	0.9
B	Solve any One	
ii.	Explain Linear Separability problem? (2)	
	Solve a linearly separable problem (AND Gate)	
	Solve a linearly non separable problem (XOR gate) both using McCulloch	
	Pitt Model ?	
ii.	What is the role of radial basis function in separating nonlinear patterns?	
	Explain with XOR Example.	

