University of Mumbai Examination 2020 under cluster KJSIEIT Examinations Commencing from 7th January 2021 to 20th January 2021 Program: Civil Engineering

Curriculum Scheme: Rev2019 (C Scheme)

Examination: SE Semester III

Course Code: CEC 301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	$\frac{L[e^{-3t}\sin 2t]}{s} = \frac{1}{s}$
Option A:	
	$(s+3)^2 + 4$
Option B:	2
	$\overline{(s-3)^2+4}$
Option C:	2
	$\overline{(s+3)^2+4}$
Option D:	2
1	$\overline{(s+3)^2-4}$
2.	$L[t e^{2t}]$
Option A:	$\frac{1/(S-2)^2}{1/(S+2)^2}$
Option B:	$\frac{1}{(S+2)^2}$
Option C:	$\frac{1/(S-3)^2}{1/(S-2)^3}$
Option D:	$1/(S-2)^3$
2	
3.	$\frac{L[f(t)/t]}{c^{\infty}}$
Option A:	$\int_0 \phi(t) ds$
Option B:	$\int_{s}^{\infty} \phi(s) ds$
Option C:	$\int_{s}^{a} \phi(s) ds$
Option D:	$\int_0^\infty \phi(s) ds$
4.	$L^{-1} [1/(S+2)^4]$
Option A:	$e^{-2t} \cdot t^3 / 3$

Option B: e	e ^{-2t} .t ⁴ /6
Option C: e	$e^{-3t} \cdot t^3/6$
Option D: e	$e^{-2t} \cdot t^3 / 6$
5. 7	The inverse Laplace transform of $\frac{s}{s^2+5s+6}$
Option A: 3	$3 e^{-3t} - 2 e^{-2t}$
Option B:	$3 e^{-3t} + 2 e^{-2t}$
Option C: 3	$\frac{3 e^{-3t} + 2 e^{-2t}}{3 e^{-3t} - 2 e^{-t}}$
Option D: 3	$3 e^{-t} - 2 e^{-2t}$
-	
6. 7	The inverse Laplace transform of $\log(\frac{s-5}{s-7})$
Option A: ($\frac{(e^{7t} + e^{5t}) / t}{(e^{-7t} - e^{-5t}) / t}$ $\frac{(e^{5t} - e^{7t}) / t}{(e^{7t} - e^{5t}) / t}$
Option B: ($(e^{-7t} - e^{-5t}) / t$
Option C: ($(e^{5t} - e^{7t}) / t$
Option D: ($(e^{7t} - e^{5t}) / t$
	· · · ·
7. I	L^{-1} [cot $^{-1}$ 3s]
	[cos(t/3)] /t
Option B: [[sin(t/3)] /t
Option C: [[sin(t/2)] /t
Option D: [[sin(t/3)] .t
	Find analytic function where $u = x^2 + y^2 - 5x + y + 2$
	$z^2 - 5z - iz + c$
Option B: z	$z^2 - 5z + iz + c$
Option C: z	$z^2 + 5z - iz + c$
Option D: z	$z^2 + 5z + iz + c$
<u>9.</u> V	Which of following function is harmonic
	$u = e^x \cos y - x^3$
	u= sinx. cosy
	u= cosx. coshy
Option D: 1	u = sinhx. sinhy
10 3	Which of following function is analytic
	Which of following function is analytic
-	$e^{x}(\cos y - i \sin y)$ $z^{2} - \overline{z}$
1	$e^{-x}(\cos y - i \sin y)$
	$\frac{2}{2x + ixy^2}$
	2A + 1Ay
11. F	For the Fourier Series $\frac{a_0}{a} + \sum a_n cosnx + \sum b_n sinnx$ of the function $f(x) =$
-	2
	$x \sin x, 0 \le x \le 2\pi$, the value of a_0 is
-	-2
	2
-	1
Option D: -	-3
12.	Even the Evention Control $a_0 + \Sigma$ are set Σh where $h = h + h$ and $h = h + h$
12. I	For the Fourier Series $\frac{a_0}{2} + \sum a_n \cos nx + \sum b_n \sin nx$ of the function $f(x) = 4 - x^2$, $0 \le x \le 2$, the value of a_n is

Option A:	$-4/n^2 \pi^2$
Option B:	$4/n^2 \pi^2$
Option C:	$-8/n^2 \pi^2$
Option D:	$8/n^2 \pi^2$
13.	If $f(x)$ is periodic function with period 2L defined in the interval C to C+2L then
	Fourier coefficient b_n is
Option A:	$\int_{C}^{C+2L} f(x) \sin \frac{n\pi x}{L} dx$
Option B:	$\int_{C}^{C+2L} f(x) \sin \frac{n\pi x}{L} dx$ $\frac{1}{L} \int_{C}^{C+2L} f(x) \sin \frac{n\pi x}{L} dx$ $1 \int_{C}^{C+2L} n\pi x$
Option C:	$\left \frac{1}{L}\right _{C} = \frac{\sin - \frac{1}{L} dx}{1}$
Option D:	$\frac{1}{L} \int_{C}^{C+2L} f(x) \cos \frac{n\pi x}{L} dx$
14.	Half Range Fourier sine Series of $f(x) = cosx$, $0 \le x \le \pi$ is $\sum b_n sinnx$. What is the value of b_1 ?
Option A:	$1/\pi$
Option B:	$2/\pi$
Option C:	0
Option D:	-2/ π
15.	The general solution of wave equation $\frac{\partial^2 u}{\partial t^2} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0$ is
Option A:	$u = a \cos m x + b \sin m x$ where a, b are constants
Option B:	$u = (a \cos m x + b \sin m x)c \cos m\alpha t$ where a, b, c are constants
Option C:	$u = (a \cos m x + b \sin m x)(c \cos m\alpha t + d \sin m\alpha t)$ where a, b, c, d are
opuon er	constants
Option D:	$u = (a \cos m \alpha x + b \sin m \alpha x)(c \cos m\alpha t + d \sin m \alpha t)$ where a, b, c, d are constants
1.0	
16.	Using method of separation of variable, solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, given $u(x,0) = 4e^{-x}$
Option A:	$u(x,0) = 4e^{-x}$ $u = e^{-(2x-3y)/2}$ $u = 4e^{(2x-3y)/2}$
Option B:	$u = 4e^{(2x-3y)/2}$
Option C:	$u = 3e^{-(2x-3y)/2}$
Option D:	$u = 4e^{-(2x-3y)/2}$
17	
17.	Consider the one-dimensional heat equation:
	$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ By using Crank-Nicholson formula, taking $h = \frac{1}{4}$ (the step size of
	x) we get k(step size of t)to be equal to
Option A:	1/16
Option B:	1/8
Option C:	1
Option D:	1/4

18.	If characteristic equation of matrix A of order 3×3 is $\lambda^3 - 3 \lambda^2 + 3 \lambda - 1 = 0$. Then
	by Cayley Hamilton theorem A ⁻¹ is equal to
Option A:	$A^3 - 3 A^2 + 3 A - I$
Option B:	A ² - 3 A - 3I
Option C:	3 A ² - 3 A - I
Option D:	$A^2 - 3A + 3I$
19.	$A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ then the value of A ⁵⁰
Option A:	$\begin{bmatrix} 149 & -150 \\ 150 & 151 \end{bmatrix}$
Option B:	$\begin{bmatrix} -149 & -150 \\ 150 & 151 \end{bmatrix}$
Option C:	$\begin{bmatrix} -149 & 150 \\ 150 & 151 \end{bmatrix}$
Option D:	$\begin{bmatrix} -149 & -150 \\ 150 & -151 \end{bmatrix}$
20.	$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ The eigen vector corresponding to eigen value $\lambda = -1$ is
Option A:	$\begin{bmatrix} 6\\-2\\7 \end{bmatrix}$
Option B:	$\begin{bmatrix} -3\\ -2\\ 7 \end{bmatrix}$
Option C:	$\begin{bmatrix} -6\\ -2\\ 7 \end{bmatrix}$
Option D:	$\begin{bmatrix} -6\\ -2\\ 8 \end{bmatrix}$

Option 1

Q2. (20 Marks Each)	Solve any Four out of Six5 marks each
А	Evaluate $\int_0^\infty \frac{\cos 6t - \cos 4t}{t} dt$
В	Find Inverse Laplace transform by convolution theorem $\frac{1}{(s^2+9)(s^2+4)}$
С	Show that $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is diagonalizable. Determine transforming and diagonal matrix.
D	Find Fourier series of $f(x) = x^2$ in the interval $(-\pi, \pi)$. Hence prove that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{6}$

	Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0, 0 \le x \le 1$
Е	subject to the condition $u(0, t) = 0, u(1, t) = 100$,
	$u(x, 0) = 100 (x - x^2)h = 0.25$ for one time step.
F	Show that $u = e^x (x \cos y - y \sin y)$ is harmonic Determine
1	harmonic conjugate and find analytic function

Q3.	Solve any Four out of Six5 marks each
(20 Marks Each)	
А	Find the orthogonal trajectories of the curve is $e^{x} \cos y - xy = c$
В	Find half range sine series of $f(x) = lx - x^2$; $o < x < l$ hence show that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} \dots = \frac{\pi^3}{32}$
С	Solve $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial t} = 0$ by Bender-Schmidt method, given $u(0, t) = 0$, $u(5, t) = 0$, $u(x, 0) = x^2 (25 - x^2)$ Assume h=1 & find the values of u upto t=3
D	If $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ Calculate e^A and 5^A
E	Using partial fractions find the inverse Laplace transforms of $\frac{5s+3}{(s-1)(s^2+2s+5)}$
F	Evaluate $\int_0^\infty e^t \sin 2t \cos 3t dt$

Program: Civil Engineering

Curriculum Scheme: Revised 2019 Examination: **SE** Semester: III

Course Code: CE-C 302 Time: 2 hours

Course Name: Mechanics of Solids

Q1.	Choose the correct option for the following questions. All the Questions are compulsory and carry 2 marks each.
	A circular rod of diameter 20 mm and length 2 m. is subjected to an axial tensile
1.	load of 50 kN. The Young's modulus of the material is 200000 MPa. The increase in the length of rod is
Option A:	4.59 mm
Option B:	3.59 mm
Option C:	2.59 mm
Option D:	1.59 mm
	With $(1/m)$ as Deissen's ratio relation between Verne's methods (E) and bulk
2.	With $(1/m)$ as Poisson's ratio, relation between Young's modulus (E) and bulk modulus (K) is
Option A:	$E = K \{1 - (2/m)\}$
Option B:	$E = 2K \{1 - (2/m)\}$
Option C:	$E = 3K \{1 - (2/m)\}$
Option D:	$E = 4K \{1-(2/m)\}$
	For a composite column section of concrete and steel, area of concrete is
3.	152146.02 mm ² and area of steel is 7853.98 mm ² . Column carries a compressive
	load of 400 kN. The stress in steel is 15 times the stress in concrete. The stresses
	in concrete and steel, respectively, are
Option A:	1.48 MPa and 22.2 MPa
Option B:	1.48 MPa and 32.2 MPa
Option C:	2.14 MPa and 32.2 MPa
Option D:	2 MPa and 30 MPa
	A steel rod 14 m. long is at a temperature of 20 degree centigrade. Coefficient of
4.	thermal expansion of steel is $(12 \times 10^{-6} \text{ per degree centigrade})$. The free
7.	expansion of the rod when the temperature is raised to 70 degree centigrade is
Option A:	6.4 mm
Option B:	7.4 mm
Option C:	8.4 mm
Option D:	9.4 mm
5.	A shell can be called as thin when the ratio of its wall thickness (t) to its internal
	diameter (d) is
Option A:	1/5
Option B:	1/10
Option C:	1/15
Option D:	1/20

6.	A cantilever beam of length 4 m carries a UDL of 10 kN/m throughout its length
	and a point load of 10 kN at the free end. The maximum bending moment is
Option A:	100 kNm
Option B:	110 kNm
Option C:	120 kNm
Option D:	130 kNm
option D.	
7.	For a simply supported beam carrying a UDL of 10 kN/m throughout its length and a point load of 20 kN at the centre, the maximum shear force is 35 kN. The length of the beam is
Option A:	5 m.
Option B:	6 m.
Option C:	7 m.
Option D:	8 m.
8.	A portal frame ABCD of height 5 m. is hinged at left support A as well as right support D. Left column AB carries a UDL of 8 kN/m throughout its length. At C, there is an internal hinge. Beam BC of length 4 m. carries a point load of 10 kN at its centre. The horizontal reaction at support D is
Option A:	Zero
Option B:	40 kN from right to left
Option C:	40 kN from left to right
Option D:	20 kN from right to left
•	
9.	For a solid circular section, which of the following relations is correct?
Option A:	Maximum shear stress is 2 times the average shear stress
Option B:	Maximum shear stress is 3 times the average shear stress
Option C:	Maximum shear stress is 1.25 times the average shear stress
Option D:	Maximum shear stress is 1.33 times the average shear stress
10.	A square beam section with side (x) is subjected to a shear force (S). The magnitude of the shear stress at the top edge of the square section is
Option A:	Zero
Option B:	S/x ²
Option C:	$2S/x^2$
Option D:	$3S/x^2$
11.	A rectangular section has a width of 300 mm and a depth of 600 mm. Neutral axis is perpendicular to the depth. It is subjected to a bending moment of 20 kNm. The bending stress at a distance of 100 mm from the neutral axis is
Option A:	0.27 MPa
Option B:	0.37 MPa
Option C:	0.47 MPa
Option D:	0.57 MPa
12.	The section modulus of a solid circular section of diameter (d) is
Option A:	$\pi d^2/16$
500000	

Option Pt	$\pi d^{3}/16$
Option B:	$\pi d^{3}/32$
Option C:	$\pi d^{4}/64$
Option D:	<i>na</i> /04
	A 70 mm diameter colid shaft is subjected to a targue of 5 liNm. The maximum
13.	A 70 mm diameter solid shaft is subjected to a torque of 5 kNm. The maximum shear stress induced in the shaft is
Option A:	74.24 MPa
Option A: Option B:	84.24 MPa
	94.24 MPa
Option C:	
Option D:	104.24 MPa
1.4	
14.	The maximum shear stress produced in a shaft is 8 MPa. The shaft is of 50 mm
Ortion A.	diameter. The twisting moment is 0.1563 kNm
Option A:	
Option B:	0.1963 kNm
Option C:	0.2363 kNm
Option D:	0.3363 KNm
15.	The diameter of core or kernel of a hollow circular section with external diameter
15.	
Outing As	(D) and internal diameter (d) is
Option A:	$(\mathbf{D} + \mathbf{d}) / \mathbf{D}$
Option B:	$(D^2 + d^2) / D$
Option C:	$(D^2 + d^2) / 2D$
Option D:	$(D^2 + d^2) / 4D$
16	The radius of gyration of a solid circular column of diameter (d) is
16.	The radius of gyration of a solid circular column of diameter (d) is $d/8$
Option A:	d / 8
Option A: Option B:	d / 8 d / 4
Option A: Option B: Option C:	d / 8 d / 4 d ² / 8
Option A: Option B:	d / 8 d / 4
Option A: Option B: Option C: Option D:	$ \begin{array}{r} d / 8 \\ d / 4 \\ d^2 / 8 \\ d^2 / 16 \end{array} $
Option A: Option B: Option C:	$\frac{d / 8}{d / 4}$ $\frac{d^2 / 8}{d^2 / 16}$ If an element is subjected to pure shearing stress (q) then the maximum principal
Option A: Option B: Option C: Option D: 17.	$\frac{d / 8}{d / 4}$ $\frac{d^2 / 8}{d^2 / 16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to
Option A: Option B: Option C: Option D: 17. Option A:	$\frac{d / 8}{d / 4}$ $\frac{d^2 / 8}{d^2 / 16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to $4q$
Option A: Option B: Option C: Option D: 17. Option A: Option B:	$\frac{d}{8}$ $\frac{d}{4}$ $\frac{d^2}{8}$ $\frac{d^2}{16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to $4q$ $3q$
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C:	$\frac{d}{8}$ $\frac{d}{4}$ $\frac{d^2}{8}$ $\frac{d^2}{16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to $\frac{4q}{3q}$ $2q$
Option A: Option B: Option C: Option D: 17. Option A: Option B:	$\frac{d}{8}$ $\frac{d}{4}$ $\frac{d^2}{8}$ $\frac{d^2}{16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to $4q$ $3q$
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q
Option A: Option B: Option C: Option D: 17. Option A: Option A: Option B: Option C: Option D: 18.	$\frac{d}{8}$ $\frac{d}{4}$ $\frac{d^2}{8}$ $\frac{d^2}{16}$ If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to $\frac{4q}{3q}$ $2q$
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A: Option A: Option B:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A: Option A: Option B: Option C:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain 0.5 X strain
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A: Option A: Option B:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option C: 18. Option A: Option A: Option B: Option C: Option C: Option D:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain 0.5 X stress X strain 0.5 X stress X strain X volume
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option A: Option A: Option A: Option A: Option B: Option C:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain 0.5 X stress X strain 0.5 X stress X strain X volume For a cantilever of length (1) carrying a UDL of (w/unit run) on its entire length,
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option D: 18. Option A: Option B: Option B: Option C: Option D: 19.	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress 0.5 X stress X strain 0.5 X stress X strain 0.5 X stress X strain X volume For a cantilever of length (l) carrying a UDL of (w/unit run) on its entire length, the slope at the free end is
Option A: Option B: Option C: Option D: 17. Option A: Option B: Option C: Option C: 18. Option A: Option A: Option B: Option C: Option C: Option D:	d / 8 d / 4 d² / 8 d² / 16 If an element is subjected to pure shearing stress (q) then the maximum principal stress is equal to 4q 3q 2q q Strain energy stored in an element is equal to 0.5 X stress 0.5 X stress X strain 0.5 X stress X strain 0.5 X stress X strain X volume For a cantilever of length (1) carrying a UDL of (w/unit run) on its entire length,

Option C:	wl ² / 8 EI
Option D:	$wl^2 / 6 EI$
20.	A cantilever beam of length (1) is subjected to a point load (W) at the free end.
	The beam has constant flexural rigidity. The strain energy stored in beam due to
	bending is
Option A:	W1/3 EI
Option B:	$W^{2}l^{3} / 6 EI$
Option C:	W^2l^2 / EI
Option D:	$W^{2}l^{3} / 16 EI$

Q. 2	Solve Any Two Questionsout of the Three.10 marks each
A	For a material, Young's modulus is 110000 MPa and shear modulus is 42000 MPa. Find the bulk modulus and lateral contraction of a round bar of 40 mm diameter and 2.5 m length when it is stretched by 3 mm.
В	A simply supported beam ABCD of length 10 m has hinged support at left hinge A and roller support at right end D. Part AB of length 5 m carries a UDL of 15 kN/m. There is a point load of 20 kN at C. Length of BC is 3 m and length of CD is 2 m. Draw Shear Force Diagram and Bending Moment Diagram.
С	A rectangular beam (160 mm wide X 260 mm deep) is subjected to a maximum bending moment of 760 kNm. Determine the maximum bending stress. If the Young's modulus of the beam material is 200000 MPa, find the radius of curvature of the beam at the section where bending is maximum.

Q. 3	Solve both questions (A) and (B)Total 20 Marks
Α	Solve <u>Any Two</u> . 5 marks each
i.	A timber beam is (160 mm wide X 270 mm deep). It is subjected to a maximum shear
	force of 15 kN. Draw the shear stress distribution diagram.
ii.	A solid circular shaft transmits 80 kW power at 210 RPM. Calculate the shaft diameter
	if the twist in the shaft is not to exceed 1 degree in 2 m. length of shaft. Take modulus
	of rigidity as 100000 MPa.
iii.	A solid circular column 80 mm in diameter and 2.6 m long has one end fixed and the
	other end hinged. Young's modulus of material is 200000 MPa. Adopting a factor of
	safety of 2.5, find the safe axial compressive load on the column by Euler's theory.
В	Solve <u>Any One.</u> 10 marks each
	The principal stresses at a point across two perpendicular planes are 85 MPa horizontal
i.	(Tensile) and 45 MPa vertical (Tensile). Find the normal stress, tangential stress and
	resultant stress and its obliquity on a plane at 25 degrees with the major principal plane.
	A cantilever beam ABC of length 7 m. is fixed at left end A and is free at right end C.
ii.	Part AB of length 4 m carries a UDL of 10 kN/m. Part BC has a length of 3 m. At C,
	there is a point load of 15 kN. The beam has uniform flexural rigidity. Using
	Macaulay's method, determine the slope and deflection at free end.

Program: Civil Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III Course Code: CEC303 Course Name: Engineering Geology

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	In the internal structure of the earth Mohorovicic Discontinuity is the boundary between Crust and Mantle which is demarcated on the basis of -			
Option A:	Increase in seismic wave velocity at this depth			
Option B:	Decrease in seismic wave velocity at this depth			
Option C:	No change in seismic wave velocity throughout this boundary			
Option D:	Absence of S-wave at this depth			
2.	Which among the following is a product of Mechanical Weathering?			
Option A:	Limonite			
Option B:	Laterite			
Option C:	Bauxite			
Option D:	Scree deposits			
3.	Which among the following landforms is a depositional feature?			
Option A:	Hanging valley			
Option B:	Pedestal Rock			
Option C:	Alluvial Fan			
Option D:	Canyon			
4.	V-shaped valleys a characteristic landform of river, develop at which stage of river?			
Option A:	Middle Stage			
Option B:	Youthful stage			
Option C:	Old stage			
Option D:	Both middle and old stage.			
5.	Around 90% of the world's earthquake and volcanoes are concentrated along-			
Option A:	Transform plate boundaries			
Option B:	Mid Atlantic Ridge			
Option C:	Pacific Ring of fire			
Option D:	Japan			
6.	Origin of Himalaya mountain is an outcome of -			
Option A:	Convergence of Europe and Asian tectonic plate			
Option B:	Convergence of Australian and Asian tectonic plate			
Option C:	Divergence of Europe and Asian tectonic plate			
Option D:	Transform plate motion along the Europe and Asian tectonic plate			

-	
7.	Which one of the following is an acidic Igneous rock?
Option A:	Gabbro
Option B:	Basalt
Option C:	Granite
Option D:	Diorite
8.	Which of the following texture of Igneous rocks indicate cooling of magma in
	two stages?
Option A:	Directive texture
Option B:	Intergrowth texture
Option C:	Equigranular texture
Option D:	Porphyritic Texture
•	
9.	Which of the following process is not involved in the formation of sedimentary
	rock?
Option A:	Compaction
Option B:	Transportation
Option C:	Deposition
Option D:	Metasomatism
1.0	
10.	Dynamothermal Metamorphism is associated with-
Option A:	Transform Plate boundaries
Option B:	Divergent Plate boundaries
Option C:	Convergent plate boundaries
Option D:	No relation of metamorphism with plate boundaries
1.1	
11.	What is the correct sequence of rocks arranged in increasing grade of
	metamorphism?
Option A:	Shale- Gneiss-Schist-Slate
Option B:	Gneiss-Schist-Slate -Shale
Option C:	Shale-Slate -Schist-Gneiss
Option D:	Slate-Shale-Gneiss-Schist
10	
12.	A line formed by intersection of bedding plane and horizontal plane is known as-
Option A:	Streak
Option B:	Strike
Option C:	Stratification
Option D:	Slickensides
12	
13.	A depression formed by downward movement of the hanging wall blocks in areas
	of oppositely dipping normal faults is known as-
Option A:	Horst
Option B:	Basin
Option C:	Graben
Option D:	Fault scarp

14. Which of the following fault develop due to tensional forces? Option A: Reverse Fault Option B: Thrust Fault Option C: Strike slip fault Option D: Normal Fault 15. Which of the following is used for classification of folds? Option A: Axial Plane Option D: Hinge Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option B: Thrust Fault Option C: Strike slip fault Option D: Normal Fault 15. Which of the following is used for classification of folds? Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option C: Strike slip fault Option D: Normal Fault 15. Which of the following is used for classification of folds? Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option D: Normal Fault 15. Which of the following is used for classification of folds? Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option B: Disconformity Option B: Disconformity and Non conformity	
15. Which of the following is used for classification of folds? Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option A: Axial Plane Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option B: Hinge Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity and Non conformity	
Option C: Limbs Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option D: Hinge Line 16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
16. Which of the following unconformity is characterized by Igneous Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Metamorphic rocks below the unconformity surface? Option A: Angular unconformity Option B: Disconformity Option C: Both disconformity and Non conformity	
Option A:Angular unconformityOption B:DisconformityOption C:Both disconformity and Non conformity	or
Option B: Disconformity Option C: Both disconformity and Non conformity	
Option C: Both disconformity and Non conformity	
Option D: Nonconformity	
17. The statement that "In an undisturbed sedimentary sequence, the la	yer
which is on the top is the youngest" is explained by which of the law	of
stratigraphy-	
Option A: Law of Uniformitarianism	
Option B: Law of order of superposition	
Option C: Law of faunal succession	
Option D: Law of cross-cutting relationship	
18. Calculate the core recovery when the total core obtained after drilling is 182	cm
and total run is 2m-	
Option A: 91%	
Option B: 96%	
Option C: 92%	
Option D: 95%	
19. A downward movement of wet soil along the slope under the influence of gra	vity
is known as-	ity
Option A: Creep	
Option B: Debri flow	
Option D: Solifluction	
20 The tar of the hole of the relation 1 to the transformed state of the relation of the relation to the transformed state of the relation to the relation t	1.1
20. The top of the body of the groundwater separated from the main water t	ble
beneath it by a zone that is not saturated is known as-	
Option A: Water table	
Option B: Unconfined aquifer	
Option C: Perched Water table	
Option D: Pearched aquifer	

Subjective/Descriptive questions

Q2	Solve any Four5 marks each		
(20 Marks)			
А	A pyrite ore body is exposed on horizontal ground. It dips westward. The width of the outcrop is 330 m. A borehole sunk from the upper bedding plane touches the lower bedding plane at a depth of 170m. Determine its True Thickness and amount of inclination		
В	What is texture? Describe the inequigranular texture of igneous rock in detail.		
С	How do pedestal rock form, explain with diagram.		
D Explain the merits and demerits of the following condition at a dat D i) Dam on horizontal strata ii) Dam on strata dipping downstream side			
E	Explain the water bearing properties of rocks.		
F	Differentiate between central eruption and fissure eruption with examples.		

Q3 (20 Marks)	Solve any Four 5 marks each						
		the RQD from esult. Total rur		ta a	and evaluat	e the rock	on the basis of
	Sample No.	Length of the core in cms	Nature of the lower end of the core sample		Sample No.	Length of the core in cms	Nature of the lower end of the core sample
А	a	12	N		i	28	Ν
	b	8	Ν		j	19	Ν
	с	15	N		k	8	М
	d	22	N		1	16	N
	e	07	М		m	05	М
	f	08	N		n	05	N
	g	19	N		0	03	М
	h	12	М		р	06	N
В	Describe any two structures of sedimentary rocks.						
С	Explain Convergent Plate Boundaries and features associated with them.						
D	Explain the merits and demerits of the following condition of tunneling- Tunnel axis parallel to the dip of the strata						
Е	What is confined aquifer?What are the requirements for the formation of confined aquifer?						
F	Name the various types of volcanic eruptions and describe the products of volcano?						

Program: Civil Engineering

Curriculum Scheme: Rev-2019 Examination: SE_ Semester_III

<u>Course Code</u>: CEC304 & <u>Course Name</u>: APDB (Architectural Planning & Design of Buildings) Time: 2 hour Max. Marks: 80

Choose the correct option for following questions. All the Questions are

QI.	compulsory and carry equal marks
1.	With respect to Wind direction &Sun-Lighting, the position of the PLAN of the
	Residential building is placed is known as
Option A:	ASPECT
Option B:	PROSPECT
Option C:	GROUPING
Option D:	ORIENTATION
2.	For a Floor to Floor height of 3.6 m.(Residential), how many TREADS will be
	there in each flight for a Dog-Legged Staircase, if the RISE is assumed to be as
	0.15 m.?
Option A:	10
Option B:	11
Option C:	12
Option D:	13
3.	If the Rise is 0.15 m., Tread is 0.3 m., Width of Landing is 1.2 m., for a School
	Building having Floor to Floor height as 3.9 m., (Dog-Legged Staircase), the over
	all length of Staircase in PLAN is
Option A:	3.6 m.
Option B:	4.5 m.
Option C:	4.8 m.
Option D:	5.0 m.
4.	When the F.S.I is 1.5 and Built-up area of the building is 300 Sq.m., the PLOT
	AREA will be
Option A:	450 Sq.m.
Option B:	200 Sq.m.
Option C:	300 Sq.m.
Option D:	400 Sq.m.
5.	The minimum size of VENTILATOR is Toilet blocks, among the following will
	be generally
Option A:	0.1 m x 0.15 m
Option B:	0.15 m x 1.15 m
Option C:	1.0 m x 0.15 m
Option D:	0.3 mx0.6 m

6.	King Post Roof Truss is used for a Clear Span of
Option A:	15.25 m.
Option B:	12.5 m.
Option C:	6.5 m.
Option D:	3.25 m.
7.	Following are the part of Green Building feautures
Option A:	Green Color, Solar Power
Option B:	Green Color, Rain Water Harvesting
Option C:	Solar Power, Green Trees
Option D:	Solar Power, Rain Water Harvesting
8.	I.C.U is provided in
Option A:	HOSTEL
Option B:	HOTEL(Lodging & Boarding)
Option C:	HOSPITAL
Option D:	CLINIC
•	
9.	In a Multi-Specialty Hospital, I.P.D consists of
Option A:	Reception, Office, Medical Shop
Option B:	X-Ray & Pathology Lab
Option C:	Consultancy Rooms
Option D:	Wards
10.	1-Point Perspective will have
Option A:	2 S.P, 2 P.P, 1 V.P
Option B:	2 S.P, 1 P.P, 1 V.P
Option C:	1 S.P, 1 P.P, 1 V.P
Option D:	1 S.P, 2 P.P, 1 V.P
11.	In a Residential building, ASPECT for a Bed Room is in
Option A:	S/S.E
Option B:	W/S.W
Option C:	N/N.E
Option D:	E/N.E
12.	In a 2-Point Perspective, the POINTS & Lines (of PLAN)touching the P.P, will
	have
Option A:	2 times Height in Perspective View
Option B:	3 times Height in Perspective View
Option D:	Half the Height in Perspective View
Option D:	Actual Heights in Perspective View
option D.	
13.	In the Sectional Elevation of a building, the S.L(Sill Level) is the distance
Option A:	From Floor Level to Starting point of Door height
Option A: Option B:	
-	From Floor Level to Starting point of Window height
Option C:	From Foundation Level to Starting point of Door height
Option D:	From Foundation Level to Starting point of Window height

14.	Housing & Road Systems are the concept of
Option A:	Principles of Residential Buildings
Option B:	Principles of Town Planning
Option C:	Zoning Regulations
Option D:	Green Building Concept
option 21	
15.	When drawing a Plan for a scale of 1:50, the 12m.becomes
Option A:	6 cm.
Option B:	12 cm.
Option C:	24 cm.
Option D:	60 cm.
16.	To obtain Parallel lines, Curves, Concentric Circes, the following function is used in CAD drawing
Option A:	ARRAY
Option B:	OFFSET
Option C:	FILLET
Option D:	СОРУ
17.	In a High School building, the minimum Carpet area per Student in a Laboratory
	is
Option A:	1-2 Sq.m.
Option B:	2-3 Sq.m.
Option C:	3-4 Sq.m.
Option D:	4-5 Sq.m.
18.	The Floor-Floor height of 3.0 m. in a Residential building(Ground Floor structure) is measured
Option A:	From Ground level to Foundation level
Option B:	From Ground level to Plinth level
Option D:	Plinth level to Slab level
Option D:	Slab level to Parapet wall level
option D.	
19.	Which mode allows the user to draw 90 degrees straight lines in CAD ?
Option A:	Osnap
Option B:	Ortho
Option C:	Linear
Option D:	Polar tracking
	<u> </u>
20.	Which command is used to divide an object into segments, having predefined length in CAD?
Option A:	Divide
Option R:	Chamfer
Option D:	Trim
Option D:	Measure
Option D.	

Q2	Solve any one question (A/B)(20 Marks)			
A	Draw Ground Floor Plan of a Residential Bungalow, as RCC Framed structure with following facilities. Floor to Floor height is 3.0 m. (i) Living-cum-Dining = 24 Sq.m. (ii) Master's Bedroom (with A.T) = 20 Sq.m. (iii)Bed Room = 15 Sq.m. (iv)Kitchen = 12 Sq.m. (v) Pooja Room = 10 Sq.m. Provide Toilets, Passages as per Bye-laws. Show position of <u>Columns, Doors, Windows & Ventilators</u> in the proposed PLAN. Draw GROUND FLOOR PLAN (with wall thickness)			
В	Draw the LINE Plans of a Residential Bungalow, as (G+1) storied RCCFramed structure with following facilities.(i) Living Room = 20 Sq.m.(ii) Master's Bedroom (with A.T) = 20 Sq.m.(iii)Bed Room = 15 Sq.m.(iv)Guest Room = 15 Sq.m.(v) Kitchen = 12 Sq.m.(vi)Store Room = 12 Sq.m.(vi)Drawing Room = 15 Sq.m.Provide Toilets, Passages as per Bye-laws. Assume Floor to Floor height as 3.3 m.Show position of Columns, Doors, Windows & Ventilators in the proposed PLANS.Draw(i) Ground Floor LINE PLAN(ii) First Floor LINE PLAN			
Q3	Solve any 4 questions out of 6 questions .(4x5=20 Marks)			
A	Write on "Principles of Planning for Residential Buildings"			
B	Write about "Principles of Town Planning"			
С	Write on "Building Bye-laws & Regulations"			
D	Discuss about GREEN Buildings & concepts			
Ε	Discuss about "Slum Clearance & Redevelopment of Buildings"			
F	Differentiate between One-Point & Two-Point Perspective drawings for Rules & Procedure.			

Program: Civil Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CEC305

Course Name: Fluid Mechanics I

Time: 2 hour

6. Option A: Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks				
1.	For the fluid, the shear stress was found to be directly proportional to the rate of angular deformation. The fluid is classified as				
Option A:	Non Newtonian fluid				
Option B:	Ideal fluid				
Option C:	Newtonian fluid				
Option D:	Thyrotrophic fluid				
2.	N.s /m^2 is the unit of				
Option A:	Mass density				
Option B:	Kinematic viscosity				
Option C:	Dynamic Viscosity				
Option D:	Velocity gradient				
3.	The characteristic of an ideal fluid is				
Option A:	Whose satisfied continuity equation				
Option B:	One which flows with least friction				
Option C:	One which obey newtons low of viscosity				
Option D:	Friction less and incompressible.				
4.	The pressure of liquid on a surface will always act to the surface				
Option A:	parallel				
Option B:	normal				
Option C:	45 degree				
Option D:	60 degree				
5.	When a body is immersed in a fluid either wholly or partially, it is buoyed or lifted up by a force which is equal to weight of fluid displaced by body, this principal was enunciated by				
Option A:	Archimedes				
Option B:	Newton				
Option C:	Pascal				
Option D:	Kirchhoff				

Floating body is in stable equilibrium when

The metacenter is below its center of gravity

Ontion D.	The metacenter is above its center of gravity
Option B:	The metacenter is above its center of gravity
Option C:	The metacentric height is zero
Option D:	Its center of gravity is below the centre of buoyancy.
7.	The flow in a pipe whose valve is being opened or closed gradually is an example
/.	of
Option A:	Steady flow
Option B:	Unsteady flow
Option D: Option C:	Rotational flow
Option D:	Compressible flow
option D.	
8.	Flow in a pipe where average flow parameters are considered for analysis is an
	example of
Option A:	Incompressible flow
Option B:	One dimensional flow
Option C:	Two – dimensional flow
Option D:	Three – dimensional flow
9.	A process during which no heat is transferred to or from the gas is called an
Option A:	Isochoric process
Option B:	Isobaric process
Option C:	Adiabatic process
Option D:	Isothermal process
10.	An error of 1 % in measuring H will produce error in discharge over a
10.	rectangular notch or weir
Option A:	1%
Option B:	1.5 %
Option C:	2%
Option D:	2.5 %
1	
11.	The error in discharge due to the error in the measurement of head over a
	triangular notch or weir is given by
Option A:	dQ/ Q = ½ d H/H
Option B:	dQ/Q = dH/H
Option C:	dQ/ Q = 3/2 d H/H
Option D:	dQ/ Q = 5/2 d H/H
12.	Which of the following may be used for measuring the rate of flow of water in
	rivers or stream
Option A:	Notches
Option B:	orifices
Option C:	weir
Option D:	Mouthpiece
13.	Which of the following expression does not represents the speed of sound in a

	medium				
Option A:	√K/Þ				
Option B:	$\sqrt{RT_{y}}$				
Option C:	·				
Option D:	Vk p/P				
Option D.	Vdp/dÞ				
14.	A shock wave which occurs in a supersonic flow represents a region in which				
Option A:	A zone of silence exits				
Option R:	There is no change in pressure , temperature and density				
Option D:	There is sudden change in pressure , temperature and density				
Option D:	Velocity is zero.				
option D.					
15.	The Bernoulli's equation written in the conventional form $p/w + v^2/2g+z=$ constant represents total energy is per unit of certain quantity. Identify this quantity from the choices given below				
Option A:	Energy per unit mass				
Option B:	Energy per unit weight				
Option C:	Energy per unit volume				
Option D:	Energy per unit specific weight				
16.	Discharge through an internal mouthpiece running free is given by				
Option A:	0.5 X a X √2gH				
Option B:	0.4 X a^2X √2gH				
Option C:	0.707 X a X √2gH				
Option D:	0.3 Xa ^2 X √2gH				
17.	The discharge through a large rectangular orifice is given by				
Option A:	$1/3 C_{d} b \sqrt{2g} (\sqrt{H_2} - \sqrt{H_1})$				
Option B:	$2/3 C_d b 2g (VH_2 - VH_1)$				
Option C:	$2/3 C_d b \sqrt{2g} (H_2^{3/2} - H_1^{3/2})$				
Option D:	$2/3 C_d Vb 2g (VH_2 - VH_1)$				
18.	At vena – contract a jet has the minimum area of cross section and so the velocity of the liquid jet this section will be				
Option A:	minimum				
Option B:	maximum				
Option C:	Average				
Option D:	zero				
10					
<u>19.</u>	Which of the following fluid can be classified as non-Newtonian				
Option A:	Kerosene oil				
Option B:	Diesel oil				
Option C:	Human blood				
Option D:	water				
20.	Mercury is used in barometers because				
20.					

Option A:	It is perfect fluid	
Option B:	Its volume changes with temperature	
Option C:	It is a liquid metal	
Option D:	It gives less height of column for high pressure	

Q2	
А	Solve any Two5 marks each
i.	The dynamic viscosity of an oil, use for lubrication between a shaft and
	sleeve is 6 Ns/m^2 . The shaft is of diameter 0.4 m and rotates at 190 rpm.
	Calculate the power lost in the bearing for a sleeve length of 90 mm. The
	thickness of the oil film is 1.5 mm
ii.	Too large plane surfaces are 2.4 cm a part. The space between the surfaces
	is filled with glycerin. What force is required to drag a very thin plate of
	surface area 0.5 m^2 between the two large plane surfaces at speed of 0.6
	m/s , if a) The thin plate is in the middle of the two plane surfaces , and
	b) The thin plate is at a distance of 0.8 cm from one of the plane surfaces ?
	Take dynamic viscosity of glycerin = 0.81 Ns/m^2
iii.	A tank has to identical orifices on one of its vertical sides. The upper
	orifice is 3 m below water surface and lower one is 5 m below the water
	surface. If the value of C_v for each orifice is 0.96, Find the point of
	intersection of the two jets.
В	Solve any One each 10 marks
i.	Find the total pressure and position of centre of pressure on a triangular
	plate of base 2 m and height 3 m which immerse in water in such a way
	that the plane of the plate makes an angle of 60^0 with the free surface of the
	water. The base of the plate is parallel to water surface and at a depth of 4m
	from water surface when a) Apex is below base b) Apex is above base.
ii.	A solid cylinder of 10 cm diameter and 40 cm long, consist of two parts
	made of different materials. The first part at the base is 1 cm long and of a
	specific gravity = 6. The other part of the cylinder is made of the material $\frac{1}{2}$
	having specific gravity 0.6. State, if it can float vertically in water.

Q3.ASolve any Two 5 marks eachi.A cylindrical tank is having a hemispherical base. The heig portion is 5 m and diameter is 4 m. At the bottom of this tan diameter 200 mm is fitted. Find the time required to complet the tank. Take $C_d = 0.6$.ii.A weir 36 m long is divided into 12 equal bays by vertical cm wide. Determine the discharge over the weir if the head	nk and orifice of etely empting posts, each 60
portion is 5 m and diameter is 4 m. At the bottom of this tar diameter 200 mm is fitted. Find the time required to complet the tank. Take $C_d = 0.6$.ii.A weir 36 m long is divided into 12 equal bays by vertical cm wide. Determine the discharge over the weir if the head	nk and orifice of etely empting posts, each 60
diameter 200 mm is fitted. Find the time required to complet the tank. Take $C_d = 0.6$.ii.A weir 36 m long is divided into 12 equal bays by vertical cm wide. Determine the discharge over the weir if the head	etely empting posts, each 60
the tank. Take $C_d = 0.6$.ii.A weir 36 m long is divided into 12 equal bays by vertical cm wide. Determine the discharge over the weir if the head	posts, each 60
ii.A weir 36 m long is divided into 12 equal bays by vertical cm wide. Determine the discharge over the weir if the head	
cm wide. Determine the discharge over the weir if the head	•
	over the creat is
	over the crest is
1.2 m and velocity of approach is 2 m/s .	
iii. Calculate the stagnation pressure, temperature and density a	at the stagnation
point on the nose of a plane, which is flying at 800 km/hr th	rough steel air
having a pressure $8N/cm^2$ (abs.) and temperature - 10^0 C.	
Take $R = 287 \text{ J/kg K}$ and $k = 1.4$.	
B Solve any One	10 marks each
i. Find discharge of water flowing through a pipe 30 cm di	ameter placed in
an inclined position where venturimeter is inserted, l	having a throat
diameter of 15 cm. The difference of pressure main and th	roat is measured
by liquid of specific gravity 0.6 in an inverted U t	tube differential
manometer which gives the reading of 30 cm. A loss of h	lead between the
main and the throat is 0.2 times the kinetic head of the pipe	·•
ii. In two dimensional compressible flow field, the velo	ocity component
expressed as $u = 2 x - x^2 y + y^3/3$ and $v = x y^2 - 2 y - x^3/3$.	
a) Determine the velocity and acceleration at point L (x=1 n	n, y= 3m).
b) Is the flow possible? If so, obtain an expression for the s	team function.
c) what is the discharge between steam lines passing throug	sh (1, 3)
And (2, 3)?	
d) Is the flow irrotational? if so, determine the correspondi	ng velocity
Potential.	
e) Show that each of the stream and potential functions sati	sfy Laplace
Equation.	

University of Mumbai Examination 2021 under cluster KJSIEIT Examinations Commencing from 10th April 2021 to 17th April 2021 Program: Civil Engineering Curriculum Scheme: Rev2019

Examination: **SE** Semester **III**

Course Code: CEC301 and Course Name: Engineering Mathematics-III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
~~~~	compulsory and carry equal marks
1.	$L\left[a^{2t}\sin^{2t}l\right] =$
Option A:	$\frac{L[e^{2t}\sin 2t]}{s} =$
Option A.	$\frac{1}{(s-2)^2+4}$
Option B:	2
	$\overline{(s-2)^2+4}$
Option C:	1
1	$\frac{1}{(s-2)^2+4}$
Option D:	2
	$\frac{1}{(s+2)^2-4}$
2.	$L[t e^{-3t}]$
Option A:	$1/(S-3)^2$
Option B:	$2/(S+3)^2$
Option C:	
Option D:	$1/(S-3)^3$
3.	If $L{f(t)} = F(s)$ , then $L{t f (t)}$ equals
Option A:	sF(s)
Option B:	-F'(s)
Option C:	F'(s)
Option D:	-sF(s)
4.	$L^{-1} [ \frac{1}{4s} + 5 ]$
Option A:	$e^{\frac{-5t}{4}}$
	4

	51
Option B:	$e^{\frac{5t}{4}}$
Option C:	$\frac{\overline{4}}{e^{\frac{-3t}{4}}}$
option c.	<i>e</i> 4
	4
Option D:	$\frac{4}{e^{\frac{-5t}{4}}}$
-	
	3
	2c+7
5.	The inverse Laplace transform of $\frac{3s+7}{s^2-2s-3}$
Option A:	$e^{3t} - e^{-t}$
Option B:	$4 e^{3t} + e^{-t}$
Option C:	$4 e^{3t} - e^{t}$
Option D:	$4 e^{3t} - e^{-t}$
6.	The inverse Laplace transform of tan $^{-1}$ (1/s)
Option A:	cost
	t sin2t
Option B:	sin2t
Option C:	sint
Option D:	-sint
	t
7.	If $L^{-1}{F(s)} = f(t)$ and $L^{-1}{G(s)} = g(t)$ then $L^{-1}{F(s)G(s)}$ equals
Option A:	$\int_0^\infty f(u)g(u)du$
Option B:	$\int_{0}^{\infty} f(u)g(u)du$ $\int_{-\infty}^{\infty} f(t)g(t-u)du$ $\int_{0}^{t} f(t)g(t-u)du$ $\int_{0}^{t} f(u)g(t-u)du$
	$\int_{-\infty}^{\int (t)g(t-u)au}$
Option C:	$\int_{-\infty}^{t} f(t) r(t - t) dt$
	$\int_{0}^{1} f(t)g(t-u)du$
Option D:	$\int_{-\infty}^{t} f(x) x(t-x) dx$
	$\int_{0}^{0} f(u)g(v-u)du$
8.	Find the analytic function whose real part is $x^2 - y^2 + 3y - 2x + 3$ .
Option A:	$f(z) = z^2 + 2z + 3zi + c$
Option B:	$f(z) = z^2 - 2z - 3zi + c$
Option C:	$f(z) = z^2 + 3z - 2zi + c$
Option D:	$f(z) = z^2 - 3z - 3zi + 4$
9.	Which of following function is harmonic
Option A:	$v = e^{-x} sinhy$
Option A.	

Option B:	$v = e^x siny$
Option C:	$v = e^x \cosh y$
Option D:	$v = e^{-2x} \sin 3y$
Option D.	
10.	If $f(z) = u + iv$ is analytic function then $f'(z) = ?$
Option A:	$\partial u = \partial v$
	$\frac{\partial x}{\partial x} + i \frac{\partial y}{\partial x}$
Option B:	<u>ди</u> <u>ди</u>
	$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$
Option C:	$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y}$
Option D:	$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$
11	Half Range Fourier Cosine Series of $f(x) = sinx$ , $0 \le x \le \pi$ is
11.	$\frac{a_0}{2} + \sum a_n cosnx$ . What is the value of $a_0$ ?
Outien A.	$\frac{1}{2}$
Option A:	
Option B:	4 2
Option C:	_
Option D:	<u>π</u> 4
Option D.	$\frac{1}{\pi}$
12.	If $f(x) = x^2$ in $(-\pi, \pi)$ has Fourier series, $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} a_n \cos nx$
	$\sum_{n=1}^{\infty} b_n \sin nx$ then then $a_0$ and $b_n$ are equal to
Option A:	$\pi/3,0$
Option B:	$4\pi/3$ ,0
Option C:	$2\pi^2/3$ ,0
Option D:	2/3,π
13.	If $f(x)$ is periodic function with period 2L defined in the interval C to
	C+2L then Fourier coefficient $b_n$ is
Option A:	$\int_{0}^{C+2L} n\pi x dx$
	$\int_{C} f(x) \sin \frac{dx}{L} dx$
Option B:	$\int_{C}^{C+2L} f(x)\sin\frac{n\pi x}{L} dx$ $1 \int_{C}^{C+2L} n\pi x$
	$\frac{1}{L} \int_{C}^{C+2L} f(x) \sin \frac{n\pi x}{L} dx$
Ontion C:	$\begin{array}{ccc} L & J_C & L \\ \hline 1 & cC + 2L & m - n \end{array}$
Option C:	$\left \frac{1}{2}\right ^{3+22} \sin \frac{n\pi x}{2} dx$
	$\frac{1}{L} \int_{C}^{C+2L} \sin \frac{n\pi x}{L} dx$
Option D:	$\frac{1}{L} \int_{C}^{C+2L} f(x) \cos \frac{n\pi x}{L} dx$
	$\left[\frac{1}{L}\right]_{C} = \frac{f(x)\cos\left[\frac{1}{L}\right]}{x}$
	- L
14.	Calculate the value of $a_n$ in half range sine series of $f(x)=1$ in $(0, \pi)$
<b>1</b> 14	n

Option A:		0						
Option B:		1/2						
Option C:	5/9	5/9						
Option D:	1	1						
15.	Which of	the follo	owing is	wave eq	uation $\frac{\partial^2}{\partial t}$	$\frac{u}{2} - \alpha^2 \frac{\partial^2}{\partial z}$	$\frac{u^2 u}{x^2} = 0_{is}$	
Option A:	$\left  \frac{\partial^2 u}{\partial t^2} - \alpha^2 \right $	$\frac{\partial^2 u}{\partial x^2} =$	0					
Option B:	$\frac{\partial^2 u}{\partial t^2} + \alpha^2$	$\frac{\partial^2 u}{\partial x^2} =$	0					
Option C:	$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial u}{\partial t}$	$\frac{\partial^2 u}{\partial r^2} = 0$						
Option D:	$\frac{\frac{\partial^2 u}{\partial t^2} - \alpha^2}{\frac{\partial^2 u}{\partial t^2} + \alpha^2}$ $\frac{\frac{\partial u}{\partial t} - \alpha^2}{\frac{\partial^2 u}{\partial t} - \alpha^2}$ $\frac{\frac{\partial^2 u}{\partial t^2} - \alpha^2}{\frac{\partial^2 u}{\partial t^2} - \alpha^2}$	$\frac{\partial u}{\partial x} = 0$						
1.5					<u>дл</u>	au		
16.	Solve by m	ethod of s	separation	of variabl	e $\frac{\partial u}{\partial x} + 4$	$\frac{\partial u}{\partial y} = 0$ giv	ven	
	u(0, y) = 8	e ^{-3y}				2		
Option A:	u(0, y) = 8 $u = e^{-12x}$	- 3y						
Option B:	$u = 4 e^{12x}$							
Option C:	$u = 8 e^{12x}$	- 3y						
Option D:	$u = 8 e^{-12}$							
17.	Find values of p, q if following is solution of $\frac{\partial^2 u}{\partial x^2} - 200 \frac{\partial u}{\partial t} = 0, h = 0.1,$ k = 1. using Bender-Schmidt method.							
	x	0	0.1	0.2	0.3	0.4	0.5	
	1	0	0.09	0.16	0.21	0.24	0	
	2	0	р	0.15	0.20	q	0	
Option A:	p = 0.08,	q = 0.25						
Option B:	p = 0.15,	p = 0.15, q = 0.23						
Option C:	p = 0.23, q = 0.105							
Option D:	p = 0.08, q = 0.105							
option D.	F 0100)	1 51200	-					
18.	Using C		amilton	theorem	n A ³ fo	r the m	atrix $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 4\\ 3 \end{bmatrix}$ is
Option A.	$1 \Lambda \Delta^2 = 5 \Lambda$							
Option A:	$4A^2 + 5A$							
Option B:	$5A-4A^2$							

The sum and product of eigen value of the matrix
$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$
$A = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$
7 and 7
7 and 5
5 and 6
5 and 8
[1 6 1]
$IfA = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$ diagonalizable then Diagonal matrix is
0 0 3
0 3 0
$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
0 3 0
0 3 0

# **Option 1**

Q2. (20 Marks Each)	Solve any Four out of Six 5 marks each
А	Evaluate $\int_0^\infty e^{-3t} \frac{\cos 4t - \cos 2t}{t} dt$
В	Find Inverse Laplace transform by convolution theorem $\frac{s}{(s^2+4)^2}$
С	Show that $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalizable. Determine modal and diagonal matrix.
D	Find Fourier series of $f(x) = x^2$ in the interval $(-\pi, \pi)$ .
Е	Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$

	$0 \le x \le 5$ subject to the condition $u(0, t) = 0, u(5, t) = 100$ ,
	u(x, 0) = 20x, h=1 for one time step.
F	Determine the constant a, b, c, d if $f(z) = x^2 + 2axy + by^2 + i (cx^2 + 2dxy + y^2)$ is analytic.

Q3. (20 Marks Each)	Solve any Four out of Six 5 marks each
А	If $v = 3x^2y + 6xy - y^3$ . Show that v is harmonic and find the corresponding analytic function.
В	Find half range sine series of $f(x) = lx - x^2$ ; $o < x < l$
С	Solve $\frac{\partial^2 u}{\partial x^2} - 32 \frac{\partial u}{\partial t} = 0$ by Bender-Schmidt method, given $u(0,t) = 0$ , $u(1,t) = t$ , $u(x,0) = 0$ Assume h=0.25, $0 \le x \le 1$ & find the values of u up to t=5
D	If $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ Find $A^{100}$
Е	Using partial fractions find the inverse Laplace transforms of $\frac{s}{(s-1)(s-2)(s-3)}$
F	Evaluate L[t sin ² t]

#### Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: SE (Civil) (REV-2019 'C' Scheme) (Choice Based)

Curriculum Scheme: Rev2019

Examination: SE Semester III (DSE)

Course Code: CEC302 and Course Name: Mechanics of Solids

_____

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	A thin cylindrical shell having diameter 'd', internal pressure 'p' and shell		
1.	thickness 't', the Longitudinal stress is given as		
Option A:	pd/8t		
Option B:	pd/4t		
Option C:	pd/2t		
Option D:	pd/t		
2.	A cylinder is said to be thin if the ratio of its thickness to diameter is less than		
Option A:	1/25		
Option B:	1/20		
Option C:	1/15		
Option D:	1/10		
3.	The beam ABC as shown in fig. Shear Force and Bending moment at $\mathbf{B}$ is		
	10 kN		
	AC		
	В		
	2 m 1 m		
	2 m 1 m		
Option A:	SF=10  kN and $BM=20  kN-m$		
Option B:	SF=10  kN and $BM = Zero$		
Option C:	SF= Zero and BM = Zero		
Option D:	SF = Zero and BM = 20 kN-m		
4.	The bending moment at A in given frame is		
	C D		
	0.5m 0.5 m		
	B E ≥20 kN		
	$\sim 2 \text{ m} \rightarrow 2 \text{ m}$		

Option A:	80 kNm		
Option B:	100 kNm		
Option C:	10 kNm		
Option D:	Zero		
5.	A diagram which shows the variation of the axial load for all sections of the length of		
	beam is called as		
Option A:	Bending moment diagram		
Option B:	Shear force diagram		
Option C:	Thrust diagram		
Option D:	Stress diagram		
-	-		
6.	A cantilever beam of length 4 carries clockwise couple of 20 kN-m. at free end,		
	the shearing force at mid length is		
Option A:	80 Kn		
Option B:	40 Kn		
Option C:	20 kN		
Option D:	Zero		
7.	The point of contra-flexure is indicate the location of		
Option A:	Maximum Bending moment		
Option B:	Maximum shear force		
Option C:	Bending moment changes sign		
Option D:	Shear force changes sign		
opuonizi			
8.	A portal frame ABCD, AB and CD vertical each 4 m. and BC horizontal 6 m. Support A is Hinged and support D is roller with roller base horizontal. At C, 10		
Ortion A.	kN Force acting vertically downward, the vertical reaction at support A is Zero		
Option A:	10 Kn		
Option B: Option C:	40 Kn		
	60 kN		
Option D:	OU KIN		
9.	The radius of Mohr's circle for two equals unlike principal stresses of magnitude p is		
Option A:	P		
Option B:	0.5 p		
Option D:	Zero		
Option D:	1.5 p		
cpuon D.	r		
10.	If an element is subjected to pure shearing stress ' $\tau$ ' then the maximum principle		
	stress is equal to		
Option A:	4 τ		
Option B:	3τ		
Option C:	2 τ		
Option D:	T		
Cpuon D.			
11.	Maximum shear stress occur on plane which makes an angle of with plane of major principle stress		
Option A:	30 degree		

Ontion D.	15 degree	
Option B:	45 degree	
Option C:	90 degree	
Option D:	180 degree	
10	For a simular shaft of discustor d subjected to targue T the maximum value of the	
12.	For a circular shaft of diameter d subjected to torque T, the maximum value of the shear stress is	
Option A:	$\frac{(64T)}{(\pi d^3)}$	
Option A: Option B:	$(32T) / (\pi d^3)$	
Option C:	$(321)/(\pi d^3)$	
Option D:	$(8T)/(\pi d^3)$	
Option D.		
13.	The following assumption is not true in the theory of pure torsion	
Option A:	The twist along the shaft is uniform	
Option B:	The shaft is of uniform circular section throughout.	
Option D:	Cross section of shaft, which is plane before twist remain plane4 after twist	
Option D:	All the radii get twisted due to torsion.	
14.	The maximum twisting moment a shaft can resist, is product of permissible shear	
11,	stress and	
Option A:	Moment of inertia	
Option B:	Polar moment of inertia	
Option C:	Polar modulus	
Option D:	Modulus of rigidity	
15.	The ratio of the moment of resistance of a solid circular shaft of diameter 'D' and	
	hollow shaft having external diameter 'D' and internal diameter 'd' is	
Option A:	$D^{4}/(D^{4}-d^{4})$	
Option B:	$D^{3}/(D^{3}-d^{3})$	
Option C:	$(D^{4}-d^{4})/D^{4}$	
Option D:	$(D^3 - d^3) / D^3$	
16.	Strain energy stored per unit volume of the materials when it is stressed to the	
	proportional limit is called as	
Option A:	Modulus of resilience	
Option B:	Resilience	
Option C:	Modulus of toughness	
Option D:	Modulus of rupture	
17.	If ' $\tau$ ' is shear stress and C modulus of rigidity, then Strain Energy due to torsion	
	in solid shaft is	
Option A:	$U = (\tau^{3}/4C)X \text{ Volume}$	
Option B:	$U = (\tau^2/4C)X \text{ Volume}$	
Option C:	$U = (\tau^3/8C)X \text{ Volume}$	
Option D:	$U = (\tau^{3}/4C)X \text{ Volume}$	
10	The strain energy stored due her ding is everyosed as	
18.	The strain energy stored due bending is expressed as	
Option A:	$U = \int_0^L \frac{MXM}{2EI} dx$	
Ontion Di		
Option B:	$U = \int_0^L \frac{MXM}{EI} dx$	

Option C:	$\mathbf{U} = \int_0^L \frac{2M}{EI} dx$
Option D:	$U = \int_0^L \frac{M}{EI} dx$
19.	In a linearly elastic structures, partial derivatives of the strain energy with respect to a load is equal to the deflection of the point where load is acting, the deflection being measured in the direction of load . this is known as
Option A:	Castigliano's theorem
Option B:	Bernauli's theorem
Option C:	Work Energy Principle
Option D:	Unit Load method
20.	"A displacement at point A due to load at point B is same as displacement of B due to the same load acting at point A", the displacement being measured in the directions of loads
Option A:	Mecaulay's Theorem
Option B:	Castigliano's Theorem
Option C:	Maxwell's Theorem
Option D:	Bernauli's theorem

Q2	Solve any Four out of Six5 marks each	
А	A thin cylindrical shell 1.00 m diameter and 3 m in length has metal thickness of 8 mm. if it is subjected to internal pressure 2.5 MPa, determine change in length. Take $E = 200$ GPa and Poisson's ratio 0.3	
В	Derive the relation between shear force, bending moment and rate of loading	
C	In a strained body, Normal stresses are 100 Mpa and 50 MPa (both tensile) acted on two mutually perpendicular planes accompanied with shear stress of 20 MPa. Determine the Principle stresses using Mohr's circle method	
D	Calculate the instantaneous stress produced in a bar of 15 cm ² in area and 4 m long by suddenly application of tensile load of unknown magnitude, if the extension of bar due to suddenly applied load is 2 mm. also determine the suddenly applied load. Take $E = 2x10^5$ N/mm ² .	
Е	Find maximum shear stress induced in a solid circular shaft of diameter 150 mm, when it transmits 120 kW power at 200 rpm.	
F	A square steel bar of side 4 cm and length 3 m. is subjected to an axial pull of 128 kN, if $E = 200 \text{ GN/m}^2$ Calculate energy stored in the bar.	



#### University of Mumbai Examination 2020 under cluster KJSIEIT Examinations Commencing from 10th April 2021 to 17th April 2021 Program: S.E. (Civil) (Rev-2019 'C' Scheme) (Choice Based)

Curriculum Scheme: Rev-2019 Examination: SE Semester III (DSE)

Course Code: _CEC303_and Course Name: Engineering Geology

Time: 2 hour

Max. Marks: 80

_____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	The discontinuity between mantle and core is known as		
Option A:	Gutenberg discontinuity		
Option B:	Mohorovicic discontinuity		
Option C:	Core mantle discontinuity		
Option D:	Lehman discontinuity		
2.	The midoceanic ridges have been formed due to the movement of		
Option A:	Convergent plates		
Option B:	Divergent plates		
Option C:	Transform plates		
Option D:	Destructive plates		
3.	Frost action is the effect of		
Option A:	Physical weathering		
Option B:	Chemical weathering		
Option C:	Biological weathering		
Option D:	River weathering		
4.	A mineral is asubstance which has definite chemical composition,		
	definite atomic structure and formed byprocesses of nature.		
Option A:	Homogenous, organic		
Option B:	Heterogenous,organic		
Option C:	Homogenous ,inorganic		
Option D:	Natural, organic		
5.	In basalt, the grains are fine in size due to		
Option A:	Slow rate of cooling of magma		
Option B:	Medium rate of cooling of magma		
Option C:	Moderate rate of cooling of magma		
Option D:	High rate of cooling of magma		
6.	The secondary minerals like,are filled in the openings of basalt is called		
Option A:	Calcite,zeolite,amygdaloidal basalt		
Option B:	Quartz,calcite,vesicular basalt		
Option C:	Quartz,zeolite,compact basalt		

Ontion Di	Comparting colorise budgeth annually altered baselt		
Option D:	Serpentine, calcite, hydrothermally altered basalt		
7.	Deposition of sediments into layers or beds is calledThe planes dividing		
/.	different beds are called		
Option A:	The lamination, axial planes		
Option B:	The lineation, strike lines		
Option C:	The stratification, bedding planes		
Option D:	The foliation, cleavages		
8.	Contact metamorphism comes under		
Option A:	Thermal metamorphism		
Option B:	Cataclastic metamorphism		
Option C:	Regional metamorphism		
Option D:	Plutonic metamorphism		
9.	The parallel arrangement of platy or flaky minerals are found in		
Option A:	Marblem		
Option B:	Gneiss		
Option C:	Schist		
Option D:	Quartzite		
10.	By metamorphism, limestone converts into		
Option A:	Sandstone		
Option B:	Marble		
Option C:	Granite		
Option D:	Conglomerate		
11	The strike is defined as the direction of a line formed by the interpretion of a		
11.	The strike is defined as the direction of a line formed by the intersection of a		
Option A:	Inclined Bedding plane and axial plane		
Option B: Option C:	Inclined Bedding plane and vertical plane Inclined Bedding plane and fault plane		
Option D:	Inclined Bedding plane and horizontal plane		
Option D.			
12.	In isoclinal folds, the axial planes areto each other.		
Option A:	Parallel		
Option B:	Horizontal		
Option D:	Inclined		
Option D:	Gently inclined		
13.	Which mineral is formed due to evaporation process ?		
Option A:	Halite		
Option B:	Talc		
Option C:	Quartz		
Option D:	Serpentine		
14.	The horizontal component of the fault is called		
Option A:	Net slip		
Option B:	Heave		
Option C:	Throw		
Sphon C.			

15.	In nonconformity, the older series is made up of	
Option A:	Metamorphic rock	
Option B:	Schist	
Option C:	Primary rock	
Option D:	Secondary rock	
16.	Solifluction is downward movement of	
Option A:	Wet soil in the permafrost area	
Option B:	Mud flow in the mountaineous area	
Option C:	Debris flow along the river valley	
Option D:	Rock fall along the weakness planes.	
17.	Which is transverse wave ?	
Option A:	P wave	
Option B:	S wave	
Option C:	Love wave	
Option D:	Rayleigh wave	
18.	The rock formation is porous but very difficult to drain out water from it.	
Option A:	Sandstone	
Option B:	Breccia	
Option C:	Clay	
Option D:	Gravel	
19.	is the law of stratigraphy.	
Option A:	Order of superposition	
Option B:	Geological time scale	
Option C:	Archean era	
Option D:	Deccan trap	
20.	When the peizometric surface is found above the ground surface, then	
	is formed.	
Option A:	Artesian well	
Option B:	Non artesian well	
Option C:	Flowing artesian well	
Option D:	Nonflowing artesian well	

Q2.	
(20 Marks Each)	
А	Solve any Two (5 marks each)
i.	Explain interior of the earth with labeled diagram.
ii.	Explain any two structures of sedimentary rock with diagrams.
iii.	A vertical borehole sunk from the upper bedding plane of a shale bed reaches the lower bedding plane at a depth of 150 m.It dips $35^{\circ}$ westwards. Determine its true thickness and width of the outcrop on the level ground. (Scale : $1 \text{cm} = 50\text{m}$ . Draw the bed by using given scale.)

В	Solve any One		(10 marks each)
i.	Describe terminology of fold with diagram. Explain any two types of fold with diagram.		
ii.	Describe the classification of igneous rock based on silica percent. Explain: Angular unconformity and Disconformity.		
Q3. (20 Marks Each)			
А	v	(5 marks each)	
i.			s perched water table formed?
ii.		ecautionary measures for lar	ndslide ?
iii.	What are volcar	nic products ?	
В	Solve any One		( 10 marks each)
i.	Explain suitable and unsuitable geological structures for the construction of dam.		structures for the construction of
	Total Run =1.		
	Sr.No.	Length of core sample (in cm)	Nature of joints at lower end of core sample
	1	10	N
	2	6	N
	3	12	Ν
	4	13	Ν
	5	6	N
	6	2	М
	7	5	M
	8	5	М
	9	3	N
	10	17	M
	11	16	N
	12	3	M
	13	2 4	M
	14	4 40	N N
	15	40	IN

#### **University of Mumbai**

Examination 2020 under cluster KJSIEIT

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: CIVIL ENGINEERING

Curriculum Scheme: Rev 2019

Examination: SE Semester III

Course Code: **CE-C304** and Course Name: **Architectural Planning and Design of Buildings** Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Line up to which the plinth of a building adjoining a street may be law-fully extended is called?		
Option A:	Building line		
Option B:	Building boundary		
Option C:	Building extend		
Option D:	Building plan		
2.	used to mean the regulation of admitting more or less sunshine in		
	the room.		
Option A:	Elegance		
Option B:	Roominess		
Option C:	Circulation		
Option D:	Aspect		
3.	The term is used to mean the link or access or movement between		
	the various rooms and floors of building.		
Option A:	Flexibility		
Option B:	Prospect		
Option C:	Circulation		
Option D:	Elegance		
4.	A is a set of rules that specify the standards for constructed		
	objects such as buildings and non-building structures.		
Option A:	Building code		
Option B:	Building bye-laws		
Option C:	IS code		
Option D:	Procedure		
5.	In the classroom minimum window area required is		
Option A:	10% of floor area		
Option B:	15% of floor area		
Option C:	20 % of floor area		
Option D:	25% of floor area		
6.	In a school, no.of drinking water foundations required are		
Option A:	1 per 30		
Option B:	1 per 40		

Option C:	1 per 50			
Option D:	1 per 60			
Option D.				
7.	In hospital ward minimum ventilation area required is			
Option A:	10% of floor area			
Option B:	20% of floor area			
Option D:	25% of floor area			
Option D:	30% of floor area			
8.	As per National building code, the minimum width of staircase in public building			
	is			
Option A:	1.0 m			
Option B:	1.2 m			
Option C:	1.5 m			
Option D:	1.8 m			
•				
9.	The perspectives of all horizontal lines inclined at 45 degrees to the picture plane			
	converge to a distance points on the			
Option A:	ground line			
Option B:	perpendicular axis			
Option C:	horizon line			
Option D:	center of vision			
10.	When an object has its two faces inclined to the picture plane, its perspective is			
	called perspective also called two point perspectives.			
Option A:	Parallel			
Option B:	Oblique			
Option C:	Angular			
Option D:	Vanishing			
11.	Recreational zone is creating for			
Option A:	Professional Meeting			
Option B:	Industrial Manufacturing			
Option C:	Entertainment activity			
Option D:	Business activity			
10	<b>1 1.1. 1 1. 1 1. 1 1 1</b>			
12.	means demolishing old structure and replacing same with new			
	structure with new dimension and space			
Option A:	Development			
Option B:	Planning			
Option C:	Demolization Redevelopment			
Option D:	Redevelopment			
13.	For a gold LEED certification, how many points are required?			
Option A:	For a gold LEED certification, how many points are required?			
Option B:	40-49			
Option C:	60-79 50-59			
Option D:	80-110			
14.	GRIHA means			
17.				

Option A:	Green Rating for Integrated Habitat Assessment
Option B:	Green Rating for Integrated Habitat Aspect
Option C:	Green Research for Integrated Habitat Aspect
Option D:	Green Research for Integrated Habitat Assessment
15.	The part of the building above the ground level and up to the floor level
	immediately above the ground is known as
Option A:	Plinth area
Option B:	Lintel level
Option C:	Ground level
Option D:	Plinth
16.	The height of the Plinth should not be less than
Option A:	45 cm
Option B:	1.2 m
Option C:	1.5 m
Option D:	50 cm
-	
17.	The minimum distance between school building and a source of continuous noise
	is
Option A:	100m
Option B:	200m
Option C:	300m
Option D:	500m
- 1	
18.	For primary school, the class room is designed at the rate of
Option A:	0.5 m ² /pupil
Option B:	0.9 m ² /pupil
Option C:	$1.2 \text{ m}^2/\text{pupil}$
Option D:	1.5 m ² /pupil
19.	In the classroom minimum window area required is
Option A:	10% of floor area
Option B:	15% of floor area
Option C:	20 % of floor area
Option D:	25% of floor area
20.	In public buildings, the tread of a stair may vary between
Option A:	100 mm to 150 mm
Option B:	150 mm to 200 mm
Option C:	200 mm to 250 mm
Option D:	250 mm to 300 mm
Option D:	

Q2	Solve any One	20 marks
А	It is proposed to construct a <b>high school</b> (G+1) R.C.C. Framed structure with the (a)No. of Class rooms =10 no.(each	following facilities

	(b)No. of Labs = $4$ no. (75sq.m. each)	
	(c)No. of Drawing rooms =3 no. (60 sq.m. each)	
	(d)Computer room $=60$ sq.m.	
	(e)Principal's room =45 sq.m.	
	(f) Office = $75$ sq.m.	
	(g)Library –cum-reading Room =75sq.m.	
	(h)Gymkhana = $100$ sq.m.	
(i) Canteen =60 sq.m. (j) Indoor games =100 sq.m.		
	(k)Assume floor to floor height as 3.5m provide as	dequate passages.
	Staircases, Toilet/sanitary units as per the bye-l	
	Draw the following according to some suitable	e scale.
	GROUND FLOOR PLAN (double line plan)	15 marks
	FIRST FLOOR PLAN (single line plan )	05 marks
	Type of Building <b>_Hospital</b>	
	For G+1 framed structure. The requirement are as	follows
	A)waiting hall -24 sq.m	
	B) Consulting room (2 nos.) -12 sq.m	
	C)General ward - 50 sq.m	
	D)Store room -24 sq.m	
	E)Office- 22 sq.m	
В	F)medical Store -14 sq.m	
	G)nurse room -20sq.m	
	H)operation theatre -50 sq.m	
	3 nos.of toilet for each gents and ladies	
	Provide adequate passage, stairs, entrance etc.	
	GROUND FLOOR PLAN (double line plan)	15 marks
	FIRST FLOOR PLAN (single line plan)	05 marks

Q3	Solve any one	20 marks
	Write short notes on the following (Five marks each)	
	(a) Green Building	
А	(b) Master plan	
	(c) uses of computers in building drawing	
	(d) Green belt	
	Draw the Two-point perspective with the following data	
В	Size of Dining hall=20m x 12 m.	
	Plinth height=0.6 m	
	Floor to floor height =4.0m	
	parapet wall=1m	
	Assume the eye level at 2.5 m. from Ground level	

#### University of Mumbai Examination 2020 under cluster KJSIEIT Examinations Commencing from 10 April 2021 to 17 April 2021 Program: Civil Engineering Curriculum Scheme: Rev2019 Examination: SE Semester: III Course Code: CEC305 and Course Name: Fluid Mechanics -I

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	Which of the following is a shear-thinning fluid?
Option A:	Bingham plastic
Option B:	Rheopectic
Option C:	Dilatant
Option D:	Pseudoplastic
2.	During a fluid flow, the temperature is developed due to
Option A:	Increase in density
Option B:	Change in pressure
Option D:	Translational Kinetic Energy
Option D:	Fluid level
3.	The line of action of buoyant force acts through the
Option A:	Centroid of the displaced volume of fluid
Option B:	Centre of the volume of the floating body
Option C:	Centre of gravity of any submerged body
Option D:	Centre of the volume of fluid vertically above the body
•	
4.	The principle of floatation of bodies is based on
Option A:	Newtons first law
Option B:	Newtons law of viscosity
Option C:	None of the mentioned
Option D:	Metacenter
5.	In unstable aquilibrium what is the relation between foreas?
	In unstable equilibrium what is the relation between forces?
Option A:	Buoyancy force < Weight of body
Option B:	Buoyancy force > Weight of body
Option C:	Buoyancy force= Weight of body
Option D:	Gravity force = Buoyancy force
6.	The velocity of a point in a flow is
Option A:	along the streamline
Option B:	along the path line
Option C:	tangent to the path line
Option D:	tangent to the streamline
•	

15.	. What happens to the buoyant force acting on the airship as it rises in the air?
Option A:	Buoyant force increases
Option B:	Buoyant force decreases
Option C:	Buoyant force remains constant
Option D:	Buoyant force first increases then shows decrease
16.	A fluid flow in which the quantity of liquid flowing per second is constant is called
	as
Option A:	Steady flow
Option B:	Streamline flow
Option C:	Turbulent flow
Option D:	Unsteady flow
17.	The sound wave is transmitted through liquids as_
Option A:	Longitudinal waves
Option B:	Transverse waves
Option C:	Elongated waves
Option D:	Refracted waves
18.	Which among the following is an assumption of the compressible flow?
Option A:	Resistance to flow of object
Option B:	No-slip condition
Option C:	Known mass flow rate
Option D:	Resistance to flow of heat
19.	What is Mach number?
Option A:	Speed of object * speed of sound
Option B:	Speed of object /speed of sound
Option C:	Speed of object + speed of sound
Option D:	Speed of object- speed of sound
20.	Which of the following law is employed in the derivation of stagnation point.
Option A:	Hooke's law
Option B:	Poisson's law
Option C:	Second law of thermodynamics
Option D:	First law of thermodynamics

Q2	Solve any Four out of Six05 marks each
А	Define Metacenter and derive expression for metacentric height by analytical method.
В	The velocity potential function ( $\phi$ ) is given by an expression $\phi = \frac{-xy^3}{3} - x^2 + \frac{x^3y}{3} + y^2$ Find the velocity components in x and y direction
С	Explain different types of fluid flow.
D	Water is flowing through a pipe having diameters 300mm and 200mm at the bottom and top respectively. The intensity of pressure at the bottom end is 35 N/cm2 and pressure at the upper end is 12 N/cm2. Determine the difference in datum head if the rate of flow is 60 lit/sec.
Е	State Bernoulli's theorem for steady flow of an incompressible fluid and derive expression for Bernoulli's equation from first principle.
F	Define Mach no and also explain subsonic, sonic and supersonic flows.

Q3.	Solve any Four out of Six05 marks each
А	Describe the term stability of floating and submerged body.
В	The velocity vector in a fluid flow is given by, $\mathbf{V} = 4\mathbf{x}^3\mathbf{i} - 10\mathbf{x}^2\mathbf{y}\mathbf{j} + 2\mathbf{t}\mathbf{k}$ Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1.
С	Explain the term stream line, equipotential line and flow net.
D	A horizontal venturi meter with inlet and throat diameters 30cm and 15 cm respectively is used to measure the flow of water. The reading of differential manometer connected to the inlet and the throat is 20cm of mercury. Determine the rate of flow. Take $Cd = 0.98$
Е	Derive Euler's equation of motion.
F	Draw diagram showing the propagation of pressure waves during the motion of a projectile with steady velocity when a) Mach no. is less than 1 b) When Mach no. is equal to 1