## University of Mumbai

## Examination 2020 under cluster 4(Lead College: PCE, New Panvel)

Program: Computer Engineering<br>Curriculum Scheme: Rev2016<br>Examination: Second Year Semester IV<br>Course Code: CSC405 and Course Name: Operating system<br>Max. Marks: 80

Time: 2 hour

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | The first UNIX OS was written in |
| Option A: | Java |
| Option B: | Pascal |
| Option C: | C Programming |
| Option D: | Machine Language |
|  |  |
| 2. | Thrashing Occur when |
| Option A: | When requested Page is in Memory |
| Option B: | When Processes on system frequently access page not memory |
| Option C: | When Exception is thrown |
| Option D: | When a page is Corrupted |
|  |  |
| 3. | Page Fault Occur when |
| Option A: | When requested Page is in Memory |
| Option B: | When requested Page is not in Memory |
| Option C: | When Exception is thrown |
| Option D: | When a page is Corrupted |
|  |  |
| 4. | Virtual Memory is |
| Option A: | Largest Secondary Memory |
| Option B: | Smallest Secondary Memory |
| Option C: | Large Main Memory |
| Option D: | Illusion of Large Main Memory |
|  |  |
| 5. | The interface is provided by the |
| option A: | Assem, |
| Option B: | API |
| Option C: | Library |
| Option D: | System calls |
|  |  |
| 6. | One that is a peripheral device of the computer system is |
| Option A: | Keyboard |
| Option B: | Register |
| Option C: | Memory |
| BIOS |  |
| 7. | The Producer - Consumer problem is also known as |


| Option A: | bounded buffer |
| :---: | :---: |
| Option B: | semaphore |
| Option C: | Single buffer |
| Option D: | System call |
| 8. | The dining - philosophers problem will occur in case of |
| Option A: | 5 philosophers and 5 chopsticks |
| Option B: | 4 philosophers and 5 chopsticks |
| Option C: | 3 philosophers and 5 chopsticks |
| Option D: | 6 philosophers and 5 chopsticks |
| 9. | falls under the category of preemptive scheduling. |
| Option A: | Round robin scheduling |
| Option B: | First come first serve |
| Option C: | Priority Scheduling |
| Option D: | Shortest Job First |
|  |  |
| 10. | The algorithm which first executes the job that came in first in the queue is |
| Option A: | FILO |
| Option B: | LIFO |
| Option C: | FIFO |
| Option D: | SJF |
| 11. | The system can allocate resources to each process in some order and still avoid a Deadlock is a $\qquad$ |
| Option A: | Safe state |
| Option B: | Unsafe state |
| Option C: | Safe Sequence |
| Option D: | Unsafe Sequence |
| 12. | Deadlock preventive methods helps to |
| Option A: | ensure that at least one of the necessary conditions cannot hold |
| Option B: | ensure that all the necessary conditions do not hold |
| Option C: | decide if the requested resources for a process have to be given or not |
| Option D: | recover from a deadlock |
|  |  |
| 13. | The $\qquad$ is a deadlock detection algorithm that is applicable when all resources have a single instance |
| Option A: | wait-for graph |
| Option B: | Bankers Algorithm |
| Option C: | ostrich algorithm |
| Option D: | Deadlock avoidance |
|  |  |
| 14. | When a process completes its normal execution, then it enters in _____ state |
| Option A: | aborted |
| Option B: | rolled back |
| Option C: | terminated |
| Option D: | queued |
|  |  |
| 15. | Page table base register points at |


| Option A: | The address of a page table in memory |
| :---: | :---: |
| Option B: | The address of a page table in backing store |
| Option C: | The address of a program counter |
| Option D: | The address of a page register |
| 16. | is a technique for overcoming external fragmentation |
| Option A: | compaction |
| Option B: | contraction |
| Option C: | paging |
| Option D: | concatenation |
| 17. | Which of the following are the two parts of the file name? |
| Option A: | name \& identifier |
| Option B: | identifier \& type |
| Option C: | extension \& name |
| Option D: | type \& extension |
| 18. | In which file allocation method ,all the pointers to scattered blocks are placed together in one location |
| Option A: | Contiguous Allocation |
| Option B: | Linked Allocation |
| Option C: | Indexed Allocation |
| Option D: | Linked List |
| 19. | Consider a disk queue with requests for I/O to blocks on cylinders. $9818337122141246567$ <br> Considering FCFS (first cum first served) scheduling, the total number of head movements is, if the disk head is initially at 53 is? |
| Option A: | 600 |
| Option B: | 620 |
| Option C: | 630 |
| Option D: | 640 |
|  |  |
| 20. | The interrupt vector contains |
| Option A: | the interrupts |
| Option B: | the memory addresses of specialized interrupt handlers |
| Option C: | the identifiers of interrupts |
| Option D: | the device addresses |


| Q2 <br> (20 Marks) | Solve any Four out of Six |
| :---: | :--- |
| A | What is an effect of page size on performance of operating system |
| B | Calculate hit ratio for LRU and FIFO page replacement policy for the <br> following string. Page frame size is 4. Calculate the hit ratio for the same. <br> $1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2$ |
| C | Explain Shell. Explain use of chmod command in Linux. |
| D | Explain Data structures used in Banker's Algorithm. |
| E | Discuss Operating System as a Resource Manager. |
| F | Describe Microkernel with a diagram. |


| $\begin{gathered} \text { Q3 } \\ (20 \\ \text { Marks } \\ \quad) \\ \hline \end{gathered}$ | Solve any Four out of Six | 5 marks each |  |
| :---: | :---: | :---: | :---: |
| A | Discuss the importance of "Multithreading". Differentiate between kernel and user thread. |  |  |
| B | Process | Arrival Time (ms) | Burst Time (ms) |
|  | P1 | 1 | 7 |
|  | P2 | 2 | 5 |
|  | P3 | 3 | 1 |
|  | P4 | 4 | 2 |
|  | P5 | 5 | 8 |
|  | Calculate AWT of the following processes using Shortest job first (Non-Preemptive). |  |  |
| C | Discuss advantages of interrupt driven IO over Programmed IO. |  |  |
| D | What is Mutual Exclusion? Explain its significance. |  |  |
| E | Explain Thrashing. |  |  |
| F | Given memory partitions of $150 \mathrm{k}, 500 \mathrm{k}, 200 \mathrm{k}, 300 \mathrm{k}, 550 \mathrm{k}$ (in order) how would each of the first fit algorithm places the processes of $220 \mathrm{k}, 430 \mathrm{k}, 110 \mathrm{k}, 425 \mathrm{k}$ (in order). |  |  |

## University of Mumbai

Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to 6 ${ }^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: CSC401 Course Name: Applied Maths IV
Time: 2 hour


| Option A: | $\frac{1}{3} e^{-2 t}+\frac{1}{2} e^{3 t}+\frac{1}{6} e^{t}$ |
| :---: | :---: |
| Option B: | $\frac{1}{3} e^{2 t}+\frac{1}{2} e^{-3 t}+\frac{1}{6} e^{-t}$ |
| Option C: | $\frac{1}{3} e^{t}+\frac{1}{2} e^{2 t}+\frac{1}{6} e^{3 t}$ |
| Option D: | 0 |
| 6. | If $\mathrm{f}(\mathrm{z})=\frac{1}{z^{2}}+\frac{1}{z}+\frac{1}{2!}+\frac{z}{3!}+\frac{z^{2}}{4!}+\cdots \quad$ then $\mathrm{z}=0$ is |
| Option A: | A pole of order 2 |
| Option B: | A pole of order 1 |
| Option C: | Not a pole |
| Option D: | A pole of order 0 |
| 7. | A square matrix is said to be diagonalisable if it is similar to a |
| Option A: | Identity matrix |
| Option B: | Null matrix |
| Option C: | Upper triangular matrix |
| Option D: | Diagonal matrix |
| 8. | The Kuhn -Tucker conditions can be used to solve |
| Option A: | Linear programming problems with inequality constraints |
| Option B: | Non linear programming problems with inequality constraints |
| Option C: | Linear programming problems with equality constraints |
| Option D: | Any Linear programming problem |
| 9. | The probability of getting 4 heads in 6 tosses of a fair coin is |
| Option A: | $\frac{13}{64}$ |
| Option B: | $\frac{15}{32}$ |
| Option C: | $\frac{15}{64}$ |
| Option D: | $\frac{11}{32}$ |
| 10. | If the objective of the Primal is to maximize with constraints of the type $\leq$ then |
| Option A: | Objective of the Dual is to minimize with constraints of the type $\leq$ |
| Option B: | Objective of the Dual is to maximize with constraints of the type $\geq$ |


| Option C: | Objective of the Dual is to minimize with constraints of the type $\geq$ |
| :---: | :---: |
| Option D: | Objective of the Dual is to maximize with constraints of the type $\leq$ |
| 11. | If the Eigen values of a $3 \times 3$ matrix A are $1,3,5$ then |
| Option A: | Determinant of $\mathrm{A}=15$ |
| Option B: | Determinant of $\mathrm{A}=45$ |
| Option C: | Determinant of $\mathrm{A}=0$ |
| Option D: | Determinant of $\mathrm{A} \neq 15$ |
| 12. | Any hypothesis which is tested for the purpose of rejection under the assumption that it is true is called |
| Option A: | Null hypothesis |
| Option B: | Alternative hypothesis |
| Option C: | Composite hypothesis |
| Option D: | Statistical hypothesis |
| 13. | If the Primal possesses a finite optimal then |
| Option A: | The dual also possesses a finite optimal solution and $\mathrm{Z}_{\text {min }}=\mathrm{W}_{\text {min }}$ |
| Option B: | The dual does not possesses a finite optimal solution |
| Option C: | The dual also possesses a finite optimal solution and $\mathrm{Z}_{\text {max }}=\mathrm{W}_{\text {min }}$ |
| Option D: | The dual also possesses a finite optimal solution and $\mathrm{Z}_{\max }>\mathrm{W}_{\text {min }}$ |
| 14. | A variable which does not appear in the basic variable column of simplex table is |
| Option A: | Never equal to zero |
| Option B: | Always equal to zero |
| Option C: | Called a basic variable |
| Option D: | Always a slack variable |
| 15. | In random experiment, observations of random variable are classified as |
| Option A: | Events |
| Option B: | Composition |
| Option C: | Trials |
| Option D: | Moments |
| 16. | If x has a Poisson distribution such that $\mathrm{P}(\mathrm{x}=\mathrm{k})=\mathrm{P}(\mathrm{x}=\mathrm{k}+1)$ for some positive integer $k$ then the mean of $x$ is |
| Option A: | k |
| Option B: | k-1 |
| Option C: | k+1 |
| Option D: | 2k+1 |
| 17. | If $f(z)$ is an analytic function in a region $R$ bounded by a simple closed curve $C$, then |
| Option A: | $\int_{C} f(z) d z=2 \pi i$ |


|  |  |
| :---: | :---: |
| Option B: | $\int_{c} f(z) d z \neq 0$ |
| Option C: | $\int_{c} f(z) d z=2 \pi i f\left(z_{0}\right)$ |
| Option D: | $\int_{c} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0$ |
|  |  |
| 18. | If one of the eigen values of a matrix A is zero then |
| Option A: | $\|A\| \neq 0$ |
| Option B: | $\|A\|>0$ |
| Option C: | $\|A\|=0$ |
| Option D: | $\|A\|<0$ |
| 19. | The eigen vector of $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ corresponding to eigen value $\lambda=1$ is |
| Option A: | $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ |
| Option B: | $\left[\begin{array}{r}2 \\ -1\end{array}\right]$ |
| Option C: | $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ |
| Option D: | $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ |
| 20. | The optimal solution to the Linear programming problem Maximize $\mathrm{Z}=3 x_{1}+2 x_{2}$ subject to the constraints $\begin{aligned} & -2 x_{1}+x_{2} \leq 1 \\ & x_{1} \leq 2 \\ & x_{1}+x_{2} \leq 3 \quad \text { and } x_{1}, x_{2} \geq 0 \end{aligned}$ |
| Option A: | $(0,1)$ |
| Option B: | $(2,1)$ |
| Option C: | $(2,0)$ |
| Option D: | $(2 / 3,7 / 3)$ |


| $\begin{gathered} \text { Q2 } \\ \text { (20 Marks } \end{gathered}$ | Solve any Four out of Six |  |  |  |  |  | 5 marks each |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | The probability density function of random variable X is |  |  |  |  |  |  |  |
|  | x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|  | $\mathrm{P}(\mathrm{X}=\mathrm{x})$ | k | 3k | 5k | 7k | 9k | 11k | 13k |
|  | Find K and $\mathrm{P}(\mathrm{X}<4)$ |  |  |  |  |  |  |  |
| B | Evaluate $\int_{c} \frac{z+6}{z^{2}-4} \mathrm{dz}$ where c is the circle $\|z-2\|=1$ |  |  |  |  |  |  |  |


|  |  |
| :---: | :---: |
| C | Solve the following LPP by Simplex Method. <br> Maximize $\mathrm{Z}=x_{1}+4 x_{2}$ subject to the constraints $\begin{aligned} & 2 x_{1}+x_{2} \leq 3 \\ & 3 x_{1}+5 x_{2} \leq 9 \\ & x_{1}+3 x_{2} \leq 5 \quad \text { where } x_{1}, x_{2} \geq 0 \end{aligned}$ |
| D | Show that $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ is Non derogatory. |
| E | 300 digits were chosen at random from a table of random variables. The frequency of digits were as follows. <br> Frequency: $28 \quad 29 \quad 33$ 31 26 Using $\chi^{2}$ test examine the hypothesis that the digits were distributed in equal numbers in the table. |
| F | Evaluate $\int_{c} \frac{\operatorname{sinz}}{z-\pi} \mathrm{dz} \quad$ where c is the circle $\|z\|=4$ |


| Q3. <br> (20 Marks ) | Solve any Four Questions out of Six $\quad$ 5 marks each |
| :---: | :--- |
| A | The income of a group of 10,000 persons was found to be normally <br> distributed with mean of Rs. 750 and standard deviation of Rs. 50 . What is <br> the lowest income of richest $250 ?$ |
| B | If the Eigen values of A $=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$ are 1,2,2 find the eigen vectors <br> corresponding to the eigen value $\lambda=2$ of A. |
| C | A factory turns out an article by mass production methods. From the past <br> experience it is found that 20 articles on an average are rejected out of every <br> batch of 100. Find the mean and the variance of the number of rejected <br> articles. |
| D | Write the following LPP in the standard form : <br> Maximize $\mathrm{z}=3 x_{1}+2 x_{2}+5 x_{3} \quad$ subject to <br> $2 x_{1}-3 x_{2} \leq 3$ <br> $x_{1}+2 x_{2}+3 x_{3} \geq 5$ <br> $3 x_{1}+2 x_{3} \leq 2$ |
| E where $x_{1}, x_{2}, x_{3} \geq 0$ |  |

## University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, Panvel)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to 6 $^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: CSC 402 and Course Name: Analysis of Algorithms
Time: 2 hour
Max. Marks: 80


| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | In general, the binary search method needs no more than $\qquad$ comparisons. |
| Option A: | $\log 2 \mathrm{n}]$-1 |
| Option B: | [logn]+1 |
| Option C: | [ $\log 2 n]$ |
| Option D: | [log2n]+1 |
|  |  |
| 2. | Which of the following is not the internal sort. |
| Option A: | Insertion Sort |
| Option B: | Bubble Sort |
| Option C: | Merge Sort |
| Option D: | Heap Sort |
|  |  |
| 3. | What is the solution to the recurrence $T(n)=T(n / 2)+n$ |
| Option A: | O(logn) |
| Option B: | O(n) |
| Option C: | O(nlogn) |
| Option D: | $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ |
| 4. | A mathematical-model with a collection of operations defined on that model is called |
| Option A: | Data Structure |
| Option B: | Abstract Data Type |
| Option C: | Primitive Data Type |
| Option D: | Algorithm |
|  |  |
| 5. | The complexity of multiplying two matrices of order m*n and n*p is |
| Option A: | mnp |
| Option B: | mp |
| Option C: | mn |
| Option D: | np |
|  |  |
| 6. | To solve a recurrence equation using master theorem, the equation must be of the form |
| Option A: | $\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$ |


| Option B: | $T(n)=0.5 T(n / 1)+f(n)$ |
| :---: | :---: |
| Option C: | $T(n)=a T(n+1 / b)+f(n)$ |
| Option D: | $T(n)=a T(n)+b f(n)$ |
| 7. | A feasible solution that either maximizes or minimizes a given objective function is called an $\qquad$ |
| Option A: | optimal solution |
| Option B: | Local solution |
| Option C: | exact solution |
| Option D: | correct solution |
| 8. | Each of the floor function and ceiling function is a monotonically increasing function but not $\qquad$ |
| Option A: | strictly monotonically increasing function |
| Option B: | monotonically decreasing function |
| Option C: | strictly monotonically decreasing function |
| Option D: | Mod function |
| 9. | Which algorithm yields best running time for shortest path? |
| Option A: | Prims Algorithm |
| Option B: | Kruskals Algorithm |
| Option C: | Dijkstras Algorithm |
| Option D: | Bellman Ford Algorithm |
| 10. | Strassens algorithm needs 7 multiplications to multiply two $2^{*} 2$ matrices but requires more additions therefore for multiplying two $n * n$ matrices about $\qquad$ multiplications are required. |
| Option A: | $\mathrm{n}^{\wedge} 2.807$ |
| Option B: | $\mathrm{n}^{\wedge} 4$ |
| Option C: | n^7 |
| Option D: | $\mathrm{n}^{\wedge} 9$ |
| 11. | To find maximum and minimum in a single dimensional array using divide and conquer strategy gives complexity of |
| Option A: | O(logn) |
| Option B: | O(nlogn) |
| Option C: | O(n) |
| Option D: | $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ |
|  |  |
| 12. | Floyd Warshall's Algorithm is used for solving |
| Option A: | All pair shortest path problems |
| Option B: | Single Source shortest path problems |
| Option C: | Network flow problems |
| Option D: | Sorting problems |
| 13. | You are given a knapsack that can carry a maximum weight of 60 . There are 4 items with weights $\{20,30,40,70\}$ and values $\{70,80,90,200\}$. What is the maximum value of the items you can carry using the knapsack? |
| Option A: | 160 |


| Option B: | 200 |
| :---: | :---: |
| Option C: | 170 |
| Option D: | 90 |
| 14. | Longest common subsequence is an example of |
| Option A: | Greedy algorithm |
| Option B: | 2D dynamic programming |
| Option C: | 1D dynamic programming |
| Option D: | Divide and conquer |
| 15. | What is the pre-processing time of Rabin and Karp Algorithm? |
| Option A: | Theta ( $\mathrm{m}^{2}$ ) |
| Option B: | Theta(mlogn) |
| Option C: | Theta(m) |
| Option D: | Big-Oh(n) |
|  |  |
| Option A: | $\mathrm{O}(\mathrm{p}(\mathrm{n})$ ) |
| Option B: | $\mathrm{O}(\mathrm{p}(\mathrm{n} \log \mathrm{n})$ ) |
| Option C: | $\mathrm{O}\left(\mathrm{p}\left(\mathrm{n}^{2}\right)\right.$ ) |
| Option D: | $\mathrm{O}(\mathrm{p}(\mathrm{m} \log \mathrm{n})$ ) |
| 17. | $\qquad$ is the class of decision problems that can be solved by nondeterministic polynomial algorithms? |
| Option A: | NP |
| Option B: | P |
| Option C: | Hard |
| Option D: | Complete |
| 18. | What is a subset sum problem? |
| Option A: | finding a subset of a set that has sum of elements equal to a given number |
| Option B: | checking for the presence of a subset that has sum of elements equal to a given number and printing true or false based on the result |
| Option C: | finding the sum of elements present in a set |
| Option D: | finding the sum of all the subsets of a set |
|  |  |
| 19. | How many solutions are there for 8 queens on $8 * 8$ board? |
| Option A: | 12 |
| Option B: | 91 |
| Option C: | 92 |
| Option D: | 93 |
|  |  |
| 20. | What is the number of edges present in a complete graph having n vertices? |
| Option A: | $\left(\mathrm{n}^{*}(\mathrm{n}+1)\right) / 2$ |
| Option B: | $\left(n^{*}(\mathrm{n}-1)\right) / 2$ |
| Option C: | n |
| Option D: | Information given is insufficient |


| Q2 | Solve any Two Questions out of Three 10 marks each |
| :--- | :--- |
| A | State and explain Master Theorem .Solve the recurrences based on it <br> a. $T(n)=2 T(n / 4)+n$ <br> $b . T(n)=2 T(n / 4)+1$ <br> c. $T(n)=2 T(n / 2)+n$ <br> $d . T(n)=2 T(n / 4)+n^{\wedge} 2$. |
| B | Solve following Knapsack Problem using dynamic Programming. <br> $W=8$ <br> $P i=\{1,2,5,6\}$ <br> $W i=\{2,3,4,5\}$, |
| Find all pair shortest path from given graph. |  |


| Q3. | Solve any Two Questions out of Three 10 marks each |  |
| :---: | :--- | :--- |
| A | Find the LCS for <br> $P=100101101101$ <br> $Q=0110$ | Solve the multistage graph. |
| B |  | 4 |
| 4 |  |  |


|  |  |
| :---: | :--- |
| C | What is $N$ Queen Problem ? Show the solution for 8 Queen problem |

## University of Mumbai

## Examination 2020 under cluster 4 (Lead College: Pillai College of Engineering)

Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to 6 $^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: 2016
Examination: SE Semester: IV
Course Code: CSC403 and Course Name: Computer Organization and Architecture
Time: 2 hour


| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | The addressing mode that adds the displacement and the index register to get the <br> effective address of the operand is called |
| Option A: | Index addressing mode |
| Option B: | Base-Index addressing mode |
| Option C: | Register-index addressing mode |
| Option D: | Relative addressing mode |
| 2. | Which of the following statement is false |
| Option A: | RISC is costlier than CISC |
| Option B: | RISC is faster than CISC |
| Option C: | RISC is load store architecture |
| Option D: | CISC has more number of addressing modes than RISC |
|  |  |
| 3. | For a computer based on 3-address instruction format each address field is used <br> to specify which of the following? |
| Option A: | Either memory operand or a processor register |
| Option B: | Either a processor register or an immediate constant data |
| Option C: | Only a processor register and an immediate constant data |
| Option D: | A Memory operand with processor register and an immediate constant data |
| 4. | Given the following binary number in 32 bit single precision IEEE 754 format <br> $01000001000101000000000000000000 . ~ W h a t ~ i s ~ t h e ~ e q u i v a l e n t ~ d e c i m a l ~ v a l u e ? ~$ |


| Option A: | +8.25 |
| :---: | :--- |
| Option B: | -8.25 |
| Option C: | +9.25 |
| Option D: | -9.25 |
|  |  |
| 5. | Which among the following is true? |
| Option A: | The memory allocated to each page is contiguous. |
| Option B: | The offset is different in a virtual address and a physical address |
| Option C: | Logical address space can be smaller than physical address space |
| Option D: | Segmentation avoids external memory fragmentation |
| 6. | When a request to the page that is not present in the main memory is accessed <br> then which of the following given below will be triggered |
| Option A: | Interrupt |
| Option B: | Request |
| Option C: | Page fault |
| Option D: | Page miss |
| Option D: | The memory that is smallest is the farthest. |
| Option A: | As we move away from the processor ,the speed increases |
| Option B: | The smallest and fastest memory are always closer to the processor |
| Option A: | 11 |
| Option B: | 13 |
| Option C: | 12 |
| Option D: | 10 |
| Ihe memory that is farthest away from processor is the costliest |  |
|  | Consider a direct mapped Cache memory of size 1Mbyte and a 32 bit addresses. |
|  | Which of the following statements is/are correct in regards of memory is 512 byte. The number of tag bits is |


| 9. | Which of the following types of memory is used for cache memory? |
| :---: | :---: |
| Option A: | SRAM |
| Option B: | DRAM |
| Option C: | EDORAM |
| Option D: | SDRAM |
| 10. | Which of the Following is true in case about interrupts? |
| Option A: | They are generated when memory cycles are stolen |
| Option B: | They are used in place of data channels. |
| Option C: | They can be generated by arithmetic operation |
| Option D: | They can indicate completion of an I/O operation |
| 11. | A Translation Lookaside Buffer is used to stored ...............? |
| Option A: | System dumps |
| Option B: | Physical addresses |
| Option C: | Program data |
| Option D: | Operating system log files |
| 12. | In a multiprocessor system, data inconsistency may occur among adjacent levels or within the same level of the memory hierarchy is called as |
| Option A: | Bus contention |
| Option B: | Cache Coherence |
| Option C: | Data loss |
| Option D: | Cache hit |
| 13. | The use of DMA interface unit eliminates the need of CPU registers to transfers data from |
| Option A: | MAR to MBR |
| Option B: | MBR to MAR |
| Option C: | I/O units to memory |
| Option D: | Memory to I/O units |


|  |  |
| :---: | :---: |
| 14. | Consider a cache of size 1024 bytes and having 64 blocks. The number of bits required to read a word form a block of cache memory is $\qquad$ . |
| Option A: | 5 |
| Option B: | 4 |
| Option C: | 8 |
| Option D: | 10 |
| 15. | In Booth's algorithm when the value of Q0Q-1 is 00 then |
| Option A: | $\mathrm{AC}=\mathrm{AC}+\mathrm{M}$ |
| Option B: | AC=AC-M |
| Option C: | Arithmetic shift Right AC,Q,Q-1 |
| Option D: | shift Right AC,Q,Q-1 |
| 16. | What is function of MAR ? |
| Option A: | Read/write a word form memory |
| Option B: | Specify an address of memory |
| Option C: | Contains the 8 - bit op code |
| Option D: | Store address of next instruction |
| 17. | Busy waiting condition occur during which type of interrupt handling mode for I/O |
| Option A: | Interrupt driven I/O |
| Option B: | Programmed driven I/O |
| Option C: | DMA |
| Option D: | Both Interrupt Driven I/O and Programmed driven I/O |
| 18. | Which of the following is hardware generated signal |
| Option A: | Interrupt |
| Option B: | Trap |
| Option C: | Both Interrupt and Trap |


| Option D: | Neither interrupt and Trap |
| :---: | :--- |
|  |  |
| 19. | A floating point number that has a 0 in the MSB of mantissa is said to have |
| Option A: | Overflow |
| Option B: | Underflow |
| Option C: | Important number |
| Option D: | Undefined |
|  |  |
| 20. | In the case of bus arbitration process once the bus is granted to a device |
| Option A: | It activates the BUS busy line |
| Option B: | Performs the required operation |
| Option C: | Raises an interrupt |
| Option D: | It activates the Ready signal |


| Q2 <br> (20 Marks) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Differentiate between paging and segmentation |
| ii. | Define instruction pipelining and explain its various hazards in brief. |
| iii. | Explain IEEE 754 standards for Floating Point number representation? |
| B | Solve any One |
| i. | Calculate the following using Booths algorithm <br> $(+13) *(-6)$ |
| ii. | Explain the different types of data transfer techniques. |


| Q3. <br> (20 Marks) |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Explain Characteristics of memory ? |
| ii. | Describe different types of addressing modes with examples for each type |
| iii. | Write a small note on principal of locality |
| B | Solve any One |
| i. | Write short note on Superscalar Organization |
| ii. | Write short note on Flynn's Classification of Computer Architectures |

## University of Mumbai

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021 and from $7^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: CSC 404 and Course Name: Computer Graphics
Time: 2 hour
Max. Marks: 80

| Q1. | For a RGB Color display, if the resolution is $1024 \times 800$ and the frame buffer architecture uses 8 bits / Color / pixel organization, then how many colors a pixel is capable of assuming. |
| :---: | :---: |
| Option A: | 24 |
| Option B: | $2^{8}$ |
| Option C: | $2^{24}$ |
| Option D: | $2^{3}$ |
| Q2. | $\qquad$ gives the ratio of vertical points to horizontal points necessary to produce equal length lines in both directions on the screen. |
| Option A: | Resolution |
| Option B: | Aspect ratio |
| Option C: | Color depth |
| Option D: | Intensity value |
| Q3. | For a line segment between $(15,15)$ and $(20,5)$, the step size in $y$ direction used by DDA algorithm will be $\qquad$ . |
| Option A: | +1 |
| Option B: | -2 |
| Option C: | -1 |
| Option D: | 0.5 |
| Q4. | is regarded as symmetric about its octant. |
| Option A: | Any polygon |
| Option B: | Ellipse |
| Option C: | Any Curve |
| Option D: | Circle |
|  |  |
| Q5. | Given the center point coordinates $(0,0)$ and radius as 10 , What is the initial decision parameter for Mid-point circle drawing algorithm? |
| Option A: | 9 |
| Option B: | -10 |
| Option C: | -9 |
| Option D: | 10 |
| Q6. | A circle with diameter 10 is centered at ( $\mathrm{Xc}, \mathrm{Yc}$ ). To convert it into ellipse with a center at ( $\mathrm{Xe}, \mathrm{Ye}$ ), semi major along x axis $=10$ and semi minor along y axis $=5$, the sequence of transformations should be |
| Option A: | Translation(-Xe,-Ye) $\rightarrow$ Scaling (1,0.5) $\rightarrow$ Translation(Xc,Yc) |
| Option B: | Translation(-Xc,-Yc) $\rightarrow$ Scaling (1,0.5) $\rightarrow$ Translation(Xe, Ye) |
| Option C: | Translation $(\mathrm{Xc}, \mathrm{Yc}) \rightarrow$ Scaling $(1,2) \rightarrow$ Translation $(\mathrm{Xe}, \mathrm{Ye})$ |
| Option D: | Scaling(1,0.5) $\rightarrow$ Translation(-Xc,-Yc) $\rightarrow$ Translation(Xe,Ye) |



| Q15. | Depth Buffer Algorithm comes under the category of |
| :---: | :---: |
| Option A: | Object space method |
| Option B: | Image space method |
| Option C: | System space method |
| Option D: | Polygon space method |
| Q16. | For a bi-level display, how many intensity levels are supported by halftone method, if $\mathbf{n}$ $\mathbf{X} \mathbf{n}$ size grid is used . |
| Option A: | 2*n |
| Option B: | $\mathrm{n} * \mathrm{n}+1$ |
| Option C: | n * n |
| Option D: | N |
|  |  |
| Q17. | ------- is an example of intensity interpolation technique |
| Option A: | Gouraud shading |
| Option B: | Phong shading |
| Option C: | Continuous shading |
| Option D: | Fast Phong shading |
|  |  |
| Q18. | If a point $(10,20,30)$ is reflected about YZ-plane then the coordinates of reflected point will be |
| Option A: | (-10,-20,30) |
| Option B: | (10,-20,-30) |
| Option C: | (-10,20,-30) |
| Option D: | (-10,20,30) |
|  |  |
| Q19. | If window specifications are $(10,10)$ and $(40,50)$, then $\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3$ and q 4 for a line segment between $(15,5)$ and $(30,25)$ using Liang Barsky line clipping algorithm will be |
| Option A: | 5,25,-5,45 |
| Option B: | 5,20,-5,15 |
| Option C: | 5,-20,-5,-15 |
| Option D: | -5,-25,-5,-45 |
|  |  |
| Q20. | If a transformed point ( $\left.x^{\prime}, y^{\prime}\right)$ is calculated as $x^{\prime}=x f+(x-x r)^{*} m$ and $y^{\prime}=y f+(y-y r)^{* n}$, then what can be the sequence of transformations involved? |
| Option A: | Translation $\rightarrow$ Scaling $\rightarrow$ Translation |
| Option B: | Scaling $\rightarrow$ Translation $\rightarrow$ Translation |
| Option C: | Translation $\rightarrow$ Scaling $\rightarrow$ Rotation |
| Option D: | Translation $\rightarrow$ Rotation $\rightarrow$ Scaling |


| Q2. | Solve any Four out of Six |
| :---: | :--- |
| A | Compare raster scan and random scan display systems |
| B | Interpret the raster locations that would be chosen by DDA algorithm to scan- <br> convert a line from a point $(10,4)$ to a point $(15,8)$. |
| C | Prove that the two successive rotation transformation are additive in nature <br> i.e. R $(\theta 1)+\mathrm{R}(\theta 2)=\mathrm{R}(\theta 1+\theta 2)$ |
| D | Explain Even Odd rule of Inside/Outside test with suitable diagram. |
| E | Compare Perspective and Parallel projection. |
| F | Illustrate the steps involved in rendering a polygon surface using Gouraud <br> Shading. |


| Q3. | Solve any Two Questions out of Three 10 marks each |
| :---: | :--- |
| A | Identify the sequence of transformations and find the composite transformation for <br> reflecting a point (x1,y1) w.r.t. a line $y=\mathrm{m}^{\prime} \mathrm{x}$ |
| B | What is Window to Viewport transformation? Explain how to map a point in <br> window at (xw,yw) to a viewport point (xv,yv) assuming that the window extents <br> are (XWmin,YWmin) (XWmax,YWmax) and viewport extents are <br> $(X V m i n, Y V m i n), ~(X V m a x, Y V m a x) . ~ W h a t ~ a l l ~ g e o m e t r i c ~ t r a n s f o r m a t i o n s ~ a r e ~$ |
| involved in this mapping. |  |

