University of Mumbai Examinations Commencing from 10th April 2021 to 17th April 2021 Program: **BE Electronics and Telecommunication Engineering** Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III Course Code: **ECC301** and Course Name: **Engineering Mathematics III**

Time: 2 hour

Max. Marks: 80

=============

Note: All Questions are compulsory.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.2 marks each
1.	Laplace Transform of {t sin3t} is
Option A:	6 <i>s</i>
	$-\frac{1}{(s^2+9)^2}$
Option B:	$\left -\frac{3}{(s^2+9)^2}\right $
Option C:	6s
- F · · · · ·	$(\overline{(s^2+9)^2})^2$
Option D:	6
	$-\frac{1}{(s^2+9)^2}$
2.	Laplace Transform of {sin2t sin3t} is
Option A:	$\frac{1}{2}\left[\frac{s}{s^2+1}-\frac{s}{s^2+25}\right]$
Option B:	$\frac{1}{2}\left[\frac{s}{s^2+1} + \frac{s}{s^2+25}\right]$
Option C:	$\frac{1}{2}\left[\frac{s}{s^2+25}-\frac{s}{s^2+1}\right]$
Option D:	$\left[\frac{s}{s^2+1} - \frac{s}{s^2+25}\right]$
3.	Laplace Transform of $\{e^{2t}(1 + sint)\}$ is
Option A:	
	$(s+2)^{+}(s+2)^{2}+1$
Option B:	1 + s
	$(s-2)^{-1}(s-2)^{2}+1$
Option C:	$\left \frac{1}{1} + \frac{1}{1} \right $
	$(s-2)$ $(s-2)^2 + 1$
Option D:	$\left \frac{1}{1 + 1} + \frac{1}{1 + 2 + 1} \right $
	$(s-2)$ $(s-2)^2 - 1$

4.	If $L\{f(t)\} = \frac{1}{s\sqrt{s+1}}$, then $L\{f(2t)\}$ is
Option A:	$\frac{1}{2s}\sqrt{\frac{2}{(s+2)}}$
Option B:	$\frac{1}{s}\sqrt{\frac{2}{(s+2)}}$
Option C:	$\frac{1}{2}\sqrt{\frac{s}{(s+2)}}$
Option D:	$\sqrt{\frac{2}{(s+2)}}$
5.	Inverse Laplace Transform of $\frac{1}{s^4}$ is
Option A:	$\frac{1}{3!} t^4$
Option B:	$\frac{1}{2!}t^4$
Option C:	$\frac{1}{3!}$ t ³
Option D:	$\frac{1}{4!} t^4$
6.	Inverse Laplace Transform of $\frac{1}{s} + \frac{1}{(s+2)^2}$ is
Option A:	$1 - te^{-2t}$
Option B:	$1 + te^{2t}$
Option C:	$1 + e^{-2t}$
Option D:	$1 + te^{-2t}$
7.	Inverse Laplace Transform of $\frac{1}{(s-2)^2-1}$ is
Option A:	e ^{-2t} sinht
Option B:	e ^{2t} sint
Option C:	e ^{2t} sinht
Option D:	e ^{2t} cosht
8.	Find Fourier coefficient a_0 for the function $f(x) = 2x - 3x^2$, $0 \le x \le 2\pi$?
Option A:	$1-2\pi$

Option B:	$\pi(1-2\pi)$		
Option C:	0		
Option D:	$2\pi(1-2\pi)$		
9.	Find Fourier coefficient b_1 in half range sine series for the function		
	$f(x) = sinx, \ 0 < x < \pi$?		
Option A:	$\frac{\pi}{2}$		
Option B:	0		
Option C:	1		
1			
Ontion D:	1		
Option D.			
10.	Find Fourier coefficient a_0 for the function $f(x) = 1 - x^2 - 1 \le x \le 1$		
101	$\frac{1}{2} \lim_{x \to \infty} \frac{1}{2} \lim_$		
Option A:	2		
-	3		
Option B:	1		
	3		
Option C:	0		
Option D.	$\left -\frac{2}{2}\right $		
	<u> </u>		
11.	Which of the following is related to Cauchy-Riemann equations?		
Option A:	$u_x = v_y$, $u_y = v_x$		
Option B:	$u_x = -v_y$, $u_y = v_x$		
Option C:	$u_x = v_y, u_y = -v_x$		
Option D:	$u_x = u_y$, $v_y = v_x$		
12.	If the eigenvalues of a 4x4 matrix A are given as 2,-3,-13 and 7,then determinant		
	of A is		
Option A:	19		
Ontion B.	45		
Option C:			
Option C:	546		
Option D:	25		
13.	What is the divergence of the vector field $\vec{f} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + xyz^3\hat{k}$ at the		
	point (1, 2, 3)?		
Option A:	89		
Option B:	80		
Option C:	124		
Option D:	100		

14.	The Eigen values of the following matrix are		
	$A = \begin{bmatrix} 0 & 7 & 5 \end{bmatrix}$		
Option A:	-3, 12, -6		
Option B:	2,4,5		
Option C:	1, 2, 3		
Option D:	-2,2,7		
15.	If $u = 2x + kx^3 + 3xy^2$ is harmonic then the value of the constant k is		
Option A:	3		
Option B:	-1		
Option C:	2		
Option D:	0		
17			
10.	A vector field which has a vanishing divergence is called as		
Option A:	Solenoidal field		
Option B:	Kotational field		
Option C:	Hemispheroidal field		
Option D:			
17.	If all Eigen values are distinct then the matrix is		
Option A:	Non-diagonalizable		
Option B:	Diagonalizable		
Option C:	Symmetric		
Option D:	Singular		
18.	If $f(z) = ze^{z}$ then it's real part u is given by		
Option A:	$e^{x} \{x \sin y + y \cos y\}$		
Option B:	$e^{x} \{ y \sin y + x \cos y \}$		
Option C:	$e^{x} \{x \cos y - y \sin y\}$		
Option D:	$e^{x} \{ y siny - x cosy \}$		
19.	If the Eigenvalues of a matrix A are 1,-2,-1 then the Eigenvalues of $A^2 - A - 2I$ are		
Option A:	-4,4,0		
Option B:	2,4,1		
Option C:	2,4,0		
Option D:	-2,4,0		
20.	Determine the constants <i>a</i> , <i>b</i> , <i>c</i> if \overline{F} is irrotational where $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j$		
Option A:	-6,0,1		
Option B:	6,0,0		
Option C:	0,6,0		
Option D:	6,6,1		

Q2.	Solve any Four out of Six.	5 marks each
(20 Marks)		
А	Find $L[(t + sint)^2]$	
В	Find $L^{-1}\left[\frac{4s+12}{s^2+8s+12}\right]$	
С	Obtain the Fourier series for $f(x) = x$ in $(0,2\pi)$.	
Л	Find the analytic function $f(z)$ in terms of z who	ose real part
D	is $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$.	
Е	Find the Eigenvalues of matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}$	$\begin{bmatrix} 3\\4\\-1 \end{bmatrix}$ and Show
	that matrix satisfies the characteristic equation .	
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + y^2)i + (3xz +$	(2xy)j +
Γ	(3xy - 2xz + 2z)k is both irrotational and solen	oidal.

Q3.	Solve any Four out of Six.5 marks each
(20 Marks)	
А	Evaluate $\int_0^t \frac{\sin u}{u} du$
В	Find $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$
С	Obtain half range Fourier sine series for $f(x) = x(\pi - x)$ in $(0,\pi)$.
D	Find the constants a, b, c, d, e if $f(z) = (ax^3 + bxy^2 + 3x^2 + cy^2 + x) + i(dx^2y - 2y^3 + exy + y)$ is analytic.
Е	Find Eigenvalues & Eigenvectors for the matrix $A = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix}$
F	Evaluate by using Green's theorem $\int_C (x^2 - y)dx + (2y^2 + x)dy$, where C is the closed region bounded by $y = 4$ and $y = x^2$.

Examination 2021 under cluster 5 (Lead College: APSIT) Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC302 and Course Name: Electronic Devices & Circuits

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	The model suffers from being limited to a particular set of operating		
	conditions if it is to be considered accurate.		
Option A:	Hybrid equivalent (h-model)		
Option B:	Re		
Option C:	Hybrid pi		
Option D:	Thevenin		
2.	The process to getting all the DC sources to zero is associated with		
Option A:	DC equivalent circuit		
Option B:	AC equivalent circuit		
Option C:	Entire amplifier circuit		
Option D:	Voltage divider biased circuit		
3.	In the load line concept when AC and DC load lines are intersect with each other,		
	then that intersection point is called as		
Option A:	Active Point		
Option B:	Saturation Point		
Option C:	Cutoff Point		
Option D:	Operating Point		
4.	In the amplifier circuit using transistor, the emitter resistance is used for		
Option A:	To prevent increase in gain		
Option B:	To increase gain		
Option C:	To prevent thermal runaway		
Option D:	To lower the output impedance		
5.	In MOSFET, the input resistance (Ri) is not equal to zero is related to which		
	configuration		
Option A:	Common source configuration		
Option B:	Common source configuration with source resistance		
Option C:	Common gate configuration		
Option D:	Common drain configuration		
6.	Generally the E-MOSFET is known as normally-OFF MOSFET because it works		
	only with		

Option A:	Large positive drain voltage	
Option B:	Large positive gate voltage	
Option C:	Large negative drain voltage	
Option D:	Large negative gate voltage	
7.	The of the two values of higher cutoff frequencies is the dominant	
	frequency of the complete system.	
Option A:	Highest	
Option B:	Lowest	
Option C:	Middle	
Option D:	Average	
8.	Which BJT transistor has a better high frequency response?	
Option A:	NPN	
Option B:	PNP	
Option C:	Depends on type of coupling	
Option D:	Depends on other components	
9.	What should be the gain of an amplifier at 20 kHz if the half power frequencies	
	are $fL = 20$ Hz and $fH = 15$ kHz along with mid band gain = 80?	
Option A:	28.28	
Option B:	48.07	
Option C:	62.47	
Option D:	78.77	
10.	An amplifier has an output voltage of 7.6 V p-p at the midpoint of the frequency	
	range. What is the output at fc?	
Option A:	3.8 V p-p	
Option B:	3.8 Vrms	
Option C:	5.4 Vrms	
Option D:	5.4 V p-p	
11.	If the voltage gain of a CE amplifier is -57 and its internal capacitances are $C\pi =$	
	20 pF and C μ = 2.4 pF. Its output Miller capacitance will be	
Option A:	2.44 pF	
Option B:	20.34 pF	
Option C:	140.23 pF	
Option D:	1.17 pF	
10	Millada dha anna ia ann liadh ain a ain dha ta an CE bahaid a na dal in andar ta dadh	
12.	Miller's theorem is applicable in a single stage CE hybrid π model in order to deal	
Oution A.	With	
Option A:	Series combination of Ce and rbc	
Option C:	Derallal combination of CC and r/ha	
Option C:	Parallel combination of Ce and rbe	
Option D:		
13	Miller theorem is generally used to	
13. Option A:	Determine the higher out off frequencies	
Option R:	Determine the higher cut–off frequencies.	
	Determine the voltage gain of the sizewite	
Option D.	Determine the voltage gain of the circuits.	

Option D:	Determine the equivalents capacitance.		
14.	Which class of power amplifier has the output swing as shown below		
	$\circ \vee \xrightarrow{f} \rightarrow \circ \circ$		
Option A:	Α		
Option B:	В		
Option C:	AB		
Option D:	С		
15.	Power amplifier generally uses transformer coupling because transformer permits		
Option A:	Cooling of circuits		
Option B:	Impedance matching		
Option C:	Distortionless output		
Option D:	Good frequency response		
opuon 21			
16.	A transformer coupled class A power amplifier has a load of 100Ω on the secondary. If the turns ratio is 10: 1 what is the value of load appearing on primary?		
Option A:	$10k \Omega$		
Option B:	5k Ω		
Option C:	20k Ω		
Option D:	100k Ω		
-			
17.	If Ad= 3500 and Acm = 0.35, the CMRR is		
Option A:	25 dB		
Option B:	40 dB		
Option C:	60 dB		
Option D:	80 dB		
18.	The common-mode gain should be		
Option A:	very high		
Option B:	very low		
Option C:	always unity		
Option D:	Infinite		
opuon 21			
19.	In class A operation , the operating point is generally located of the d.c. load line		
Option A:	At cut off point		
Option B:	At the middle		
Option C:	At the saturation		
Option D:	Just above the cutoff but below the center of load line		
•			
20.	A class A power amplifier has maximum a.c. power output of 30W. Find the		
	power rating of the transistor.		
Option A:	60W		
Option B:	15W		
Option C:	30W		

Option D:	90W

Q2	Solve any Two Questions out of Three10 marks each		
Α	Derive the equation of Av, Zi and Zo of CS amplifier using bypass RS.		
В	For the circuit shown in Fig. 1, the transistor parameter are VBE (on) = 0.7 V, β = 200, VA = ∞ , Derive the expression for lower cutoff frequency due to input coupling capacitor. Determine lower cut-off frequency and voltage gain 10V		
	7 4 4		
С	In a class A transformer coupled amplifier, the collector current alternates between 3mA and 110 mA and its Quiescent value is 58mA. The load resistance is 13 Ω and when referred to primary winding, it is 325 Ω . The supply voltage is 20V. Calculate (i) transformer turn ratio (ii) a.c. output power (iii) collector efficiency		

Q3.	Solve any Two Questions out of Three	10 marks each
А	Calculate the Voltage gain(AVS),input impedance(Z impedance(Zo) and Current gain(AIS) for the circuit following figure using hybrid- π model. Assume β =12 VA=100 V.	i),Output shown in the 20,VBE(on)=0.7 V and

	$V_{CC} = \pm LEV$ $TEV.R, R_L, R_C, 5:5K.R.$ $R_{3} = CL$ $V_{5} = \frac{11}{5200}$ $R_{5} = \frac{11}{5200}$
В	Draw a high frequency equivalent circuit of MOSFET CS amplifier with Rs un-bypassed and self- bias. Derive the expression for input and output upper cutoff frequencies with considering input signal resistor (Rsig) and load resistor (RL).
С	Explain the MOS differential pair amplifier with a common-mode input voltage vCM.

Examination 2021 under cluster 5 (Lead College: APSIT) Examinations Commencing from 10th April 2021 to 17th April 2021 Program: Bachelor of Engineering Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme) Examination: DSE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	The decimal equivalent of hex number 1A53 is
Option A:	(2053) ₁₀
Option B:	(6739) ₁₀
Option C:	$(2050)_{10}$
Option D:	(6736) ₁₀
2.	Which one of the following statements best describes the operation of a negative
	edge triggered D flip flop?
Option A:	The logic level at D input is transferred to Q at the negative edge of the clock
Option B:	The Q output is always identical to the clock input if the D input is high
Option C:	The Q output is always equal to the D input when the clock is positive
Option D:	The Q output is always equal to the D input
3.	In a J K flip flop, we have $J = Q'$ and K=1. Assume the flip flop was initially
	cleared and then clocked for 6 pulses, the sequence at the output will be
	CK
Option A:	010000
Option B:	011001
Option C:	010010
Option D:	010101
4.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state
Option B:	Low state

Option D:	
	No Change State
5.	Decimal 43 in Hexadecimal and BCD number system is respectively
Option A:	B2, 0100 0011
Option B:	2B, 0100 0011
Option C:	2B, 0011 0100
Option D:	B2, 0100 0100
6.	On subtracting (01010)2 from (11110)2 using 1's complement, we get
Option A:	01001
Option B:	11010
Option C:	10101
Option D:	10100
7.	The Boolean expression $Y = AB+CD$ is to be realized using only 2 input NAND gates. The minimum number of gates required is
Option A:	2
Option B:	3
Option C:	4
Option D:	5
- F	
8	For the circuit shown below, the output F is given by
Option A:	F-1
Option R:	F=0
Option C:	F=X
Option D:	F=X'
option D:	
9.	The output of a logic gate is '1' when all its inputs are at logic '0'. The gate is either
Option A:	a NAND or an EX-OR gate
Option B:	a NOT or an EX-NOR gate
Option C:	an OR or an EX-NOR gate
Option D:	an AND or an EX-OR gate
10.	The canonical sum of product form of the function $y(C,D) = C + D$ is
Option A:	CD + DD + C'C
Option B:	CD + CD' + C'D
Option C:	DC + DC' + C'D'
Option A: Option B: Option C:	CD + DD + C'C $CD + CD' + C'D$ $DC + DC' + C'D'$

Option D:	CD' + C'D + C'D'
11.	Complement of the expression A'B + CD' is
Option A:	(A' + B)(C' + D)
Option B:	(A + B')(C' + D)
Option C:	(A' + B')(C' + D)
Option D:	(A' + B')(C' + D')
12	
12.	If each successive code differs from its preceding code by a single bit only then
	this code is called as
Option A:	BCD code
Option B:	
Option C:	Gray code
Option D:	Binary code
13.	The bit sequence 0010 is serially entered (right-most bit first) into a 4-bit parallel out shift register that is initially clear. What are the Q outputs after two clock pulses?
Option A:	0000
Option B:	0010
Option C:	1000
Option D:	1111
•	
14.	Which of the following describes the structure of a VHDL code correctly?
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option B:	Library Declaration; Entity Declaration; Architecture Declaration; Configurations
Option C:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration
Option D:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration
1.5	
15.	The difference between a PLA and a PAL is
Option A:	the PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane
Option B:	the PLA has a programmable OR plane and a programmable AND plane, while
	the PAL only has a programmable AND plane
Option C:	the PAL has more possible product terms than the PLA
Option D:	PALs and PLAs are the same thing.
16.	Which of the following cannot be an output of a magnitude comparator
Option A:	A < B
Option B:	A > B
Option C:	A – B
Option D:	A = B
17.	The number of flip-flops required to construct an 8-bit shift register will be
Option A:	
Option B:	16
Option C:	4
Option D:	8
18	Which of the following VHDL design units contain the description of the circuit?
Option A:	Configurations
Option B:	Architecture
Sphon D.	

Option C:	Library
Option D:	Entity
19.	The addition of binary numbers 10011011010 and 010100101 is
Option A:	10101111111
Option B:	1100110110
Option C:	10011010011
Option D:	0111001000
20.	A product term containing all K variables of the function in either complemented
	or uncomplemented form is called
Option A:	Minterm
Option B:	Maxterm
Option C:	Midterm
Option D:	Least term

Q2.	Answer the following:	
А	Solve any Two	5 marks each
i.	Convert J-K flip flop to D flip flop.	
ii.	Prove that NAND and NOR gates are universal gates.	
iii.	Compare PAL with PLA.	
В	Solve any One	10 marks each
i.	What is a shift register? Explain working of Serial In Seria	l Out shift
	register?	
ii.	Minimize the following expression using Quine McClusky	technique.
	$F(A, B, C, D) = \sum m(1,3,7,11,15) + d(0,2,5)$	

Q3.	Answer the following:
А	Solve any Two5 marks each
i.	Convert $(365.24)_8$ into decimal, binary and hexadecimal.
ii.	Write VHDL code for the full subtractor.
iii.	For the given minterms, obtain the simplified POS expression
	$F(A, B, C, D) = \sum m (2,3,5,7,12) + d(6, 13, 14, 15)$
В	Solve any One10 marks each
i.	With the help of a truth table explain the full adder circuit and implement it
	using logic gates.
ii.	Design 3 bit binary to gray code converter.

Examination 2021 under cluster 5 (Lead College: APSIT) Examinations Commencing from 10th April 2021 to 17th April 2021 Program: Bachelor of Engineering Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme) Examination: DSE Semester III Course Code: ECC304 and Course Name: Network Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Which of the following conditions delivers maximum power to the load?
Option A:	$R_L > R_{TH}$
Option B:	$R_L = R_{TH}$
Option C:	$R_L \leq R_{TH}$
Option D:	Depends upon source.
2.	A network consists of dependent current source with value $4V_X$. Which type of dependent source it is?
Option A:	Voltage Controlled Current Source
Option B:	Current Controlled Current Source
Option C:	Voltage Controlled Voltage Source
Option D:	Current Controlled Voltage Source
3.	Refer the following figure and determine current I_1 .
Option A:	0.5 A
Option B:	1 A
Option C:	2 A
Option D:	7 A
4.	Refer the following figure to find voltage Va.

	9V $$ $4Va$ $ 8Va$
Option A:	2 V
Option B:	8 V
Option C:	18 V
Option D:	1 V
4	
5.	Refer the following figure to find current Ia.
	6A A 2 Z Ia
Option A:	3 A
Option B:	2 A
Option C:	
Option D:	0.5 A
6.	If the graph consists of 4 nodes and 6 branches then the number of twigs and number of links are and respectively.
Option A:	5, 5
Option B:	4, 4
Option C:	3,4
Option D:	3, 3
7.	For the graph shown in figure, the number of rows in complete incidence matrix are

Option A:	5
Option B:	4
Option C:	3
Option D:	6
8.	The number of maximum possible trees for a graph is calculated by
Option A:	N - I
Option B:	$\frac{\mathbf{b} - (\mathbf{n} + \mathbf{l})}{\mathbf{b} + \mathbf{n} - \mathbf{l}}$
Option D:	$ \mathbf{b} + \mathbf{h} - \mathbf{l} $
Option D.	
9.	Which of the following is the correct generalized KCL equation in graph theory?
Option A:	$B.Z_{b}.B^{T}I_{l} = B.Vs - B.Z_{b}I_{S}$
Option B:	$QY_b Q^T V_t = Q I_S - Q Y_b V_S$
Option C:	$B.Z_b.B_T^TI = -B.Vs$
Option D:	$QY_b Q^1 V_t = Q Y_b + Q I_S V_S$
10	
10.	Keret the following right and determine current i(t) in at t=0.
Option A:	0 A
Option B:	1.25A
Option C:	1.1A
Option D:	1 A
11.	If u(t) signal is applied to the R-C network where $R = 1 \text{ K}\Omega$ and $C = 1 \text{ uF}$ are
	connected in series. Calculate RC time constant (τ).
Option A:	5 USEC
Option B:	05.2 III560 1 mSec
Option C:	

Option D:	2 mSec
12	Time constant of a series connected R-L network is
Option A:	L/R
Option B:	R/L
Option C:	Product of R and L
Option D:	LS
13.	Which of the following represent Voltage across inductors in time domain?
Option A:	$Lx \frac{di(t)}{t}$
Option B:	$L\int i(t).dt$
Option C:	Lxi(t)
Option D:	LxI(S)
14.	If the inductor and capacitor are connected in series then equivalent impedance is
Option A:	1/LS + CS
Option B:	S(L+C)
Option C:	LS + 1/CS
Option D:	S ² (1+1/LC)
15.	Pole-zero location of the transfer function $T(s)$ is shown in the following figure. Determine $T(s)$.
Option A:	H x $\frac{(S-1)(S-3)}{(S-2)(S-4)}$
Option B:	H x $\frac{(S-2)(S-4)}{(S-1)(S-3)}$
Option C:	H x $\frac{(S+1)(S+3)}{(S+2)(S+4)}$
Option D:	H x $\frac{(S+2)(S+4)}{(S+1)(S+3)}$
16.	A system is represented by transfer function $T(s) = \frac{18}{18}$. the DC gain of this
	system is
Option A:	18
Option B:	3
Option C:	2
Option D:	6

17.	Which among the following represents the precise condition of reciprocity for
	transmission parameters?
Option A:	AD-BC=1
Option B:	AB-CD=1
Option C:	AC-BD=1
Option D:	A=D
-	
18.	A two port network is represented by the following equation.
	$I_1 = 65 V_2 + 86 I_2$
	$V_1 = 43 V_2 + 24 I_2$
	A and B parameters of the networks are given by and respectively.
Option A:	43, 24
Option B:	65, 86
Option C:	65, -86
Option D:	43, -24
19.	Determine Z_{11} and Z_{12} parameters of the following network.
	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$
Option A:	$Z_{11} = 15 \Omega, Z_{12} = -7 \Omega,$
Option B:	$Z_{11} = 17 \Omega, Z_{12} = 15 \Omega,$
Option C:	$Z_{11} = 7 \Omega, Z_{12} = 15 \Omega,$
Option D:	$Z_{11} = 15 \Omega, Z_{12} = 7 \Omega,$
20.	Z parameter of two port network are $Z_{11} = 20 \Omega$, $Z_{22} = 30 \Omega$ and $Z_{12}=Z_{21}=10 \Omega$.
	Then the network is
Option A:	Reciprocal
Option B:	Non-Reciprocal
Option C:	Symmetrical
Option D:	Neither reciprocal nor symmetrical

Q2.	Answer the following:
A	Solve any One 10 marks each
i.	For the circuit shown in below, find current through 3 Ω using superposition theorem.
	$Va \stackrel{+}{\leq} 2 \qquad (1) 1A \qquad 5Va \qquad (1) IA $
ii.	 For the graph shown in figure find, 1) Complete incidence matrix 2) Reduced incidence matrix 3) f-Tie-set matrix and 4) f-Cutset matrix
В	Solve any two5 marks each
i.	For the network shown in figure, plot poles and zeros function of $\frac{10}{1i}$.
ii.	Derive condition of symmetry for Z parameters.
iii.	Calculate number of possible trees of following graphs.

Q3.	Answer the following :				
А	Solve any One 10 marks each				
i.	In the network shown in figure, the switch was at 1 st position for a long				
	time and then it is moved to 2^{nd} position at t=0. Determine Vc(t).				
	$50V - 25V - v_{e}(t) - 1 \mu F$				
ii.	Determine ABCD parameter for the network shown in figure.				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
В	Solve any One10 marks each				
i.	The switch in the network shown was opened for a long time, then it is				
	closed at t = 0. Determine the voltage across the capacitor using Laplace. $10 \text{ V} = 10 \Omega \text{ 2 F} = 10 \Omega $				
ii.	Write any five necessary conditions for driving point functions and transfer				
	functions.				

Examination 2021 under cluster 5 (Lead College: APSIT) Examinations Commencing from 10th April 2021 to 17th April 2021

Program: **Bachelor of Engineering**

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme) Examination: DSE Semester III

Course Code: ECC305 and Course Name: Electronic Instrumentation & Control Systems

Time: 2 hour

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are		
Q1.	compulsory and carry equal marks.		
1.	Poles are those values of s which makes		
Option A:	Numerator of transfer function=0		
Option B:	Numerator of transfer function=1		
Option C:	Denominator of transfer function=0		
Option D:	Denominator of transfer function =1		
2.	Megger is used to measure		
Option A:	Unknown Resistance of Low value		
Option B:	Unknown Resistance of High value		
Option C:	Unknown Capacitance of Low value		
Option D:	Unknown Capacitance of High value		
3.	Following is the phase angle for the factor $(1+j\omega/3)$		
Option A:	$Tan^{-1} 3/\omega$		
Option B:	$Tan^{-1} \omega/3$		
Option C:	$-\mathrm{Tan}^{-1} \omega/3$		
Option D:	$-Tan^{-1} 3/\omega$		
4.	In a bode magnitude plot, which one of the following slopes would be exhibited		
	at high frequencies by a 4th order all-pole system?		
Option A:	-80 dB/decade		
Option B:	-40 dB/decade		
Option C:	40 dB/decade		
Option D:	80 dB/decade		
•			
5.	When the number of poles is equal to the number of zeroes, how many branches		
	of root locus tends towards infinity?		
Option A:	0		
Option B:	1		
Option C:	2		
Option D:	3		
6.	The unknown capacitance of Schering bridge is given by		
Option A:	Cx=C <u>2R4</u>		
	R3		

Option B:	$Cx=R\frac{2R4}{R3}$
Option C:	$Cx = \frac{R_2C4}{C_3}$
Option D:	$Cx=R\underline{2C3}$ C4
7.	For the given system the poles and zeros are $G(s) = \frac{s(s+1)}{(s+3)(s+4)}$
Option A:	P=1, Z=3,4
Option B:	P=3,4, Z=0,1
Option C:	P=-3,-4, Z=0,-1
Option D:	P=-3,-4, Z=-1
0	
8.	The forward path transfer function of a unity feedback system is given by
	$(s) = \frac{100}{(s^2 + 10s + 100)}$. The frequency response of this system will exhibit the resonance peak at:
Option A:	10 rad/sec
Option B:	8.66 rad/sec
Option C:	7.07 rad/sec
Option D:	5 rad/sec
9.	The phase angle for the open loop transfer function $G(s)H(s) = \frac{5}{s(s+1)(s+3)}$
Option A:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/3$
Option B:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/5$
Option C:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}3\omega$
Option D:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}5\omega$
10	The place where the locii meet while moving to or from infinity is called
Option A:	Centroid
Option B:	Intersection with imaginary axis
Option C:	Poot point
Option D:	Root point
Option D.	bleakaway point
11.	Consider the open loop transfer function $C(s) = \frac{K(s+6)}{2}$
	Consider the open loop transfer function $G(s) = \frac{1}{(s+3)(s+5)}$.
Ortion A.	In the root locus diagram the centroid will be located at:
Option A:	-4
Option C:	-1
Option D.	-3
12.	Attenuation, amplification and filtering is done by
Option A:	Signal conditioner
Option B:	A/D converter
Option C:	Display systems
Option D:	

13.	For Nyquist contour, the size of radius is
Option A:	25
Option B:	0
Option C:	1
Option D:	∞
1.4	Kalvin'a daubla bridge is a modified Wheatstone's bridge which consider
14. Option A:	Galvanometer error
Option B:	Contact Resistance
Option C:	High Resistance
Option D:	Battery error
option D.	
15.	The number of branches terminating at infinity is given by, where P is number of open loop poles and Z is number of open loop zeros.
Option A:	P+Z
Option B:	P-Z
Option C:	P*Z
Option D:	P/Z
16.	The breakaway point calculated mathematically
Option A:	Does not lie on root locus
Option B:	May or may not lie on root locus
Option C:	Always lie on root locus
Option D:	Lies on no root locus area only.
17.	The polar plot of the open loop transfer function of a feedback control system intersects the real axis at -2. The gain margin of the system is
Option A:	-5 dB
Option B:	QL Q
Option B .	1 0 dB
Option C:	- 6 dB
Option D: Option D:	- 6 dB 40 dB
Option D: Option D:	- 6 dB 40 dB The bridge is balanced when
Option D: Option D: 18. Option A:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity
Option D: Option D: 18. Option A: Option B:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero
Option D: Option D: 18. Option A: Option B: Option C:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero
Option D: Option D: 18. Option A: Option B: Option C: Option D:	 - 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity
Option D: Option D: 18. Option A: Option B: Option C: Option D:	 - 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity
Option D: Option D: 18. Option A: Option A: Option B: Option C: Option D: 19.	 - 6 dB - 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is
Option D: Option C: Option D: 18. Option A: Option B: Option C: Option D: 19.	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero
Option B: Option C: Option D: 18. Option A: Option B: Option C: Option D: 19. Option A: Option A: Option B:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB
Option D: Option C: Option D: 18. Option A: Option B: Option C: 19. Option A: Option B: Option B: Option C:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB
Option B: Option C: Option D: 18. Option A: Option B: Option C: Option A: Option A: Option B: Option C: Option C: Option D:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity
Option D: Option C: Option D: 18. Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option C: Option D:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity
Option D: Option C: Option D: 18. Option A: Option B: Option C: Option D: 19. Option A: Option A: Option B: Option C: Option D: 20.	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity
Option D: Option C: Option D: 18. Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option C: Option D: 20. Option A:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity
Option B: Option C: Option D: 18. Option A: Option B: Option C: Option C: Option A: Option C: Option C: Op	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity
Option B: Option C: Option D: 18. Option A: Option B: Option C: Option A: Option A: Option C: Option C: Option A: Option A: Option B: Option B: Option C:	- 6 dB 40 dB The bridge is balanced when Detector or galvanometer voltage is infinity Detector or galvanometer current is zero Detector or galvanometer voltage is zero Detector or galvanometer current is infinity The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is Zero 1 dB 100 dB Infinity

Q2.	Answer the following :
А	Solve any Two5 marks each
i.	Explain in detail the components of a generalized measurement system with the help of block diagram.
ii.	List and explain all the general rules for constructing root locus.
iii.	What is the relationship between frequency domain specifications and time
	domain specifications?
В	Solve any One10 marks each
i.	State the advantages of Kelvin's double bridge over Wheatstone bridge and
	derive expression for finding unknown resistance using Kelvin's double
	bridge.
ii.	Draw the polar plot for the given system
	G(s)H(s) = 100
	$s^{2}(s+2)(s+4)(s+8)$

Q3.	Answer the following :			
А	Solve any Two5 marks each			
i.	Differentiate between Accuracy and Precision.			
ii.	Explain in detail one bridge circuit used for measuring inductance.			
iii.	Find the intersection points with imaginary axis for the given system			
	G(s)H(s) = k			
	s(s+3)(s+6)			
В	Solve any One10 marks each			
i.	Sketch the root locus for the given system (draw it on normal paper)			
	G(s)H(s) = k			
	$(s+2)^3$			
ii.	List the magnitude plot and phase plot table for the given system:			
	G(s)H(s) = 0.75(1+0.2s)			
	s(1+0.5s)(1+0.1s)			

University of Mumbai Examinations Commencing from 7th January 2021 to 20th January 2021 Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III Course Code: ECC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Note : Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace transform of $f(t) = 1$, $0 < t < 5$; $f(t) = 0$, $t > 0$
Option A:	$\frac{1-e^{-5s}}{s}$
Option B:	$\frac{1}{s}e^{-5s}$
Option C:	$\frac{1}{s}$
Option D:	$\frac{1+e^{-5s}}{s}$
2.	If $L[f(t)] = log\left(\frac{s+3}{s+1}\right)$, find $L[f(2t)]$
Option A:	$2 \log\left(\frac{s+3}{s+1}\right)$
Option B:	$2 \log\left(\frac{s+6}{s+2}\right)$
Option C:	$\frac{1}{2}\log\left(\frac{s+3}{s+1}\right)$
Option D:	$\frac{1}{2}\log\left(\frac{s+6}{s+1}\right)$
3	Find $I[te^{-3t}sint]$
Ontion A	
option m	$\overline{(s^2-6s+10)^2}$
Option B:	$\frac{2s+6}{(s^2+6s+10)^2}$
Option C:	$\frac{1}{(s+3)^2+1}$
Option D:	$\frac{1}{(s^2-6s+10)^2}$
4.	Find $L\left[\int_{0}^{t} u \sin 3u du\right]$
Option A:	$\left \frac{2}{(s^2+1)^2}\right $
Option B:	$\frac{2}{(s^2+3)^2}$
Option C:	$\frac{6}{(s^2+9)^2}$

Option D:	
	(s ² +1) ²
5	_ [<u>s+5</u>]
5.	$\begin{bmatrix} L^{-1} \begin{bmatrix} \frac{3+3}{s^2-25} \end{bmatrix} = ?$
Option A:	cos5t + 5 sin5t
Option B:	cosh5t + 5 sinh5t
Option C:	cosh5t + sinh5t
Option D:	cosht + 5 sinht
6.	Find $L^{-1}\left[\frac{s-2}{s^2-4s+13}\right]$
Option A:	$e^{2t}\frac{\sin 3t}{3}$
Option B:	$e^{-2t}\frac{\sin 3t}{3}$
Option C:	e ^{2t} sin3t
Option D:	e ^{2t} cos3t
7	
/.	In Fourier series of $f(x) = x\cos x$ in $(-\pi, \pi)$. The value of a_n is
Option A:	0
Option B:	$\frac{1}{2}$
Option C:	$\left(\frac{(-1)^n}{2}\right)$
Option D:	$\begin{array}{c c} n^2-1 \\ 1 \end{array}$
option D.	$\overline{n^2-1}$
8.	$(\cos x, -\pi < x < 0)$
	$f(x) = \begin{cases} -\cos x, & 0 < x < \pi & \text{is} \end{cases}$
Option A:	Both even and odd function
Option B:	neither even nor odd
Option C:	odd function
Option D:	Even function
9.	The Fourier series for f(x) in (0,2 π) is f(x) = $\frac{\pi}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$.
	Find the value of $\frac{1}{2\pi} \int_0^{2\pi} [f(x)]^2 dx$
Option A:	$\frac{\pi^{3}}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{4}}$
Option B:	$\frac{\pi^2}{4} + \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^4}$
Option C:	$\frac{\frac{\pi^{3}}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{4}}}{n^{4}}$
Option D:	0
<u> </u>	
10.	A function f(t) is periodic with period 2π if

Option A:	$f(t+2\pi) = 0$
Option B:	$f(t+2\pi) = 2\pi$
Option C:	$f(t+2\pi) = f(2\pi)$
Option D:	$f(t+2\pi) = f(t)$
11.	Which of the following functions is NOT analytic
Option A:	Sinhz
Option B:	Cosz
Option C:	\overline{Z}
Option D:	$z^2 + z$
10	
12.	For $f(z) = u + iv$ analytic, which of the following statement is
	correct
Option A:	f(z) may satisfy Cauchy-Riemann equation.
Option B:	f(z) is constant function
Option C:	f(z) = 0
Option D:	u, v both are harmonic
13.	Find k such that $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic
Option A:	K=1
Option B:	K=-1
Option C:	K=0
Option D:	K=2
14.	Find the characteristic roots of matrix A,
	$\begin{vmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \end{vmatrix}$
	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Option A:	$\lambda = 1, 2, 3$
Option B:	$\lambda = 1, 1, -2$
Option C:	$\lambda = 2, 3, 6$
Option D:	$\lambda = -2, -3, -6$
	F1 0 07
15.	$\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding
	to eigenvalue $\lambda = 5$ is
Option A:	[1 - 1 0]'
Option B:	[1 1 1]'
Option C:	[1 - 1 - 1]'
1	

Option D:	[10 - 1]'			
16.	If A = $\begin{bmatrix} 1 & 2 & 8 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ Find Eigen Values of $A^2 + 3A + 2A^{-1} + I$			
Option A:	7,-3,12			
Option B:	6,-4,11			
Option C:	1,-1,2			
Option D:	7,-3,15			
17.	If the matrix A has eigen value 1,1,5 then algebraic multiplicity of A for $\lambda = 1$ is			
Option A:	-1			
Option B:	0			
Option C:	1			
Option D:	2			
18.	The divergence and curl of $\bar{a} = 2i - 3j + k$ is			
Option A:	div \bar{a} =0, curl \bar{a} =5			
Option B:	div $\bar{a}=2$, curl $\bar{a}=0$			
Option C:	div \bar{a} =3, curl \bar{a} =3			
Option D:	div $\bar{a}=0$, curl $\bar{a}=0$			
19.	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal			
Option A:	a-2			
	<i>u</i> - 2			
Option B:	$\begin{array}{c} a = -2 \\ a = -2 \end{array}$			
Option B: Option C:	a = -2 $a = -4$			
Option B: Option C: Option D:	a = -2 $a = -4$ $a = 4$			
Option B: Option C: Option D: 20.	$a = -2$ $a = -4$ $a = 4$ Evaluate $\int_C y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1)			
Option B: Option C: Option D: 20. Option A:	$a = -2$ $a = -4$ $a = 4$ Evaluate $\int_C y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1) 0			
Option B: Option C: Option D: 20. Option A: Option B:	$a = -2$ $a = -4$ $a = 4$ Evaluate $\int_C y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1) 0 2xy			
Option B: Option C: Option D: 20. Option A: Option B: Option C:	$a = -2$ $a = -4$ $a = 4$ Evaluate $\int_C y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1) 0 $2xy$ -1			

Q2.	Solve any Four out of Six	5 marks each
(20 Marks Each)		
А	Find $L\left[e^{-t}\int_0^t e^u \cosh u\right]$	
В	$L^{-1}\left[log\left(1+\frac{4}{s^2}\right)\right]s$	
С	Obtain the Fourier series for e^{-x} in (0,2 π)	
D	Find the analytic function $f(z)$ whose imaginary part is $e^{-x}(ysiny + xcosy)$	

Е	Show that $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence find A^{-1}
F	Evaluate by using Green's theorem $\int_C (x^2 - y)dx + (2y^2 + x)dy$, where C is the closed region bounded by $y = 4$ and $y = x^2$

Q3.	Solve any Four out of Six5 marks each		
(20 Marks Each)			
А	Evaluate $\int_0^\infty e^{-3t} \left(\frac{\sinh t \sinh t}{t}\right) dt$		
В	Find $L^{-1}\left[\frac{S}{(s^2+4s+13)^2}\right]$		
С	Obtain the half range Fourier sine series expansion for $f(x) = (x - x^2)$ in (0,2)		
D	Obtain the orthogonal trajectories for the family of curves $e^{-x} \cos y = C$.		
E	Check whether the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable		
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.		

University of Mumbai Examination 2020 under cluster 5(Lead College: APSIT) Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021 Program: Electronics and Telecommunication Engineering Curriculum Scheme: Rev 2019 Examination: SE, Semester: III Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Time: 2 Hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
1	Cut in voltage for Si and Ge diode is respectively
Option A:	0.7 V and 0.3 V
Option B:	0.7 V and $0.7 V$
Option C:	0.5 V and $0.7 V$
Option D:	0.5 V and 0.5 V
Option D.	
2	In forward bias dioda current increases
Contion A:	linearly
Option R:	exponentially
Option C:	parabolic
Option D:	hyperbolic
option D.	
3.	In reverse bias current suddenly increase after
Option A:	breakdown
Option B:	breakover
Option C:	cut in
Option D:	cut out
4.	If temperature increases VI characteristics sifts to and if decreases it shifts to
Option A:	left right
Option B:	right left
Option C:	left remains constant
Option D:	right remains constant
Option D:	
5.	For Zener diode as a voltage regulator , line regulation means
Option A:	fixed input voltage and fixed load resistor
Option B:	variable input voltage and variable load resistor
Option C:	fixed input voltage and variable load resistor
Option D:	variable input voltage and fixed load resistor

6.	The value of thermal voltage Vt at room temprature T=300K is calculated by
	and it is
Option A:	KT/q, 26mV
Option B:	KT/q, 28mV
Option C:	q/KT, 26mV
Option D:	q/KT, 28mV
7.	A silicon pn junction at T = 300 K has a reverse saturation current of IS = $2 \times$
	10exp-14 A. Determine the required forward-bias voltage to produce a current of
	ID = 1 mA.
Option A:	641V
Option B:	6.41V
Option C:	64.1V
Option D:	0.641V
8.	A transistor with $\beta = 120$ is biased to operate at a dc collector current of 1.2 mA.
	Find the value of $r\pi$.
Option A:	625 ohm
Option B:	1250 ohm
Option C:	2500 ohm
Option D:	5000 ohm
9.	The phase difference between the output and input voltages of a CE amplifier is
Option A:	180°
Option B:	0°
Option C:	90°
Option D:	270°
10.	When a transistor amplifier is operating, the current in any branch is
Option A:	Sum of AC and DC
Option B:	AC only
Option C:	DC only
Option D:	Difference of AC and DC
11.	The point of intersection of d.c. and a.c. load lines is called
Option A:	Saturation point
Option B:	Cut off point
Option C:	Operating point
Option D:	Critical point
12.	To amplify low frequency signal,is used in multistage
	amplifiers.
Option A:	RC coupling
Option B:	transformer coupling

Option C:	impedance coupling		
Option D:	direct coupling		
13.	Which of the following is the fastest switching device?		
Option A:	MOSFET		
Option B:	Triode		
Option C:	JFET		
Option D:	BJT		
14.	Before the invention of power amplifiers for the amplification of audio signals		
	generally device was used		
Option A:	Diode		
Option B:	OPAMP		
Option C:	Vacuum tubes		
Option D:	SCR		
15.	Power amplifier directly amplifies		
Option A:	Voltage of signal but not Current		
Option B:	Current of the signal but not Voltage		
Option C:	Power of the signal but not Voltage and Current		
Option D:	Voltage, Current and Power of the signal		
16.	In a multistage amplifier, generally the output stage is also called		
Option A:	Mixer stage		
Option B:	Power stage		
Option C:	Detector stage		
Option D:	Amplifier stage		
17.	The maximum efficiency of resistance loaded class A power amplifier is		
Option A:	5 %		
Option B:	50 %		
Option C:	30 %		
Option D:	25 %		
	23 70		
18.	The Maximum and minimum output of the Differential amplifiers is defined as:		
18. Option A:	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$		
18. Option A: Option B:	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$ $Vmax = V_{DD}, Vmin = R_D x Iss$		
18. Option A: Option B: Option C:	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}$, $Vmin = -V_{DD}$ $Vmax = V_{DD}$, $Vmin = R_D x$ Iss $Vmax = V_{DD}$, $Vmin = V_{DD} - R_D x$ Iss		
18. Option A: Option B: Option C: Option D:	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$ $Vmax = V_{DD}, Vmin = R_D x Iss$ $Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$ $Vmax = -V_{DD}, Vmin = -V_{DD}$		
18. Option A: Option B: Option C: Option D:	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$ $Vmax = V_{DD}, Vmin = R_D x Iss$ $Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$ $Vmax = -V_{DD}, Vmin = -V_{DD}$		
18. Option A: Option B: Option C: Option D: 19.	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$ $Vmax = V_{DD}, Vmin = R_D x Iss$ $Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$ $Vmax = -V_{DD}, Vmin = -V_{DD}$ In Common Mode Differential Amplifier, the outputs Vout ₁ and Vout ₂ are related		
18. Option A: Option B: Option C: Option D: 19.	The Maximum and minimum output of the Differential amplifiers is defined as: $Vmax = V_{DD}, Vmin = -V_{DD}$ $Vmax = V_{DD}, Vmin = R_D x Iss$ $Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$ $Vmax = -V_{DD}, Vmin = -V_{DD}$ In Common Mode Differential Amplifier, the outputs Vout ₁ and Vout ₂ are related as:		
18. Option A: Option B: Option C: Option D: 19.	25 π The Maximum and minimum output of the Differential amplifiers is defined as:Vmax = V _{DD} , Vmin = -V _{DD} Vmax = V _{DD} , Vmin = R _D x IssVmax = V _{DD} , Vmin = V _{DD} - R _D x IssVmax = -V _{DD} , Vmin = -V _{DD} In Common Mode Differential Amplifier, the outputs Vout ₁ and Vout ₂ are related as:Vout ₂ is in out of phase with Vout ₁ with same amplitude.		

Option C:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other and their
	respective inputs.
Option D:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other but out of
	phase with their respective inputs.
20.	If output is measured between two collectors of transistors, then the Differential
	amplifier with two input signal is said to be configured as
Option A:	Dual Input Balanced Output
Option B:	Dual Input Unbalanced Output
Option C:	Single Input Balanced Output
Option D:	Single Input Unbalanced Output

Q3.	
А	Solve any Two 5 marks each
i.	Compare BJT and JFET
ii.	Explain working of pn junction diode with the help of VI characteristics.
iii.	Determine the range of values of Vi that will maintain the Zener diode of
	Fig. 2 in the "on" state.

Examination 2020 under cluster 5 (Lead College: APSIT) Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication

Curriculum Scheme: Rev2019

Examination: SE

Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 Hour _____

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	A full adder can be made out of
Option A:	two half adders
Option B:	two half adders and a OR gate
Option C:	two half adders and a NOT gate
Option D:	three half adders
2.	POS expressions can be implemented usinglogic circuit.
Option A:	2-level OR-AND
Option B:	2-level OR-AND and NOR
Option C:	2-level XOR
Option D:	2-level NOR
3.	To program basic logic functions which type of PLD should be used?
Option A:	PAL
Option B:	PLA
Option C:	CPLD
Option D:	SLD
4.	Sequential structure of VHDL
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option B:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration
Option C:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration
Option D:	Library Declaration; Entity Declaration; Architecture Declaration; Configuration
5.	VHDL is based on which programming language
Option A:	C
Option B:	PHP
Option C:	Assembly
Option D:	ADA
6.	TTL inputs are the emitters of a
Option A:	Transistor-transistor logic
Option B:	Multiple-emitter transistor
Option C:	Resistor-transistor logic
Option D:	Diode-transistor logic

7.	In case of XOR/XNOR simplification we have to look for the following			
Option A:	Both Diagonal and Straight Adjacencies			
Option B:	Only Offset Adjacencies			
Option C:	Both Offset and Straight Adjacencies			
Option D:	Both Diagonal and Offset Adjacencies			
8.	On addition of 28 and 18 using 2's complement, we get			
Option A:	00101110			
Option B:	0101110			
Option C:	00101111			
Option D:	1001111			
9.	One example of the use of an S-R flip-flop is as			
Option A:	Transition pulse generator			
Option B:	Racer			
Option C:	Switch debouncer			
Option D:	Astable oscillator			
10.	Being a universal gate, it is possible for NOR gate to get converted into AND			
	gate by inverting the inputs			
Option A:	before getting applied to NOR gate			
Option B:	after getting applied to NOR gate			
Option C:	before getting applied to AND gate			
Option D:	after getting applied to AND gate			
11.	On subtracting (01010)2 from (11110)2 using 1's complement, we get			
Option A:	01001			
Option B:	11010			
Option C:	10101			
Option D:	10100			
12.	Which of the following is the most widely employed logic family?			
Option A:	Emitter-coupled logic			
Option B:	Transistor-transistor logic			
Option C:	CMOS logic family			
Option D:	NMOS logic			
13.	The time required for a gate or inverter to change its state is called			
Option A:	Rise time			
Option B:	Decay time			
Option C:	Propagation time			
Option D:				
1 /	Internal propagation dalay of asynchronous counter is removed by			
Option A:	Ripple counter			
Option P:	Ripple counter			
Option C:	Modulus counter			
Option D	Synchronous counter			
Option D.	Synemonous counter			

15.	One of the major drawbacks to the use of asynchronous counters is that
Option A:	Low-frequency applications are limited because of internal propagation delays
Option B:	High-frequency applications are limited because of internal propagation delays
Option C:	Asynchronous counters do not have major drawbacks and are suitable for use in high- and low-frequency counting applications
Option D:	Asynchronous counters do not have propagation delays, which limits their use in high-frequency applications
1.6	
16.	What is the preset condition for a ring shift counter?
Option A:	All FFs set to 1
Option B:	All FFs cleared to 0
Option C:	A single 0, the rest 1
Option D:	A single 1, the rest 0
17.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state
Option B:	Low state
Option C:	Toggle state
Option D:	No Change State
18.	Which is the major functioning responsibility of the multiplexing combinational
	circuit?
Option A:	Decoding the binary information
Option B:	Generation of all minterms in an output function with OR-gate
Option C:	Generation of selected path between multiple sources and a single destination
Option D:	Encoding of binary information
19.	The octal number (651.124)8 is equivalent to
Option A:	(1A9.2A)16
Option B:	(1B0.10)16
Option C:	(1A8.A3)16
Option D:	(1B0.B0)16
20.	The addition of +19 and +43 results as in 2's complement system.
Option A:	11001010
Option B:	101011010
Option C:	00101010
Option D:	0111110

Subjective/Descriptive Questions

Option	1
--------	---

Q2	Solve any Four out of Six	5 marks each
(Total 20 Marks)		
А	Compare SRAM with DRAM.	
В	Design full adder using 3:8 decoder.	
С	Convert (532.125) base 8, into decimal, binary and hexade	cimal.
D	VHDL Code for full Adder.	
E	Convert JK Flip Flop to T Flip Flop.	
F	Compare TTL and CMOS Logic Families.	

Option 2

Q3.	Solve any Two Questions out of Three10 marks each	ch
(Total 20 Marks)		
А	Design 3 bit gray to binary converter.	
В	Minimize the following expression using Quine Mc-cluskey technique. $F(A,B,C,D)=\sum M(0,1,2,3,5,7,9,11)$	
С	Design Synchronous counter using T-type flip flops for getting the following sequence 0-2-4-6-0.take care of lockout condition.	he

University of Mumbai Examination 2020 under cluster 5 (Lead College: APSIT) Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021 Program: Electronics and Telecommunication Engineering Curriculum Scheme: Rev-2019 Examination: SE Semester III Course Code: ECC304 and Course Name: Network Theory

Time: 2 Hour

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are
V ¹¹	compulsory and carry equal marks
1	
I.	which of the following conditions derivers maximum power to the foad?
Option A:	R _L > R _{TH}
Option B:	K _L = K _{TH}
Option C:	R _L < R _{TH}
Option D:	Depends upon source.
2.	Determine value of Va shown in the following figure. 3 + Va - 2Va 6V - 2Va
Option A: Option B: Option C:	1 V 2 V 3 V
Option D:	4 V
3.	Refer the following figure to find current Ia. 2 8 1 2 2 2 2 2 2 2 2
Option A:	4 A
Option B:	3 A

Option C:	2 A
Option D:	1 A
I	
4.	Two inductively coupled coils are connected in series with the Aiding method, where L1=6mH, L2=6mH and M=1mH. Determine Total inductance of combination.
Option A:	12 mH
Option B:	13 mH
Option C:	14 mH
Option D:	10 mH
5.	Number of fundamental cutsets in following oriented graphs are
Option A:	3
Option B:	4
Option C:	5
Option D:	6
6.	Which of the following is the correct generalized KCL equation in graph theory?
Option A:	$B_{L}Z_{b}B^{T}I_{l} = B_{L}V_{S} - B_{L}Z_{b}I_{S}$
Option B:	$OY_b O^T V_t = O I_s - O Y_b V_s$
Option C:	$Y = OY_b O^T$
Option D:	$OY_{h}O^{T}.V_{t} = O(1 - OY_{h}V_{s})$
7.	Reduced Incidence matrix can be obtained by
Option A:	Eliminating a row of complete incidence matrix
Option B:	Multiplying complete incidence matrix with its transpose
Option C:	
Option D:	Obtaining tree
8.	Laplace transform of $\int_0^t f(t) dt$ is equal to
Option A:	d F(S) / dS
Option B:	S F(S) - f(0)
Option C:	F(S) / S
Ontion D.	F(S+a)

9.	Voltage source V is applied to series connected R and L networks. Equation of
	the current in the inductor is
Option A:	$i(t) = V(1 - e^{-\frac{Lt}{R}}) / R$
Option B:	
Option C:	$i(t) = V (1 - e^{-\frac{Rt}{L}}) / \mathbf{P}$
Ontion D:	$\frac{1(t) = v (1 - e^{-L}) / K}{Rt}$
Option D.	$\mathbf{i}(\mathbf{t}) = \left(e^{-\underline{L}} \right)$
10	
10.	In the following figure, a switch was opened for a long time and then closed at $t = 0$. Determine $i(t)$ at $t = 0^{+}$
	0. Determine $I(t)$ at $t = 0$.
	The stand
	· (化) 2号 2H
	10
Option A:	1 A
Option B:	0.3 A
Option C:	0.7 A
Option D:	0 A
11.	For a series connected R-C network where $R = 100$ ohm and $C = 0.1$ uF
	connected in series. Time constant (τ) of a given circuit is
Option A:	10 uSec
Option B:	1 / 100 Sec
Option C:	
Option D.	
12	The driving point impedance function $Z(S)$ of a network has pole-zero location
12.	shown in figure, then Z(S) is given by
	^
	*
	-4 -3 -2 -1
	*3i
	~ ~,
	\checkmark
Option A:	H(S+2-3i)(S+2+3i)
	$\frac{(S+1)}{(S+1)}$
Option B:	H(S-1)
	$\overline{(S-2-3i)(S-2+3i)}$

Option C:	H (S + 1)
1	$\overline{(S+2-3i)(S+2+3i)}$
Option D:	H(S+1)
option 21	$\frac{(s-1)^2}{(s-2-3i)(s-2+3i)}$
	$(3 \ 2 \ 3))(3 \ 2 \ 3))$
13	Polynomial $P(S) = 3S^3 + 4S^2 + 2S + 1$ is to be tested for Hurwitz Elements in the
101	first column of Routh's array are
Option A:	3. 4. 2. 1
Option B:	3, 4, -1.25, 1
Option C:	3, 4, -2, 1
Option D:	3, 4, 1.25, 1
14.	If inductor and capacitor are connected in series then equivalent impedance is
Option A:	L+C
Option B:	LS + 1/CS
Option C:	<i>LC</i> + 1
1	\overline{CS}
Option D:	(S + L) C
15.	Two two port networks are connected in parallel. The combination is to be
	represented as a single two-port network. The parameters obtained by adding
	individuals are
Option A:	Z-parameter matrix
Option B:	h-parameter matrix
Option C:	ABCD-parameter matrix
Option D:	Y-parameter matrix
16.	A Two port network has the following equations.
	$12 = 10 I_1 + 2 V_2$ and
	$V_1 = 5 I_1 + 6 V_2$ and
	Hybrid parameters are h_{11} = and h_{12} = respectively.
Option A:	6 and 5
Option B:	
Option C:	
Option D:	2 and 10
17	A two port network is said to be symmetrical if
17.	A two port network is said to be symmetrical in
Option A:	another port with one port open circuited
Option B:	Voltage gain and current gain are the same
Option C:	Ratio of excitation at one port to response at another port is the same if excitation
Option C.	and response is interchanged
Option D.	Current gain is same if ports are interchanged
18.	3
10.	Driving point impedance function $Z(S) = \frac{1}{S+A}$ is
Option A:	Series combination of two inductors
Option B:	Parallel combination of Inductor and Resistor
Option C:	Parallel combination of resistor and capacitor

Option D:	Series combination of two capacitors
19.	Realization of function using Cauer-II can be obtained by
Option A:	Partial fraction expansion on Y(S)
Option B:	Partial fraction expansion on Z(S)
Option C:	Division operation on Z(S)
Option D:	Continued fraction expansion
20.	Function F(S) = $\frac{(S-3)}{S^2+9S+20}$ is not positive real function because
Option A:	A zero is right half of S-Plane
Option B:	Poles are lies on left side of S plane
Option C:	A zero is at left half of S plane
Option D:	All poles lie on left half of S-Plane

Q3 Solve any Two Questions out of Three 10 marks ea

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 "C")

Examination: SE Semester III

Course Code: ECC305 and Course Name: Electronic Instrumentation & Control Systems Time: 2 Hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	On which principle Wheatstone bridge works?
Option A:	full deflection
Option B:	partial deflection
Option C:	null deflection
Option D:	no diffraction
2.	The simplest type of bridge used for the measurement of medium inductance is a
Option A:	Maxwell
Option B:	Schering
Option C:	Неу
Option D:	Wheatstone
3.	The principle of Homogeneity and superposition is applied to
Option A:	Linear time-variant system
Option B:	Non-linear time-variant system
Option C:	Linear time-invariant system
Option D:	Non-linear time-invariant system
4.	In Force-Voltage analogy, damper is analogous to
Option A:	Inductance
Option B:	Charge
Option C:	Current
Option D:	Resistance
5.	A Schering bridge can be used for the
Option A:	protecting the circuit from temperature rises
Option B:	testing capacitors
Option C:	measuring voltages
Option D:	measuring currents
6.	The overall transfer function, from block diagram reduction, for parallel blocks is
Option A:	Sum of individual gain
Option B:	Difference of individual gain

Option C:	Product of individual gain
Option D:	Division of individual gain
7.	The steady state error due to a step input $Au(t)$ is given by
Option A:	A/(1+Kp)
Option B:	A/Kp
Option C:	1/АКр
Option D:	<i>Kp/(1+A)</i>
8.	What is the Type and the Order of the system, 100(-15)(-100)
	$G(s) = \frac{100(s+5)(s+30)}{s^3(s+2)(s^2+3s+10)}$
Option A:	4 and 9
Option B:	4 and 7
Option C:	3 and 5
Option D:	3 and 6
9.	Which among the following second order systems will take more time to reach it's
	steady state value?
Option A:	Undamped system
Option B:	Critically damped system
Option C:	Overdamped system
Option D:	Underdamped system
10.	The characteristic equation of a system is given below. Find the range of values for k.
	$s^{3}+3ks^{2}+(k+2)s+4=0$
Option A:	0 <k<0.523< td=""></k<0.523<>
Option B:	0.527 <k<infinity< td=""></k<infinity<>
Option C:	0.678 <k<infinity< td=""></k<infinity<>
Option D:	0.21 <k<0.527< td=""></k<0.527<>
11.	Function of transducer is to convert
Option A:	Electrical signal into non electrical quantity
Option B:	Electrical signal into mechanical quantity
Option C:	Non electrical quantity into electrical signal
Option D:	To do nothing
-r	
12.	The change in loading and unloading curves is known as
Option A:	Zero drift characteristics
Option B:	Sensitivity drift
Option C:	Hysteresis
Option D:	Zero drift plus sensitivity drift characteristics
_	

13.	Phase margin of the system is used to specify
Option A:	relative stability
Option B:	absolute stability
Option C:	time response
Option D:	frequency response
14.	If damping ratio of a given system is 0.5, then the lines joining complex poles with origin are inclined to negative real axis at
Option A:	±90 deg
Option B:	±60 deg
Option C:	$\pm 45 \deg$
Option D:	±30 deg
15.	In Bode diagram, the factor $1/(jw)(jw)$ in the transfer function gives a line having slope
Option A:	20 dB per decade
Option B:	40 dB per decade
Option C:	-20 dB per decade
Option D:	-40 dB per decade
16.	Where are the closed loop poles of the following system located?
	$G(s)H(s) = \frac{1}{s^2 + 49}$
Option A:	They are located on negative real axis
Option B:	They are located on <i>jw</i> axis
Option C:	They are located on right half of s-plane
Option D:	They are located, one on the right half and one on the left half
17.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K(s+2)}{s(s^2+2s+2)}$. The centroid is
Option A:	0
Option B:	-1/2
Option C:	-2/3
Option D:	1/2
•	
18.	Gain margin is the reciprocal of the gain at the frequency at which the phase
	angle is
Option A:	90 deg
Option B:	180 deg
Option C:	-180 deg
Option D:	0 deg
19.	A system has 8 poles and 3 zeros. The slope of its highest frequency asymptote in
	its magnitude plot is
Option A:	-40 dB/decade
Option B:	-60 dB/decade
Option C:	-100 dB/decade
Option D:	-150 dB/decade
20.	Settling time is inversely proportional to product of the damping ratio and

Option A:	Time constant
Option B:	Maximum overshoot
Option C:	Peak time
Option D:	Undamped natural frequency

Q2.	Answer the following :	
A	Solve any Two	5 marks each
i.	Explain functional blocks of a measurement system.	
ii.	Compare temperature transducers RTD and Thermocouple.	
iii.	Find resonance peak and resonance frequency for a unity fe	edback system
	having forward path transfer function as	
	$G(s) = \frac{36}{s(s+8)}.$	
В	Solve any One	10 marks each
i.	Obtain transfer function of the block diagram shown in figu	ıre –
ii.	Sketch the root locus for the following system with $K>0$	
	$G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+4)}.$	

Q3.	Answer the following :	
А	Solve any Two5 marks e	ach
i.	Explain the working principle of LVDT with a neat sketch.	
ii.	What are compensators? Why are they needed in control systems?	
iii.	Sketch polar plot of	
	$G(s) = \frac{1}{s(s+a)(s+b)}.$	
В	Solve any One10 marks ea	ach
i.	Draw Bode plot for a unity feedback control system with open loop tran	sfer
	function,	
	$G(s) = \frac{K}{s(1+s)(1+0.1s)}.$	
ii.	Investigate the stability of the system that has the characteristic equation	1:
	$s^{5}+2s^{4}+24s^{3}+48s^{2}-25s-50=0$	