Examination 2020 under cluster 5 (Lead College: APSIT)

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016 Examination: TE Semester V

Course Code: ECC501 and Course Name: Microprocessor and Peripherals Interfacing

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks				
1.	Compared to High level language, Assembly Language requires				
Option A:	More memory and more execution time.				
Option B:	More memory and less execution time				
Option C:	Less memory and less execution time				
Option D:	Same memory and same execution time.				
•					
2.	A microprocessor consists of				
Option A:	ALU, Register array and Control Unit				
Option B:	Program memory, I/O Ports and Timers				
Option C:	Data memory, I/O Ports and Timers				
Option D:	ALU, Register array and UART				
3.	For an 8086 microprocessor, will be the value of physical address if the				
	given segment address is 6300H and offset address is 0200H.				
Option A:	06500H				
Option B:	62300H				
Option C:	63200H				
Option D:	08300H				
4.	Which of the following refer stack memory for its execution?				
Option A:	CALL				
Option B:	MACRO				
Option C:	ENDM				
Option D:	JMP address				
5.	What is the functionality of TF bit of 8086's flag register?				
Option A:	Enable single step mode for on-chip debugging				
Option B:	Increment source and destination pointer during string operation				
Option C:	Enable maskable interrupts				
Option D:	Enable maximum mode				
6.	While performing MOVSW instructions over Strings, the data is transferred to				
Option A:	ES:DI				
Option B:	DS:SI				
Option C:	CS:IP				
Option D:	SS:SP				
7.	DIV CL instruction of 8086 microprocessor,				

Option A:	Store quotient of division operation in AX and remainder in DX	
Option B:	Store quotient of division operation in AL and remainder in AH	
Option C:	Store quotient of division operation in AH and remainder in AL	
Option D:	Store quotient of division operation in DX and remainder in AX	
8.	MOV AL, [BX] instruction of 8086,	
Option A:	Copy data from BX register to AL register	
Option B:	Copy data from BL register to AL register	
Option C:	Copy data from data segment location pointed by BX, to AL register	
Option D:	Copy data from AL register to data segment location pointed by BX	
9.	The instruction that pushes the flag register on to the stack is	
Option A:	PUSH	
Option B:	POP	
Option C:	PUSHF	
Option D:	POPF	
10.	How many maximum numbers of slaves can be connected in cascading of IC 8259?	
Option A:	2	
Option B:	4	
Option C:	8	
Option D:	16	
11.	BSR mode of 8255 is used to	
Option A:	Select mode of Port-A	
Option B:	Set or Reset any one bit of Port-C	
Option C:	Select IO mode of port-B	
Option D:	Set or Reset a bit of Port-A	
•		
12.	How many bits are provided for Count Value In counter register of IC 8257?	
Option A:	16	
Option B:	32	
Option C:	14	
Option D:	20	
-		
13.	In square wave generator mode of 8254, Count (N) is loaded in the counter register.	
	What is the frequency of the output signal?	
Option A:	N divided by clock frequency	
Option B:	Clock frequency divided by N	
Option C:	65536 – N	
Option D:	2^{N}	
14.	For 8 bits of ADC, $V_{REF} = 5V$. If Analog voltage in 3 V, Calculate decimal	
	equivalent of output signal.	
Option A:	255	
Option B:	180	
Option C:	127	
Option D:	153	
15.	In ADC0809, ALE pin is used to	

Option A:	Latch analog voltage of channel.
Option B:	Latch selected channel.
Option C:	Latch clock of the ADC
Option D:	Latch output of the ADC
16.	Signal conditioners of the Data Acquisition system perform functionality like
Option A:	Conversion of physical quantity to electrical signal
Option B:	Amplification and Selection of desired portion of signal
Option C:	Recording input data permanently
Option D:	Displaying all the recorded data
17.	Which of the following chips is needed to read 8 bits data from general purpose
	digital Input devices?
Option A:	8087
Option B:	8254
Option C:	8255
Option D:	DAC0808
18.	How many address lines a memory chip of 2K capacity will have?
Option A:	10
Option B:	8
Option C:	11
Option D:	12
19.	What is the size of data registers in 8087?
Option A:	8 bits
Option B:	16 bits
Option C:	20 bits
Option D:	80 bits
20.	Which of the following data lines are used by 8086 to read /write a byte from ODD
	address memory locations?
Option A:	AD0-AD7
Option B:	AD8-AD15
Option C:	AD0- AD15
Option D:	AD0-AD11

Q2		
А	Solve any Two	5 marks each
i.	Explain the need of the compiler and assembler and their com	nparison.
ii.	Write a program to display a message "Microprocessor" on	IBM PC. Use
	INT 21h function, AH=09 with string of message at DS:DX	and terminated
	by "\$".	
iii.	Explain BSR mode of PPI-8255.	
В	Solve any One 10 m	narks each
i.	If analog voltage of 3.2V is connected to the IN3 channel	of ADC 0809.
	Suggest hardware and write a program to convert analog volta	ge to its digital
	equivalent and store the value in the AL register. ($V_{REF} = 5V$))
ii.	Explain Maximum Mode of 8086 microprocessor. Draw the t	iming
	diagram for read operation in maximum mode.	

Q3.		
А	Solve any Two	5 marks each
i.	Describe the importance of 8257 DMA controller.	
ii.	Draw and Explain the Flag register of 8086?	
iii.	Explain salient features of Programmable Interval Timer 8254	
В	Solve any One10	marks each
i.	Design an 8086 based system with 32K RAM (4 chips of 8K).	Draw the
	memory map of the system designed.	
ii.	Write an assembly language program to find the smallest num	ber from an
	array of 10 numbers. Assume that all numbers are 8 bit wide.	

Program: Electronics and Telecommunication Engineering Curriculum Scheme: Rev2016 Examination: Third Year Semester V

Course Code: ECC502 and Course Name: Digital Communication

Time: 1 hour

Max. Marks: 80

	Change the connect ention for following questions. All the Questions are
Q1.	compulsory and carry equal marks 40
1	The total area under the PDF curve is
Ontion A	
Option B:	Unity
Option C:	Infinite
Option D:	2π
Option D.	
2.	A random process is called as wide sense stationary if
Option A:	Its mean varies with shift in time origin
Option B:	Its mean does not vary with shift in time origin
Option C:	Its mean and autocorrelation vary with shift in time
Option D:	Its mean and autocorrelation do not vary with shift in time
3.	Gaussian distribution is also known as
Option A:	Uniform distribution
Option B:	Normal distribution
Option C:	Cauchy distribution
Option D:	Rayleigh distribution
I	
4.	The total information per message sequence is known as
Option A:	Self-information
Option B:	Entropy
Option C:	Mutual information
Option D:	Information rate
5.	The source has entropy of 1.75 bits/ message and generates 40,000 messages per
	second its information rate is given as,
Option A:	R=50 Kbps
Option B:	R=80 Kbps
Option C:	R=70 Kbps
Option D:	R=10 Kbps
6.	The channel capacity of extremely noisy channel is
Option A:	High
Option B:	Infinite
Option C:	Zero
Option D:	Medium
7.	In a linear code, the minimum Hamming distance between any two code words is
	minimum weight of any non-zero code word.

Option A:	Less than			
Option B:	Greater than			
Option C:	Equal to			
Option D:	Not related to			
8.	The no of errors detected s and no. of errors corrected t for dmin=3			
Option A:	s=2, t=1			
Option B:	s=2, t=2			
Option C:	s=1, t=1			
Option D:	s=3, t=1			
•				
9.	The following code requires memory for encoding			
Option A:	Hamming code			
Option B:	Cyclic code			
Option C:	BCH code			
Option D:	Convolutional code			
10.	A cyclic code can be generated using			
Option A:	Generator polynomial			
Option B:	Tree diagram			
Option C:	Trellis diagram			
Option D:	Coefficient matrix			
option D.				
11.	The term surviving path is applicable to			
Option A:	Cyclic codes			
Option B:	Hamming code			
Option C:	R-H code			
Option D:	Convolutional code			
12.	Which of the following has better noise performance			
Option A:	OPSK			
Option B:	8-PSK			
Option C:	16-PSK			
Option D:	64-PSK			
Option D.				
13	For a specified average transmitted power, the system that gives lowest probability			
101	of error among the following is			
Option A.	Non coherent ESK system			
Option B:	Coherent ESK system			
Option C:	PSK system			
Option D:	Coherent ASK system			
Option D.				
14	Bandwidth required for OPSK is & BPSK is respectively			
Option A	fh 2fh			
Option R:	2fk fk			
Ontion C:				
Option D	$2f_1 - 2f_1$			
	l			

15.	The modulation format in which amplitude and phase is varied is
Option A:	OPSK
Option B:	OAM
Option C:	MPSK
Option D:	BPSK
16.	The criterion used for pulse shaping to avoid ISI is
Option A:	Nyquist criterion
Option B:	Quantization
Option C:	Sample and hold
Option D:	PLL
17.	Zero forcing equalizers are used for
Option A:	Reducing ISI to zero
Option B:	Sampling
Option C:	Quantization
Option D:	Modulation
18.	The extent of eye opening in the vertical direction indicates
Option A:	ISI
Option B:	Timing sensitivity
Option C:	Zero crossing jitter
Option D:	Noise Margin
19.	The process of obtaining the transmitted bit sequence from received signal is
	known as
Option A:	Channel decoding
Option B:	Source decoding
Option C:	Demodulation
Option D:	Baseband detection
20.	If input noise is white then probability of error in matched filter is
Option A:	Minimum
Option B:	Maximum
Option C:	Zero
Option D:	Infinity

Q2	Solve any Two	o Questio	ns out of [Three		10 m	arks each
А	Explain the fo (i) Mea	llowing te n (ii) Cen	erms and g tral mome	ive their si nt (iii) Va	gnificance riance (iv) Standard	ldeviation
	A discrete me probabilities as	moryless shown:	source ha	s an alpha	abet of six	x symbol	with their
	Symbol	M_1	M_2	M ₃	M_4	M ₅	M ₆
	Probability	0.3	0.25	0.15	0.12	0.08	0.10
В	i) Det	ermine tl	he Minim	um Varia	nce Huffm	nan codev	vords and
	ave	rage code	word lengt	h and hend	ce find Ent	tropy of th	e system.
	ii) Ver	ify the av	erage code	word leng	th using Sl	hannon Fa	no.
	Compare and c	comment of	on the resu	lts of both			
С	Discuss the prototo be taken to r	blem of i educe ISI	nter symbo . How to s	ol interferen tudy ISI us	nce (ISI). H sing eye pa	Explain the attern?	e measures

Q3	Solve any Two Questions out of Three	10 marks each
А	 A parity check matrix of a (7,4) Hamming code is given as H = [1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1] i) Find Generator matrix using which find out the 1100 and 0101 ii) Determine the error correcting and detecting cap Draw the encoder for the above block code. 	follows: he codewords of pability of system
В	Draw the signal space diagram for 16-PSK and 16-QAM ar probability. Also draw their PSD and determine bandwidth	nd find their error
С	Justify that the probability of error in a matched filter does r shape of the input signal. Derive relevant expression.	not depend on the

University of Mumbai Examination 2020 under cluster 5 (Lead College APSIT)

Program: BE <u>Electronics and Telecommunication</u> Engineering Curriculum Scheme: Revised 2016 Examination: Third Year Semester V

Course Code: $\underline{ECC503}$ and Course Name: $\underline{Electromagnetic}$ Engineering

Time: 2 hour

Max. Marks: 80

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	The normal components of electric flux density are
Option A:	continuous across a dielectric
Option B:	discontinuous across a dielectric boundary
Option C:	zero
Option D:	infinite
Q2.	Poynting vector is given by
Option A:	ExH
Option B:	HxE
Option C:	E.H
Option D:	(E.H) ²
Q3.	If the voltage applied across a capacitor is increased, the capacitance value
Option A:	increases
Option B:	decreases
Option C:	remains constant
Option D:	becomes infinity
Q4.	Laplace's equation has
Option A:	no solution
Option B:	only one solution
Option C:	two solutions
Option D:	infinite solutions
Q5.	An object which cannot contain an electrostatic field within it is known as
Option A:	a perfect dielectric
Option B:	a perfect conductor
Option C:	a perfect capacitor
Option D:	a charge
Q6.	Point form of Gauss law is
Option A:	Divergence of electric flux is equal to zero
Option B:	Divergence of electric flux density is equal to volume charge density
Option C:	Divergence of electric flux density is equal to zero
Option D:	Divergence of electric flux is equal to volume charge density
Q7.	Intrinsic impedance of free space is
Option A:	77 Ω
Option B:	177 Ω
Option C:	277 Ω

Examination 2020 under cluster 5 (Lead College APSIT)

Option D:	377 Ω
Q8.	Which of the following is not a primary parameter of a transmission line?
Option A:	Resistance
Option B:	Capacitance
Option C:	Inductance
Option D:	Attenuation constant
Q9.	In the absence of negative charge, the electric flux lines originating from positive
	charge will terminate at
Option A:	infinity
Option B:	positive charge
Option C:	negative charge
Option D:	both positive and negative charge
Q10.	The force experienced per unit positive charge at a point placed in the electric field
	is
Option A:	Magnetic field intensity
Option B:	Electric field intensity
Option C:	Electric flux
Option D:	Magnetic flux
Q11.	In a lossless medium the intrinsic impedance $\eta = 60\pi$ and $\mu r = 1$. The relative
	dielectric constant er shall be
Option A:	
Option B:	2
Option C:	4
Option D:	8
010	
Q12.	The capacitance of a material in air with area 20 m ² and distance between plates $\frac{1}{2}$
Outing As	being 5m is given as
Option A:	3.530pF
Option B:	33.30pF
Option C:	0.555pF
Option D:	333.0pF
012	∇ L-0 is known as
Q15.	V.J=0 IS KNOWN as
Option R:	Laplace's Equation
Option D:	Poissoil's Equation Continuity equation for steady current
Option D:	Continuity equation for steady current
Option D.	Gauss Law
014	As per Biot Savart's law, the differential magnetic field intensity produced at a
Q14.	As per blot Savart's law, the unreferrital magnetic field intensity produced at a point P due to differential current element is
Option A:	Inversely proportional to distance R between point P and the element
Option R:	Directly proportional to distance R between point P and the element
Option C:	Inversely proportional to the square of distance R between point P and the
Option C.	element
	cientent.

Option D:	Directly proportional to the square of distance R between point P and the element.
Q15.	If the magnitude of the reflection coefficient on a transmission line for a given load
	is 1/3, VSWR is
Option A:	3
Option B:	2
Option C:	1
Option D:	8
Q16.	For the wave equation $E = 20 \sin (wt-6z)a_x$, the direction of wave propagation will
	be in
Option A:	X-direction
Option B:	Y-direction
Option C:	Z-direction
Option D:	XZ-direction
Q17.	The Smith chart consists of
Option A:	Constant R and variable X circles
Option B:	Variable R and constant X circles
Option C:	Constant R and constant X circles
Option D:	Variable R and variable X circles
•	
Q18.	Magnetic flux density emerging out of a closed surface is
Option A:	one
Option B:	zero
Option C:	dependent on magnetic movements inside the closed surface.
Option D:	dependent on magnetic movements outside the closed surface.
•	
Q19.	An infinite sheet has a charge density of 150 μ C/m. The flux density in μ C/m ² is
Option A:	25
Option B:	50
Option C:	75
Option D:	100
•	
Q20.	The direction of induced emf can be found by
Option A:	Laplace's equation
Option B:	Flemming's right hand rule
Option C:	Lenz's law
Option D:	Biot-Savart's law

Examination 2020 under cluster 5 (Lead College APSIT)

Q2.	Solve any Two Questions	(10 Marks each):
i.	In free space, V= $6xy^2z + 8$. Find electric field intensity E and density ρ_V at point P (1, 2,-5)	volume charge
	· · · · ·	

Examination 2020 under cluster 5 (Lead College APSIT)

ii.	Evaluate both sides of the divergence theorem for the field $\mathbf{D} = 2xy \mathbf{a}_x + x^2 \mathbf{a}_y (C/m^2)$ and a rectangular parallelepiped formed by the planes x=0 to 1, y= 0 to 2, z= 0 to 3.
iii.	Define reflection coefficient, transmission coefficient and standing wave ratio. For normal incidence, determine the amplitudes of reflected and transmitted electric and magnetic fields \mathbf{E} and \mathbf{H} at interface of two regions at z=0.
	Given: Incident Ei= 1.5 x 10^{-3} V/m. ε_{r1} = 8.5, μ_{r1} = 1, σ_1 = 0. Second region is free space.

Q3.	Solve any Two Questions (10 Marks each):
i.	Derive expression to find magnetic field intensity due to infinite long straight
	conductor on z-axis by Biot- Savart law
ii.	State Poynting theorem. Derive mathematical expression for the Poynting theorem
	and explain the meaning of each term.
iii.	Explain the concept of electrostatic discharge and magnetic levitation using principles
	of electromagnetics

Examination 2020 under cluster ____ (Lead College: ______)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: ECC-504 and Course Name: Discrete Time Signal Processing

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In bilinear transformation, the left-half s-plane is mapped to which of the following in the z-domain?
Option A:	Partially outside the unit circle $ z =1$
Option B:	Entirely outside the unit circle $ z =1$
Option C:	Entirely inside the unit circle $ z =1$
Option D:	Partially inside the unit circle $ z =1$
2.	Twiddle factor $W_4^3 =$
Option A:	j
Option B:	1
Option C:	-1
Option D:	-j
3.	$H_1[Z] = 1 + 0.25z^{-1}$ behaves like afilter and $H_2[Z] = 1 - 1$
	$0.25z^{-1}$ behaves like afilter
Option A:	Low pass, High pass
Option B:	High pass, Low pass
Option C:	Band Pass, All pass
Option D:	All pass, Band pass
4.	In impulse invariant transformation method for $H(s) = \frac{1}{s-P}$ digital transformation is given as
Option A:	$H(z) = \frac{1}{1 - e^{pT} z^{-1}}$
Option B:	$H(z) = \frac{1}{1 - e^{-pT} z^{-1}}$
Option C:	$H(z) = \frac{1}{1 + e^{-pT} z^{-1}}$
Option D:	$H(z) = \frac{10}{1 + e^{pT} z^{-1}}$
5.	The Quantisation error in Analog to digital conversion (ADC) of a signal is said to
	be error and this error is assumed to have a probability
	distribution function (pdf)
Option A:	Truncation, Uniform
Option B:	Truncation, Gaussian
Option C:	Rounding, Uniform

Option D:	Rounding, Gaussian
6.	In the DTMF signal tone number 1 press generates and tones
Option A:	697 Hz and 1209 Hz
Option B:	770 Hz and 1336 Hz
Option C:	852 Hz and 1336 Hz
Option D:	941 Hz and 1209 Hz
7.	An FIR filter which has the following property $ \angle H(0) - \angle H(\pi) = \pi$ behaves
	like an
Option A:	Minimum phase system
Option B:	Maximum phase system
Option C:	Mixed phase system
Option D:	Zero phase system
8.	The simultaneous fetch of code as data is done in architecture
Option A:	Harvard architecture
Option B:	Von-Neumann architecture
Option C:	Very large instruction word architecture
Option D:	Modified Harvard architecture
9.	The relation between analog and digital frequency is nonlinear in case of
Option A:	Impulse invariant transformation.
Option B:	Bilinear transformation.
Option C:	Frequency sampling.
Option D:	chebyshev sampling
10.	Range of Round off error for two's complement binary number representation with
	B number of bits is given as
Option A:	$-\left(\frac{2^{-B}}{2}\right) \leq \epsilon_R \leq \left(\frac{2^{-B}}{2}\right)$
Ontion B:	$-(2^{-B}) \leq \epsilon_{\pi} \leq 0$
Option C:	$(2^{-B}) \le c_R \le 0^{-B}$
Option D:	$\frac{(2) \leq c_R \leq (2)}{(2 + B) \leq c_R \leq 0}$
Option D.	$(2) \leq c_R \leq 0$
11	In ECG signal the heart rate is computed using interval
Option A:	R-R interval
Option B:	S-S interval
Option C:	T-T interval
Option D:	O-O interval
option D.	
12.	The normalized transition width of a Rectangular window of length N is written as
Option A:	3.1
	N 22
Option B:	$\frac{5.5}{N}$
Option C:	5.5
Omtion Di	<u>N</u> 0.9
Option D:	
13.	If an input signal x[n] having a range 10V is passed through a 6-bit quantizer then
	the quantization step size

Option A:	0.15625
Option B:	0.015625
Option C:	0.00244
Option D:	0.0244
14.	The DIT FFT algorithm divides the sequence into
Option A:	Positive and negative values
Option B:	Even and Odd samples
Option C:	Upper higher and lower spectrum
Option D:	Small and large samples
1.5	
15.	The architecture that employs instruction level parallelism is
Option A:	Von-Neumann architecture
Option B:	Harvard architecture
Option C:	Modified Harvard architecture
Option D:	
16	The normalized transfer function of lownass filter is transformed to highnass filter
10.	with cutoff frequency. Ωc by the transformation
Option A:	$S_n \rightarrow s^* \Omega c$
Option B:	$S_n \rightarrow s/\Omega c$
Option C:	$S_n \rightarrow \Omega c/s$
Option D:	$S_n \rightarrow s^2 \Delta c$
1	
17.	The sign magnitude and twos complement representation of the decimal number
	(-10) is given as andrespectively
Option A:	01010, 10101
Option B:	11010, 10110
Option C:	1010, 0110
Option D:	-1010, -0101
18.	If DFT $\{x(n)\} = X(k)$, then DFT $\{x(n+m)\}$ is
Option A:	$X(k) e^{\frac{-j2\pi km}{N}}$
Option B:	$X(k) e^{\frac{j2\pi km}{N}}$
Option C:	$\frac{j2\pi k}{mN}$
Option D:	$-j2\pi k$
Option D.	$X(k) e^{-mN}$
10	
19.	The location of compulsory zero in a Type II linear phase FIR filter is at
Ontion A:	and in Type IV is at
Option R:	z = -1, z = +1 $z = \pm 1, z = \pm 1$
Option C:	z = +1, $z = -1z = +1$ No compulsory zeros
Option D:	No compulsory zeros $z = \pm 1$
	$\frac{1}{1}$
20.	If an N-point sequence, If N=16, the total number of complex additions and
	multiplications using Direct Computation of DFT are,
Option A:	240,256
Option B:	256,240

Option C:	256,256
Option D:	240,300

Q2	
А	Solve any Two 5 marks each
i.	Identify the type of filter if the pole-zero plot is given as shown. Also draw its
	frequency response and find its transfer function
	Z plane
ii.	A digital filter with a 3 dB bandwidth of 0.4π is to be designed from the analog filter
	whose system response is: $H(s) = \frac{\Omega c}{s + \Omega c}$ Use the bilinear transformation and obtain
	H(z).
iii.	Explain with block diagram application of DSP in RADAR signal processing
В	Solve any One 10 marks each
i.	Design a linear phase FIR Band pass filter to pass frequencies in the range 0.4π to
	0.65π rad/sample by taking N = 7 and using a Hanning window
ii.	Compute DFT of sequence $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$ using DIF-FFT algorithm

Q3.		
А	Solve any Two 5 mark	ks each
i.	Find DFT of $x[n] = \{1,2,3,2\}$ and using these results find DFT of $x[n] = \{1,2,3,2\}$	
	$XI[I] = \{1+j1,2+j2,3+j3,2+j2\}$	
11.	Explain Multiply and accumulate (MAC) unit	
iii.	Specify the characteristics and location of compulsory zeros in Typ Type III and Type IV FIR filters	pe I, Type II,
В	Solve any One 10 mark	s each
i.	Design a linear phase FIR low pass filter with cut off frequency of and order $N = 5$ using frequency sampling method	0.75π rad/sec
ii.	A second order filter $H(z) = \frac{1}{1-0.95z^{-1}+0.225z^{-2}}$. If the register length MSB as sign bit. Find the effect of Quantization (rounding off) locations if the filter is realized using Direct Form II and cascading which case shift from the actual pole location due to quantization is less the noise model for a cascaded structure realization.	h is 4 bits with) on the pole structures. In ss? Also, draw

University of Mumbai Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 7th January 2021 to 20th January 2021 Program: EXTC Curriculum Scheme: Rev2016. Examination: TE Semester V

Course Code: ECCDL05011 and Course Name: MICROELECTRONICS.

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2 Marks each)
1.	For N Channel MOSFET the term $\mu_n C_{OX}$ is known as
Option A:	Process Transconductance
Option B:	Device Transconductance
Option C:	Device Conductance
Option D:	Process Conductance
2.	Condition for MOSFET to work in the deep triode region is
Option A:	V _{DS} =V _{GS}
Option B:	V _{DS} <v<sub>GS</v<sub>
Option C:	$V_{DS} \ge (V_{GS}-V_{TN})$
Option D:	$V_{DS} \ge 2(V_{GS}-V_{TN})$
3.	MOSFET Offers finite output resistance because of
Option A:	Punch through effect
Option B:	Channel length Modulation Effect
Option C:	Body Effect
Option D:	Hot electron effect
4.	MOSFET works as linear resistor in
Option A:	Saturation region
Option B:	Triode region
Option C:	Deep Triode region
Option D:	Breakdown region
5.	In case of full scaling, if Scaling factor S=2 and let P is the power dissipation of
	MOSFET before scaling then after scaling Power dissipation is
Option A:	P
Option B:	P/2
Option C:	P/4
Option D:	P/8
6.	Polysilicon is used for gate in MOSFET because
Option A:	It is semi metal
Option B:	It has lattice matching with silicon
Option C:	It is easy to fabricate
- r · · · ·	

7. As per λ based design rule the minimum spacing between two adjacent contact cut is Option A: 1 λ Option B: 2 λ Option D: 4 λ 8. In Cascode current source the output resistance is approximately given as Option D: $g_m \tau_0$ Option A: $[ref=216$ Option B: $10-21ref^2$ Option A: $10-21ref^2$ Option A: 200 Option A: 200 Option A: 200 Option B: 100 Option B: 100 Option B: 100 Option C: 50 Option B: 20 Option A: 10 Option B: 20 Option B: 20 Option B:	Option D:	Its cost is less.
7. As per λ based design rule the minimum spacing between two adjacent contact cut is Option A: 1 λ Option D: 3 λ Option D: λ R In Cascode current source the output resistance is approximately given as Option B: $g_m f_0$ Option C: t_0^2 Option C: $g_m f_0$ Option C: $g_m f_0^2$ Option D: f_0^2 Option D: f_0^2 Option B: f_0^2 Option D: f_0^2 Option D: f_0^2 Option B: f_0^2 Option A: f_0^2 Option A: f_0^2 Option D: 300 Option D: 300 Option D: 300 Option D: 300 Option B: f_0^2 Option B: 0 Opti		
is is Option A: 1λ Option B: 2λ Option D: 4λ 8. In Cascode current source the output resistance is approximately given as Option A: $g_m T_n$ Option C: r_0^3 Option D: $g_m T_n$ Option C: r_0^3 Option C: r_0^3 Option D: $g_m T_n$ Option C: r_0^3 Option C: r_0^3 Option A: Oorterf/2 Option B: Iref=210 Option C: Io=21ref Option C: Io=21ref Option A: 200 Option A: 200 Option A: 200 Option B: 100 Option C: 30 Option A: 200 Option B: 100 Option C: 30 Option A: 10 Option B: 10 Option B: 20 Option B: 10 Option C: 30 Option B:	7.	As per λ based design rule the minimum spacing between two adjacent contact cut
Option A: 1Å Option B: 2Å Option D: 4Å B: In Cascode current source the output resistance is approximately given as Option A: $g_{m}\tau_{0}$ Option D: $g_{m}\tau_{0}$ Option A: lo=Tref/2 Option D: lo=31ref Option D: lo=31ref Option A: 200 Option A: 200 Option C: 50 Option C: 50 Option A: 200 Option B: 100 Option C: 50 Option C: 50 Option A: 20 Option B: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is on $1m_4v^2_4(W/L)=20_0verdrive voltage is 1v_1 \lambda=0 and R_L=10K_1, then its voltage gain is. Option A: 10 Option B: 20 Option B: 20 Option C: 30$		is
Option B: 2A Option C: 3λ Option D: 4λ 8. In Cascode current source the output resistance is approximately given as Option B: $gm_{T_0}^*$ Option D: $Io=Iref/2$ Option D: $Io=Iref/2$ Option A: IoO Option A: 200 Option B: IoO Option B: IoO Option B: IOO Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2, (WL)=20.0verdrive voltage is 1V, \lambda=0 and RL=10K, then its voltage gain is. Option B: 00 Option A: 10 Option A: 10 Option C: 30 Option A: 10 Option A: 10 $	Option A:	1λ
Option C: 3λ Option D: 4λ 8. In Cascode current source the output resistance is approximately given as Option B: $g_m^2 T_0$ Option D: r_0^2 Option D: $g_m^2 T_0$ Option D: $g_m^2 T_0$ Option D: $g_m^2 T_0$ Option A: Io=Tret/2 Option A: Io=Tret/2 Option D: Io=31ref Option D: Io=31ref I0. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option C: 50 Option D: 300 I1. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ³ .(W/L)=20.Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option B: 20 Option C: 30 Option B: 20 Option B: Breakdown Option A: (Questration 12. MOSFET works as an Amplifier inRegion. Option B: Breakdown Option C: Triode Option D: Sa	Option B:	2λ
Option D: 4λ 8. In Cascode current source the output resistance is approximately given as Option B: $g_m f_o$ Option C: r_o^2 Option D: $g_m f_o$ Option A: $g_m f_o^2$ P In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref.then Option B: Iref=210 Option B: Iref=210 Option C: Io=21ref Option A: 200 Option A: 200 Option A: 200 Option B: 100. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option B: 100 Option C: 50 Option C: 50 Option C: 300 I1. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option B: 20 Option C: 30 Option D: 40 12. MOSFET works as an Amplifier in	Option C:	3λ
8. In Cascode current source the output resistance is approximately given as Option A: $g_m r_0$ Option D: $g_m r_0^2$ Option D: $g_m r_0^2$ 9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Tref/2 Option D: Iref=2Io Option D: Iref=2Io Option D: Io=3Iref 0 For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option C: 50 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1mav ³ (W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B: 20 Option C: 30 Option B: Breakdown Option C: Triode O	Option D:	4λ
8. In Cascode current source the output resistance is approximately given as Option A: $g_{m_0}^{-1}_0$ Option D: $g_{m_0}^{-1}_0$ Option D: $g_{m_0}^{-1}_0$ Option D: $g_{m_0}^{-1}_0$ Option A: lo=Iref/2 Option B: Iref=2lo Option C: lo=21ref Option B: Io=21ref Option B: 100 Option C: 50 Option B: 100 Option A: 10 Option A: 10 Option A: 10 Option A: 10 Option B: 0 Option B: 0 Option B: 10 Option C: 30 Option B: 10 Option B: 10 Option B: 10 Option B: 10 Opt	•	
Option A: $g_m r_0$ Option B: $g_m^3 r_0$ Option D: $g_m r_0^2$ Option D: $g_m r_0^2$ Option A: $10-\text{Iref}/2$ Option A: $10-\text{Iref}/2$ Option B: $1ref=210$ Option C: $10-2\text{Iref}$ Option D: $10-3\text{Iref}$ IO.For a MOSFET VGS-2V,VTN-1V,ID-1Milliampere and λ -0.01v^-1,then its IntrinsicOption A: 200 Option B: 100 Option B: 100 Option B: 100 Option B: 100 Option C: 50 Option B: 100 Option C: 50 Option B: 100 Option B: 100 Option B: 100 Option B: 200 Option B: 200 Option B: 200 Option D: 400 12.MOSFET works as an Amplifier inRegion.Option B: 200 Option B: 300 12.MOSFET works as an Amplifier inRegion.Option B: 300 Option B: 300 13.The voltage gain of double Cascode Amplifier is.Option A: $(g_m t_0^2)^2$ Option B: $(g_m t_0^2)^4$ Option B: $(g_m t_0^2)^4$ Option D: $(g_m t_0^2)^4$ Option D: $(g_m t_0^2)^4$ Option B: $(g_m t_0^$	8.	In Cascode current source the output resistance is approximately given as
Option B: $g_{m}^{2} T_{o}$ Option C: r_{c}^{2} Option D: $g_{m} T_{o}^{2}$ 9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Iref/2 Option B: Iref=2lo Option D: Io=21ref Option D: Io=31ref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option A: 200 Option B: 100 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B: 20 Option A: 10 Option B: 10 Option B: 10 Option B: 10	Option A:	$g_{m}r_{0}$
Option C: r_o^2 Option D: $g_m r_o^2$ 9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Iref/2 Option D: Io=Ziref Option D: Io=3iref 7 For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is 70 For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is 70 For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is 710 For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is 711 In a CS Amplifier with Passive load for MOSFET Process Transconductance is 711. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 711. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 711. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 711. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 711. In a CS Amplifier in	Option B:	$g_m^2 r_0$
Option D: gmr_o^2 9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Iref/2 Option B: Iref=2Io Option D: Io=3Iref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option C: 50 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option A: 10 Option C: 30 Option B: 20 Option A: 10 Option A: 10 Option B: 20 Option B: 20 Option C: 30 12. MOSFET works as an Amplifier in	Option C:	r_0^2
9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Iref/2 Option B: Iref=2Io Option D: Io=3Iref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B: 20 Option B: 20 Option C: 30 Option C: 30 Option C: 40 12. MOSFET works as an Amplifier inRegion. Option B: Breakdown Option A: Cut-off Option B: Breakdown Option D: Saturation 13. The voltage gain of double Cascode Amplifier is. Option B: (gmto) ² Option C: (gmto) ³ Option C: (gmto) ³ Option C: (gmto) ⁴ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: -gmZL/2	Option D:	$g_{\rm m} r_0^2$
9. In Current Mirror circuit if 2 (W/L)o/p=(W/L)ref,then Option A: Io=Iref/2 Option B: Iref=2Io Option D: Io=3Iref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option B: 100 Option D: 300 Option D: 300 Option A: 10 Option A: 10 Option A: 10 Option A: 10 Option A: 10 Option B: 20 Option D: 30 Option C: 30 Option D: 40 12. MOSFET works as an Amplifier inRegion. Option B: Breakdown Option B: Breakdown Option B: Breakdown Option C: Triode Option A: $g_m r_o$ Option A: $g_m r_o$ Option A: $g_m r_o$ Option A: $g_m r_o$ Option B: $(g_m r_o)^3$ Option C: Triode Option B: $(g_m r_o)^3$ Option C: $(g_m r_o)^3$ Option C: $(g_m r_o)^3$ Option C: $(g_m r_o)^3$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^3$	option D1	
Option A:Io=Tet/2Option A:Io=Tet/2Option B:Iref=2IoOption D:Io=3Iref10.For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is00Option A:200Option B:100Option D:3000Option D:30011.In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is.Option A:10Option D:300Quiton D:11.In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is.Option A:10Option D:4012.MOSFET works as an Amplifier inRegion.Option D:4013.The voltage gain of double Cascode Amplifier is.Option D:Saturation13.The voltage gain of double Cascode Amplifier is.Option B:(gmfo) ³ Option D:(gmfo) ⁴ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A:-14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A:-2m.Option B:149min B:-9min B:-9min B:-9min B:-9min B	9	In Current Mirror circuit if 2 (W/L) $o/p=(W/L)$ ref then
Option B:Iref=2IoOption D:Io=2IrefOption D:Io=3Iref10.For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain isOption A:200Option A:200Option D:100Option D:30011.In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is.Option A:10Option B:20Option C:30Option D:20Option D:4012.MOSFET works as an Amplifier inRegion.Option B:BreakdownOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A:(gmfo) ² Option B:(gmfo) ² Option C:(gmfo) ² Option B:(gmfo) ² Option B:Gmfo) ² 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A:-gmZLOption A:-gmZL/2	Option A:	Io=Iref/2
Option C: Io=21ref Option D: Io=31ref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option A: 10 Option C: 30 Option B: 20 Option A: 10 Option C: 30 Option B: 20 Option D: 30 Option B: 20 Option B: 20 Option D: 40 12. MOSFET works as an Amplifier inRegion. Option B: Breakdown Option C: Triode Option D: Saturation 13. The voltage gain of double Cascode Amplifier is. Option A: (gmfro) ² Option B: (gmfro) ² Option B: (gmfro) ² Option A: (gmfro) ² Option D: (gmf	Option B:	Iref=2Io
Option D: 10 = 31ref 10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option D: 100 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² .(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B 20 Option D: 300 Image: Second Seco	Option C:	Io=2Iref
10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is 0ption A: 200 Option B: 100 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B 20 Option B: 20 Option C: 30 Option B: 20 Option C: 30 Option B: 20 Option C: 30 Option B: 40 12. MOSFET works as an Amplifier in	Option D:	Io=3Iref
10. For a MOSFET VGS=2V,VTN=1V,ID=1Milliampere and λ =0.01v^-1,then its Intrinsic gain is Option A: 200 Option B: 100 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v ² ,(WL)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B 20 Option B 20 Option C: 30 Option B: 20 Option B 20 Option B 20 Option B: 20 Option B: 20 Option B: 40	option Di	
10.gain isOption A:200Option B:100Option C:50Option D:30011.In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2, (W/L)=20, Overdrive voltage is 1V, \lambda=0 and RL=10K, then its voltage gain is.Option A:10Option B20Option C:30Option B20Option B:20Option C:30Option B:20Option C:30Option B:20Option C:30Option B:EreakdownOption B:BreakdownOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A:(g_m r_0)^2Option D:(g_m r_0)^3Option D:(g_m r_0)^4Image and the parameter of the par$	10	For a MOSFET VGS=2V.VTN=1V.ID=1Milliampere and λ =0.01v^-1.then its Intrinsic
Option A:200Option B:100Option C:50Option D:30011.In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is.Option A:10Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $(g_m r_0)^2$ Option D: $(g_m r_0)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L$	10.	gain is
Option B:100Option C:50Option D:30011.In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$,(W/L)=20,Overdrive voltage is $1V, \lambda=0$ and RL=10K,then its voltage gain is.Option A:10Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option B: $(g_m r_o)^2$ Option D: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option A:	200
Option C: 50 Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$, (W/L)=20, Overdrive voltage is $1V, \lambda=0$ and RL=10K, then its voltage gain is. Option A: 10 Option B 20 Option D: 300 12. MOSFET works as an Amplifier inRegion. Option B: Breakdown Option C: Triode Option D: Saturation 13. The voltage gain of double Cascode Amplifier is. Option A: $(g_m r_0)^2$ Option C: $(g_m r_0)^3$ Option D: (g_m r_0^3) Option D: For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: $-g_m Z_L$ Option B: $-g_m Z_L$	Option B:	100
Option D: 300 11. In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is. Option A: 10 Option B 20 Option D: 300 Option B: 20 Option C: 30 Option D: 40 12. MOSFET works as an Amplifier inRegion. Option A: Cut-off Option B: Breakdown Option C: Triode Option A: gmfo Option A: gmfo Option B: (gmro) ³ Option C: (gmro) ⁴ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: gmZL Option B: gmZL/2	Option C:	50
11.In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$, (W/L)=20, Overdrive voltage is $1V$, $\lambda=0$ and RL=10K, then its voltage gain is.Option A:10Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option B:(gmfro) ² Option C:(gmfro) ² Option D:(gmfro) ³ Option D:(gmfro) ³ Option D:For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A:	Option D:	300
11.In a CS Amplifier with Passive load for MOSFET Process Transconductance is $0.1ma/v^2$, $(W/L)=20$, Overdrive voltage is $1V$, $\lambda=0$ and $RL=10K$, then its voltage gain is.Option A:10Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $(g_m r_0)^2$ Option C: $(g_m r_0)^3$ Option D: $(g_m r_0)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$		
Option A:10Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^4$ I14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L/2$	11.	In a CS Amplifier with Passive load for MOSFET Process Transconductance is 0.1ma/v^2 ,(W/L)=20,Overdrive voltage is 1V, λ =0 and RL=10K,then its voltage gain is.
Option B20Option C:30Option D:4012.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $(g_m r_o)^2$ Option B: $(g_m r_o)^3$ Option C: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption B: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option A:	10
Option C: 30 Option D: 40 12.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $(g_m r_o)^2$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^2$ Option D: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption B: $-g_m Z_L$ Option B: $-g_m Z_L$	Option B	20
Option D:4012.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_0$ Option B: $(g_m r_0)^2$ Option C: $(g_m r_0)^3$ Option D: $(g_m r_0)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption B: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option C:	30
Image: style	Option D:	40
12.MOSFET works as an Amplifier inRegion.Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$		
Option A:Cut-offOption B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^4$ Implies the second output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	12.	MOSFET works as an Amplifier inRegion.
Option B:BreakdownOption C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option A:	Cut-off
Option C:TriodeOption D:Saturation13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option B:	Breakdown
Option D: Saturation 13. The voltage gain of double Cascode Amplifier is. Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^4$ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option C:	Triode
13.The voltage gain of double Cascode Amplifier is.Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^4$ 14.For a Dual input Balanced output differential amplifier, differential mode voltage gain is given asOption A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option D:	Saturation
13. The voltage gain of double Cascode Amplifier is. Option A: $g_m r_o$ Option B: $(g_m r_o)^2$ Option C: $(g_m r_o)^3$ Option D: $(g_m r_o)^4$ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: $-g_m Z_L$ Option B: $-g_m Z_L/2$		
$\begin{array}{c c} Option A: & g_m r_o \\ \hline Option B: & (g_m r_o)^2 \\ \hline Option C: & (g_m r_o)^3 \\ \hline Option D: & (g_m r_o)^4 \\ \hline & & \\ \hline 14. & For a Dual input Balanced output differential amplifier, differential mode voltage \\ & gain is given as \ \\ \hline Option A: & -g_m Z_L \\ \hline Option B: & -g_m Z_L/2 \\ \hline \end{array}$	13.	The voltage gain of double Cascode Amplifier is.
$\begin{array}{c c} \hline Option B: & (g_m r_o)^2 \\ \hline Option C: & (g_m r_o)^3 \\ \hline Option D: & (g_m r_o)^4 \\ \hline & & \\ \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \hline$	Option A:	gmro
Option C: $(g_m r_0)^3$ Option D: $(g_m r_0)^4$ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option B:	$(g_m r_0)^2$
Option D: $(g_m r_o)^4$ 14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: $-g_m Z_L$ Option B: $-g_m Z_L/2$	Option C:	$(g_m r_0)^3$
14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: -g _m Z _L Option B: -g _m Z _L /2	Option D:	$(g_m r_o)^4$
14. For a Dual input Balanced output differential amplifier, differential mode voltage gain is given as Option A: -gmZL Option B: -gmZL/2		
$\begin{array}{c} gain is given as \\\ \hline Option A: -g_m Z_L\\ \hline Option B: -g_m Z_L/2 \end{array}$	14.	For a Dual input Balanced output differential amplifier, differential mode voltage
Option A: $-g_m Z_L$ Option B: $-g_m Z_L/2$		gain is given as
Option B: $-g_m Z_L/2$	Option A:	-g _m Z _L
	Option B:	$-g_m Z_L/2$

Option C:	$-g_m^2 Z_L$
Option D:	$-g_m^2 Z_I/2$
1	
15.	Dual power supply biasing is used in differential amplifier for
Option A:	To improve voltage gain.
Option B:	To improve Bandwidth
Option C:	To improve input impedance
Option D:	To avoid coupling capacitors.
16.	For a differential amplifier $A_d=100$, $A_{CM}=10$, then CMRR in Decibel is
Option A:	10
Option B:	20
Option C:	30
Option D:	40
17.	In class D power amplifier the MOS transistor operates
Option A:	Triode region
Option B:	Saturation Region
Option C:	Acts as switch
Option D:	Breakdown region
18.	In power amplifier circuit the use of RFC is
Option A:	Impedance matching
Option B:	Providing isolation between DC & AC
Option C:	Boosting of power gain
Option D:	Reducing the voltage swing
19.	A reverse bias P-N junction behaves like a
Option A:	Variable Inductor
Option B:	Variable capacitor
Option C:	Rectifier
Option D:	Clipper
20.	To fabricate Inductor inside the IC we use
Option A:	Plastic spiral wire
Option B:	Polysilicon spiral wire
Option C:	Silicon spiral wire
Option D:	Metal spiral wire

Q2 (20 Marks)	Solve any Two Questions out of Three 10 marks each
А	What do you mean by Short Channel MOSFET, explain various Short channel effects in MOSFET.

	For the circuit shown V ⁺ =10V.Transistors parameters are V _{TN} =2V, $\mu_n C_{OX}=40\mu A/V^2$ and $\lambda=0$. Design the circuit such that I _{REF} =0.5Ma,I _O =0.2Ma and M ₂ remains biased in seturation ratio for V ₂ > 1V/
В	and M_2 remains blased in saturation region for $V_{DS} \ge 1V$.
С	Draw the circuit diagram of a common source amplifier with NMOS diode connected load. Derive the expression for voltage gain and output voltage swing

Q3.	Solve any Two Questions out of Three10 marks each
(20 Marks)	
А	$V^{+} = 10 V$ $I_{D1} \downarrow R_{D} I_{D2} \downarrow R_{D} I_{1} \downarrow R_{1}$ $I_{Q} \downarrow I_{Q} \downarrow I_{Q} \downarrow I_{Q} \downarrow I_{Q} \downarrow$ $V^{-} = -10 V$ In the given circuit for the MOSFET M ₁ and M ₂ V _{TN} =1V,K _N =0.1Ma/V ² , \lambda=0.For M ₃ and M ₄ V _{TN} =1V,K _N =0.3Ma/V ² , \lambda=0.01V ⁻¹ . Determine value of I ₀ .A _d .A _{CM} .and CMRR.If R _D =25K\Omega.R ₁ =30K\Omega.
В	Draw and Explain the working of Class B Power amplifiers using MOSFET and derive the expression for power efficiency.
С	Write the short notes on1) Fabrication of Inductor2) Fabrication of capacitor.

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester: V

Course Code: ECCDLO5012 and Course Name: TV & Video Engineering

Time: 2-hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following blocks convert all the picture information into an equivalent
	electrical signal?
Option A:	RF tuner
Option B:	Common IF amplifier
Option C:	Television camera
Option D:	Video detector
2.	In the Television system, which of the following is not a complementary colour?
Option A:	Cyan
Option B:	Magenta
Option C:	Green
Option D:	Magenta
3.	If there are 625 lines per TV picture, then lines per field are
Option A:	1250
Option B:	625
Option C:	312.5
Option D:	2500
4.	Which of the following is not true about the colour circle?
Option A:	A primary and its complement can be considered as opposite to each other and hence the colour difference signals turn out to be of opposite polarities.
Option B:	The 3 primary colours R, G and B are represented by three radial vectors that are
Ĩ	120 degree phase shifted with respect to each other.
Option C:	The degree of saturation of a colour increases as we move along its vector from the
_	center to the circumference of the colour wheel.
Option D:	Hue of a colour is represented by the length of the phasor
5.	Steps of Video compression based on Motion Compensation are in the following order:
Option A:	Motion Compensation based prediction, derivation of prediction error and Motion
	Estimation
Option B:	Motion Estimation, Motion Compensation based prediction and derivation of

Motion Compensation based prediction, Motion Estimation and derivation of

prediction error

prediction error

Option C:

Option D:	Derivation of prediction error, Motion Compensation based prediction and Motion Estimation
6.	Chromecast devices do not haveconnectivity option.
Option A:	HDMI
Option B:	Wi-Fi
Option C:	Ethernet
Option D:	RCA
7.	In DVB standard, the word DVB Stands for
Option A:	Direct Video Broadcasting
Option B:	Digital Video Broadcasting
Option C:	Digital Via Broadcasting
Option D:	Direct Via Broadcasting
option 21	
8.	Select the correct value of scanning frequency for luminance and for chrominance
Outing As	signal in MAC encoding.
Option A:	24 MHz for luminance and 13.5 MHz for chrominance
Option B:	13.5 MHz for luminance and 6.75MHz for chrominance
Option C:	12.5 MHz for luminance and 24.5 MHz for chrominance
Option D:	6.75 MHz for luminance and 4.7 MHz for chrominance
9	What is the value of the Colour Subcarrier frequency of NTSC TV system?
Ontion A:	3 58 MHz
Option R:	4 43 MHz
Option C:	5.5 MHz
Option D:	2.5 MHz
10.	How much is the active scan line period in TV?
Option A:	52 usec
Option B:	32 usec
Option C:	64 usec
Option D:	16 usec
11.	Interlace scanning is used in televisions to avoid problem of
Option A:	Ghost image
Option B:	Flicker
Option C:	Multipath interference
Option D:	Propagation delay
•	
12.	Which of the following is a technological convergence of computers, television
Ontion A:	Sets and set-top boxes?
Option A:	
Option B:	
Option C:	Smart I V
Option D:	

13.	The amount of light intensity as perceived by the eye regardless of the colour is
	termed as
Option A:	Hue
Option B:	Colour burst
Option C:	Saturation
Option D:	Luminance
14.	Which of the following is not a characteristic of the PAL television system?
Option A:	The weighted $(B - Y)$ and $(R - Y)$ signals are modulated without being given a phase shift of 33°.
Option B:	On modulation both the colour difference quadrature signals are allowed the same bandwidth of about 1.3 MHz
Option C:	PAL television systems are susceptible to differential phase error.
Option D:	phase of the subcarrier to one of the modulators is reversed from $+90^{\circ}$ to -90° at the line frequency.
15.	DVB-S standard only specifies physical link characteristics and framing butis used as the transport stream for it.
Option A:	MPEG-4
Option B:	MPEG – 3
Option C:	MPEG – 2
Option D:	MPEG – 1
16.	In the 1250 line HDTV standard, the number of active lines are
Option A:	1152
Option B:	1035
Option C:	1250
Option D:	1050
17.	Which of the following statements is not correct with respect to IPTV?
Option A:	It can support live television, time shifted TV, video on demand.
Option B:	IPTV can offer more channels than conventional TV systems.
Option C:	It reduces the bandwidth of the system.
Option D:	IPTV services can use wireless home networking technology.
18.	Which of the following DVB systems sends data in physical layer pipes?
Option A:	DVB-T
Option B:	DVB-T2
Option C:	DVB –H
Option D:	DVB-S
10	Which of the following standards is also called as MDEC part10. A dyance Video
19.	Coding?
Option A:	H.264
Option B:	H.265
Option C:	H.262
Option D:	H.263
20.	With reference to digital video, which of the following statements is incorrect?

Option A:	Line rate is simply the frame rate multiplied by the number of lines per total frame.
Option B:	Refresh rate is generally engineered into a system. Once chosen, it cannot easily be changed.
Option C:	In a bright environment such as an office, a refresh rate above 70 Hz might be required.
Option D:	In a dim viewing environment typical of television viewing, such as a living room, a flash rate of 200 Hz is sufficient.

Option 3

Q2		
(20 Marks)		
А	Solve any Two5 marks	each
i.	Explain the terms Hue, Saturation and Luminance related to colour TV	
	system.	
ii.	What is MAC signal? What are its advantages?	
iii.	Write a short note on Chromecast.	
В	Solve any One 10 marks e	ach
i.	Draw composite video signal for 3 scanning line sequence and explain	
	various components in it.	
ii.	With the help of neat diagram explain MPEG-2 principle for image	
	compression. Also state its features and applications.	

Q3. (20 Marks)	
A	Solve any Two 5 marks each
i.	Compare NTSC and PAL television systems.(At least 5 points of comparison)
ii.	Draw the block diagram of monochrome TV transmitter and explain its working.
iii.	Explain the following terms related to digital video:1) Pixel Array2) Frame Rate and Refresh Rate
В	Solve any One 10 marks each
i.	Explain satellite television with respect to block diagram, basic operation, frequency allocation, advantages and limitations.
ii.	Explain IPTV with respect to architecture, internet protocols used, advantages and limitations.

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2016

Examination: TE, Semester: V

Course Code: ECCDLO 5013 and Course Name: Elective I: Finite Automata Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	A switching function F can be decomposed into two threshold elements F_1 and F_2 . The function F can be implemented using
Option A:	2 threshold elements interconnected to perform AND operation
Option B:	2 threshold elements interconnected to perform NAND operation
Option C:	2 threshold elements interconnected to perform OR operation
Option D:	2 threshold elements interconnected to perform NOR operation
2.	How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count after the count 1001100111
Option A:	4
Option B:	5
Option C:	6
Option D:	9
3.	The race in which stable state depends on order is called
Option A:	Critical race
Option B:	Identical race
Option C:	Non critical race
Option D:	Defined race
4.	The table having one state in each row is called
Option A:	Transition table
Option B:	State table
Option C:	Flow table
Option D:	Primitive flow table
5.	Conditional box has a shape of
Option A:	Square
Option B:	Rectangle
Option C:	Oval
Option D:	Pentagon

6.	How many number of prime implicants are there in the expression $F(x, y, z) = y'z'$
Ontion A:	+ xy + xz
Option R:	19
Option C:	3
Option D:	53
option D.	
7.	In digital circuits permanent faults may arises due to
Option A:	Noise
Option B:	Non ideal transient behaviour of components
Option C:	Failure of component
Option D:	Propagation time
^	
8.	A threshold function
Option A:	May be a unate function
Option B:	is not a unate function
Option C:	Is always a unate function
Option D:	may or may not be unate function
9.	An AB flip-flop is constructed from an SR flip-flop. The expression for next
	Q(n+1) state is
Option A:	$\overline{AB} + AO$
Option B:	$\overline{AB} + \overline{BQ}$
Option C [.]	Both A and B
Option D:	A+B
option D.	
10.	Race condition is present in
Option A:	synchronous logic circuit
Option B:	asynchronous logic circuit
Option C:	ideal logic circuit
Option D:	Combinational logic circuit
^	
11.	An implicant that is not a proper subset of any other implicant i.e. it is not
	completely covered by any single implicant, is called
Option A:	Intersection set
Option B:	Essential prime implicant
Option C:	Prime implicant
Option D:	Union set
12.	The shaded area of the figure is best described by?

Option A:	A' (Complement of A)
Option B:	AUB-B
Option C:	A ∩ B
Option D:	B'(complement of B)
13.	The T-gate shown below represents F=
	A 2 / \ >
	[]
Option A:	AB
Option B:	AB
Option C:	AB
Option D:	$\overline{A}\overline{B}$
14.	The binary relation $\{(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)\}$ on the set $\{1, 2, is$
Option A:	reflective, symmetric and transitive
Option B:	irreflexive, symmetric and transitive
Option C:	neither reflective, nor irreflexive but transitive
Option D:	irreflexive and antisymmetric
15.	Suppose a relation $R = \{(3, 3), (5, 5), (5, 3), (5, 5), (6, 6)\}$ on $S = \{3, 5, 6\}$. Here
	R is known as
Option A:	equivalence relation
Option B:	reflexive relation
Option C:	symmetric relation
Option D:	
16	In system engineering which of the following methods bridges the gap between the
10.	two ends of system development?
Option A:	ASM method
Option B:	VSM method
Option C:	Factor method
Option D:	FSM method
17.	According to Moore circuit, the output of synchronous sequential circuit depend/s
	on of flip flop
Option A:	Past state
Option B:	Present state
Option C:	Nest state
Option D:	External inputs
18.	How many binary relations are there on a set S with 9 distinct elements?
Option A:	2%
Option B:	
Option C:	2°
Option D:	200

19.	Simplify the expression using K-maps: $F(A,B,C) = \pi(0,2,4,5,7)$.
Option A:	(x+y)(y+z)(x+z)(x'+z')
Option B:	(x+z')(y+z)(x+y)
Option C:	(x+y'+z)(x+z')
Option D:	(y'+z')(x'+y)(z+y')
20.	In dynamic hazards multiple output transition can occur if
Option A:	Circuit have single path with different delay
Option B:	Circuit have multiple path with different delay
Option C:	Circuit have multiple path with single delay
Option D:	Circuit have single path with single delay

Q2.	Solve any Two Questions out of Three	10 marks each
А	Design a 3 bit counter which counts in the following seq flop. $0-1-3-4-5-7-0$ etc.	uence using T flip
В	Find the fault table for all stuck-at faults of the following citest generation using exclusive or method x_1 x_2 x_3 3 $f = x_1 x_2 + x_3$	ircuit. And prepare
С	The set {a,b,c,d,e,f,g,h,i,j,k} has the partitions $\pi_{1} = \{\underline{a, b, c}; \underline{d, e}; \underline{f}; \underline{g, h, i}; \underline{j, k}\}$ $\pi_{2} = \{\underline{a, b}; \underline{c, g, h}; \underline{d, e, f}; \underline{i, j, k}\}$ $\pi_{3} = \{\underline{a, b, c, f}; \underline{d, e, g, h}, \underline{i, j, k}\}$ i) Find $\pi_{1} + \pi_{2}$ and $\pi_{1} \cdot \pi_{2}$ ii) Find $\pi_{1} + \pi_{3}$ and $\pi_{1} \cdot \pi_{3}$ iii) Find a partition that is greater than π_{1} and small	ller than π_3 .

Q3.	Solve any	Two Questions or	ut of Three 10 m	arks each	
А	Explain dis	Explain distinguishing and synchronizing sequence techniques.			
	Find the h machine.	oming sequence a	and synchronizing	g sequence for the	e following
		Present State	Next S	State, Z	
р			X=0	X=1	
D		А	B,0	D,0	
		В	A,0	B,0	
		С	D,1	A,0	
		D	D,1	C,0	
G	Realize the	Boolean function	using Threshold	gate	
C	$f(w, x, y, z) = \sum m(0, 1, 4, 5, 8, 9, 11, 13)$				

Examination 2020

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: BE ELECTRONICS & TELECOMMUNICATION ENGINEERING

Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: ECCDLO5014 and Course Name: DATA COMPRESSION & ENCRYPTION Time: 2 hour Max. Marks: 80 _____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	AES has different configurations.
Option A:	Two
Option B:	Three
Option C:	Four
Option D:	Five
•	
2.	SHA-1 produces a hash value of
Option A:	256 bits
Option B:	160 bits
Option C:	180 bits
Option D:	128 bits
3.	Use Caesar's Cipher to decipher the following:
	HQFUBSWHG WHAW
Option A:	ABANDONED TEXT
Option B:	ENCRYPTED LOCK
Option C:	ABANDONED LOCK
Option D:	ENCRYPTED TEXT
4.	Moving Picture Experts Group (MPEG-2), was designed for high-quality DVD
	with a data rate of
Option A:	3 to 6 Mbps
Option B:	4 to 6 Mbps
Option C:	5 to 6 Mbps
Option D:	6 to 8 Mbps
~	
5.	Steps in jpeg are in following order
Option A:	DCT, quantization, data compression
Option B:	DCT, data compression, quantization
Option C:	quantization, DCT, data compression
Option D:	data compression ,DCT, quantization
6	Le Hafferen et die alste in a traditione de comp
0.	In Human coding, data in a tree always occurs?
Option A:	
Option B:	Leaves
Option C:	Utilitate the tree
Option D:	right sub tree

7.	SET stands for
Option A:	Secure email transaction
Option B:	Secure electronic transmission
Option C:	Safe email transaction
Option D:	Secure electronic transaction
8.	Which protocol is used to convey SSL related alerts to the peer entity?
Option A:	Alert Protocol
Option B:	Handshake Protocol
Option C:	Upper-Layer Protocol
Option D:	Change Cipher Spec Protocol
9.	What is the key size allowed in PGP?
Option A:	1024-1056
Option B:	1024-4056
Option C:	1024-4096
Option D:	1024-2048
10.	Prob a1= 0.2, prob a2=0.2, prob a3=0.25, prob a4=0.05, prob a5=0.15, prob
	a6=0.15. Find entropy.
Option A:	3
Option B:	3.25
Option C:	2
Option D:	2.25
11	
	Compression ratio is
Option A:	Uncompressed size /compressed size
Option B:	compressed size/ Uncompressed size
Option C:	compression gain/compression factor
Option D:	compression factor/ compression gain
12	encoding is based on the spinner of neuchoscoupting which is the study
12.	encouning is based on the science of psychoacoustics, which is the study
Option A:	Dradictive
Option R:	Percentual
Option C:	Huffman coding
Option D:	Arithmetic coding
Option D.	Anumene counting
13	An asymmetric key ciphers uses
$\frac{13.}{\text{Option } \Delta}$	1 key
Option R:	2 key
Option C:	2 key
Option D:	A key
Option D.	
14	audio/video refers to on-demand requests for compressed audio/video
17.	files
Option A.	Streaming live
Option B:	
	Streaming stored
Option C:	Interactive

Option D:	Streaming stored and Interactive
15.	A video consists of a sequence of
Option A:	Slots
Option B:	Signals
Option C:	Packets
Option D:	Frames
16.	The basic processing unit of H.261 design is called a
Option A:	Block
Option B:	Megablock
Option C:	Macroblock
Option D:	Microblock
17.	There are types of redundancies in an audio file.
Option A:	5
Option B:	4
Option C:	3
Option D:	2
18.	Human ears can hear sound waves when the frequency lies between
Option A:	2Hz to 20kHz
Option B:	20Hz to 2MHz
Option C:	20Hz to 20KHz
Option D:	0.2Hz to 2KHz
19.	SHA has rounds.
Option A:	18
Option B:	14
Option C:	20
Option D:	22
20.	Choosing a discrete value that is near but not exactly at the analog signal level leads
	to
Option A:	PCM error
Option B:	Quantization error
Option C:	PAM error
Option D:	PWM error

Q2		
А	Attempt any 2	05 marks each
i	Explain JPEG- LS standard.	
ii	Explain in brief a network based intrusion detection system	n.
iii	Write a short note on secure/multiple internet mail extension	on
В	Attempt Any 1	10 marks each

i	Encrypt the plain text 15 using the RSA algorithm which uses prime numbers $p=7$ and $q=11$. The public key $e =13$. Verify that the decrypted text is the same as plain text.
ii	Explain the working of Data Encryption Standard with the help of a block diagram.

Q3		
A	Attempt any 2 05 marks each	
i	Explain the different security goals.	
ii	Illustrate the worst case scenario in LZ-77 dictionary compression techniqu	le.
iii	Explain Fermat's Little theorem and Euler theorem with an example.	
В	Attempt any 1 10 marks each	h
i	A source $A = \{a, b, c, d\}$ has probabilities (0.7, 0.15,0.1, 0.05) respectivel Generate a tag for the sequence {abcda} using arithmetic code.	y.
ii	Explain LZ-77 approach of data compression with an example and expla the problem with LZ77 technique.	in