Examination 2021 under cluster __ (**Lead College:** _)

Examinations Commencing from 10th April to 17th April 2021

Program: Computer Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics III

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace Transform of $e^{2t}cos2t$ is
Option A:	s-2
	$\frac{\overline{s^2 - 2s + 8}}{s + 2}$
Option B:	
	$\frac{s^2 - 2s + 8}{s - 2}$
Option C:	
	$\frac{s^2 + 2s + 8}{s - 2}$
Option D:	
	$s^2 + 2s + 4$
2.	If $f(x) = \frac{1}{2}(\pi - x)$, $0 < x < 2\pi$ then a_0 is
Option A:	2
1	$\frac{1}{\pi}$
Option B:	0
Option C:	$\frac{\pi}{-}$
	$\frac{\overline{2}}{\sqrt{2}}$
Option D:	
	$\frac{\pi}{\pi}$
3.	If $f(z) = u + iv$ is analytic then
Option A:	u is harmonic but v may or may not be harmonic.
Option B:	v is harmonic but u may or may not be harmonic.
Option C:	u and v both need not be harmonic.
Option D:	u and v both are harmonic.
4.	If $Var(X) = 4$ then $Var(3x+4)$ is
Option A:	12
Option B:	20
Option C: Option D:	26
Option D:	36
5.	If $f(x)$ is an even function in the interval $(-l, l)$ then the Fourier coefficients are

Option A:	$a_n = 0, b_n = 0.$
Option B:	$a_n = 0, a_0 = 0.$
Option C:	
Option D:	$\begin{array}{c} b_n = 0 \\ a_0 = 0, b_n = 0 \end{array}$
1	
6.	Find $L^{-1}\left(\frac{s+2}{s^2+4s+13}\right)$
Option A:	$e^{2t}cos3t$
Option B:	$e^{2t}sin3t$
Option C:	$e^{-2t}cos3t$
Option D:	cos3t
7.	Find an analytic function whose real part is $u = x^3 - 6x^2y^2 + y^3$
Option A:	$f(z) = z^3 + c$
Option B:	$3z^3+c$
Option C:	$-z^3+c$
Option D:	$3z^2 + c$
_	
8.	Find $L^{-1}\left(\frac{1}{3s-7}\right)$
Option A:	$\frac{1}{3}(e^{(7/3)t})$
Option B:	$\left \frac{-1}{3}\left(e^{(5/3)t}\right)\right $
Option C:	$\frac{1}{3}(e^{(-7/3)t})$
Option D:	Find $L^{-1}\left(\frac{1}{3s-7}\right)$ $\frac{1}{3}(e^{(7/3)t})$ $\frac{-1}{3}(e^{(5/3)t})$ $\frac{1}{3}(e^{(-7/3)t})$ $\frac{1}{3}(e^{(5/3)t})$
9.	A variate x has the following probability distribution
	x : -3 6 9
	P(x): 1/6 1/2 1/3
	Find $E(X)$.
Option A:	1/2
Option B:	11/2
Option C:	3/2
Option D:	13/2
10.	If $b_{yx} = 0.7764$, $b_{xy} = 1.2321$ then coefficient of correlation
Option A:	0.9781
Option B:	0.6291
Option C:	1.2307
Option D:	0.0023
	2027 2027
11.	Find the Laplace Transform of $\frac{\cos 2t - \cos 3t}{t}$
Option A:	$\frac{1}{2}\log\left(\frac{s^2+9}{s^2+4}\right)$
Option B:	$\frac{1}{2}\log\left(\frac{s^2+4}{s^2+9}\right)$

Option C:	$\frac{1}{2}\log\left(\frac{s^2-4}{s^2-9}\right)$ $\frac{1}{2}\log\left(\frac{s^2-4}{s^2+9}\right)$
Option D:	$\frac{1}{2}\log\left(\frac{s^2-4}{s^2-2}\right)$
	$2^{-5}(s^2+9)$
12.	If two variables oppose each other then the correlation will be
Option A:	Positive correlation
Option B:	Zero correlation
Option C:	Perfect correlation
Option D:	Negative correlation
13.	Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$
Option A:	$\int_{c}^{c+2l} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$
Option B:	$\frac{1}{2l} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
Option C:	$\frac{1}{2l} \int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
Option D:	$\frac{1}{2\pi} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
14.	The limits for coefficient of correlation are
Option A:	$-1 \le r \le 2$.
Option B:	$-1 \le r \le 0$.
Option C:	$-1 \le r \le 1$.
Option D:	$0 \le r \le 1$.
15.	The value of $\int_0^\infty e^{-2t} (1-t^2) dt$ is
Option A:	$\left \frac{1}{4} \right $
Option B:	0
Option C:	$\frac{2}{3}$ $\frac{1}{2}$
0 1 5	3
Option D:	$\frac{1}{2}$
4.5	
16.	A continuous random variable X has the following probability mass function $f(x) = kx^2$, $0 \le x \le 2$, then the value of k is
Option A:	8/3
Option B:	3/8
Option C:	1
Option D:	5/3
17.	If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are
Option A:	$a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$
	IV A

Option B:	$a_n = 0, b_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$
Option C:	$a_n = 0b_n = \frac{\pi^2}{3}$
Option D:	$a_{n} = 0, b_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{n^{2}}$ $a_{n} = 0 b_{n} = \frac{\pi^{2}}{3}$ $a_{n} = \frac{\pi^{2}}{3}, b_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{n^{2}}$
18.	Find $L^{-1}\left[\log\left(\frac{s+1}{s+3}\right)\right]$.
Option A:	$\frac{-1}{t}(e^{-t}-e^{-3t}).$
Option B:	$\frac{-1}{2t}(e^{-t}-e^{-3t}).$
Option C:	$\frac{-1}{2t}(e^{-t} - e^{-3t}).$ $\frac{-1}{t}(e^t - e^{-3t}).$
Option D:	$\frac{1}{t}(e^{-t}-e^{-5t}).$
19.	Find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$
Option A:	$\frac{1}{4}(1-\cos 2t)$
Option B:	(1+cos2t)
Option C:	$\frac{1}{4}(1-\sin 2t)$
Option D:	$\frac{1}{4}(1+cost)$
20.	Find the constant 'a' if $f(z) = ax^2y - y^3 + i(3xy^2 - x^3)$ is analytic
Option A:	a = 0
Option B:	a = 3
Option C:	a = 6
Option D:	a = 2
- r · ·	

Q2.	Solve any Four out of Six5 marks each
(20 Marks)	
A	Fit a straight line to the following data
	(X,Y) = (1,-5),(1,1),(2,4),(3,7),(4,10)
В	Find half range cosine series for $f(x) = x(\pi - x)$, $0 < x < \pi$
С	Find $L^{-1}\left[\frac{1}{(s+3)(s-4)^2}\right]$ using convolution theorem.
D	Find the orthogonal trajectories of the family of curves $3x^2y + 2x^2 - y^3 - 2y^2 = c$

Е	A discrete random variable has p.d.f. given below $X: -2 -1 0 1 2 3$ $P(X=x): 0.2 k 0.1 2k 0.1 2k$ Find k and $(P(X \ge 1)$
F	Evaluate $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} dt$

Q3. (20 Marks)	Solve any Four out of Six5 marks each
A	Show that $u = 3x^2y - y^3$ is harmonic. Find the corresponding analytic function.
В	Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$
С	Find the Fourier series for $f(x) = x^3$, in $(-\pi, \pi)$
D	Find the expectation and M.G.F. of the following distribution $X: -2 3 1$ $P(X=x): 1/3 1/2 1/6$
Е	Compute Spearman's rank correlation coefficient from the following data X: 16, 18, 25, 30, 12 Y: 38, 21, 38, 16, 50
F	Find Laplace transform of $te^{-t}\cos t$

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: **Computer Engineering**Curriculum Scheme: Rev 2019

Examination: SE Semester III (For Direct Second Year-DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.	
1.	What is a negation of the following statement "8 is even & -11 is negative"?	
Option A:	8 is even & -11 is not negative	
Option B:	8 is odd & -11 is not negative	
Option C:	8 is even or -11 is not negative	
Option D:	8 is odd or -11 is not negative	
2.	The number of elements in the $P(X)$ of $X = \{\{a\},\{b\},\{c,d\},\{e,f\}\}\$ is	
Option A:	12	
Option B:	8	
Option C:	9	
Option D:	16	
3.	If two sets A and B have no common elements between them, then such sets	
	are known as ?	
Option A:	Disjoint	
Option B:	Intersection	
Option C:	Complement	
Option D:	Union	
4.	Which of the following is not the example of a partial order relation?	
Option A:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$	
Option B:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a/b \in \mathbb{Z}\}$	
Option C:	$R = \{(a,b) \mid a,b \in P(X), a \subseteq b\}$	
Option D:	$R=\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$	
5.	Let a set $S = \{1, 2, 3, 4, 6, 9, 12, 18, 24\}$ and R be the partial order relation of	
	divisibility. Number of edges in its Hasse diagram are	
Option A:	10	
Option B:	11	
Option C:	9	
Option D:	8	
6.	Domain for which the functions defined by $f(x) = 2x^2-1 & g(x) = 5-x$ are equal to	
Option A:	{2, 3/2}	
Option B:	{-2, -3/2}	

Option C:	{2, 3/2}
Option C:	{-2, 3/2}
Option D.	[-2, 3/2]
7.	Let G be a simple undirected graph. There are some odd degree vertices. If a node
/.	x is added to G and made it adjacent to each odd degree vertex of G, then the
	resultant graph will be
Option A:	regular
Option B:	Euler
Option C:	Complete
Option D:	Hamiltonian
option D.	
8.	A sufficient condition that a triangle T be a right triangle is that $a^2 + b^2 = c^2$. An
	equivalent statement is
Option A:	T is a right triangle unless $a^2 + b^2 = c^2$.
Option B:	If T is a right triangle then $a^2 + b^2 = c^2$.
Option C:	If $a^2 + b^2 = c^2$ then T is a right triangle
Option D:	T is a right triangle only if $a^2 + b^2 = c^2$.
•	,
9.	How many strings of length 8 either begin with 2 zeros or end with 4 ones?
Option A:	80
Option B:	42
Option C:	76
Option D:	64
10.	Let $A=\{a,b,c,d\}$
	$R = \{(a,a), (b,c), (c,b), (d,a)\} \& S = \{(a,d),(c,b), (b,a), (c,d)\}$
	What is the composition of relations RoS?
Option A:	$\{(a,a), (a,b), (c,c), (a,c)\}$
Option B:	$\{(a,a), (b,a), (c,c), (c,a)\}$
Option C:	$\{(a,d), (b,b), (c,a), (b,d), (d,d)\}$
Option D:	$\{(a,d), (b,b), (c,a), (d,d)\}$
11.	What is a length of the walk of a graph?
Option A:	Total number of edges in a graph
Option B:	The number of edges in a walk
Option C:	Total number of vertices in a graph
Option D:	The number of vertices in walk
12	William of the Callegraphy and the made of the Callegraphy
12.	Which of the following statement is not a tautology?
Option A:	$p \to (p \lor q)$
Option B:	$(p \land q) \rightarrow (p \rightarrow q)$
Option C:	$(\mathbf{p} \to \mathbf{q}) \to \mathbf{q}$
Option D:	$(p\Lambda q) \rightarrow (pVq)$
13.	Which of the following Poset is a Distributed Lattice?
Option A:	D_{50}
Option B:	D ₃₀
Option C:	D_{20}
Option D:	D_{40}
option b.	<u>~~+∪</u>
L	I .

14.	Which of the following functions f: $Z X Z \rightarrow Z$ is not onto?
Option A:	f(a, b) = a - b
Option B:	f(a, b) = a + b
Option C:	$ \mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{b} $
Option D:	f(a, b) = a
15.	Let $A=\{0,1,2,3,4,5\}$ a group under the operation of addition modulo 6 i.e. +6. What is a subgroup generated by the element 2?
Option A:	{0,1,2,3,4,5,6}
Option B:	{0,2,4}
Option C:	{0,1,4,6}
Option D:	{2,4}
16.	If there are 25 rooms in a girls' hostel, what is the minimum number of girls required so that at least 5 are living in one room?
Option A:	85
Option B:	101
Option C:	100
Option D:	90
17.	What is the identity element In the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10?
Option A:	5
Option B:	6
Option C:	12
Option D:	9
1	
18.	Determine the number of edges in a graph with 6 nodes which contains 2 of degree 5, 2 of degree 3 & 2 of degree 2.
Option A:	12
Option B:	10
Option C:	9
Option D:	11
19.	For which of the following, hasse diagram is drawn?
Option A:	lattice
Option B:	partially ordered set.
Option C:	sublattice
Option D:	boolean algebra
Option D.	
20.	If 35 books in a Department contain total 56351 pages, then one of the books has atleast pages.
Option A:	1611
-	1610
Option B:	
Option C:	1598
Option D:	1612

Q2.	Solve any Four questions out of Six. 5 marks ea	ıch
(20 Marks)		
A	$Let \ A = \{i, j, k, l, m\}$ $MR = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ $Find the transitive closure of it using Warshall's algorithm.$	
В	Prove by mathematical induction that $2+5+8++(3n-1)=n(3n+1)/2$	
С	Explain a distributive lattice with the suitable example. Prove that in a distributive lattice, the complement of any element is unique.	
D	What is a bijective function? Find inverse of the following bijection: f: $R \rightarrow R$ defined by $f(x) = (1-2x)/3$	
Е	Verify whether $ ((PVQ) \land \neg (\neg P \land (\neg Q \lor \neg R)) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \text{ is tautol} $	ogy.
F	Determine whether following graphs are isomorphic. Justify your answer	r.

Q3.	Solve any Two Questions out of Three . 10 marks each
(20 Marks)	
A	Explain the following terms with the suitable example. i) Hamming Distance ii) Monoid iii) Cyclic Group iv) group code v) Ring
В	i) What is an adjacency matrix & incidence matrix? Explain both with the suitable example.ii) What is Eulerian path & a circuit? Determine which of the following graphs consist of Eulerian path and/or a circuit.

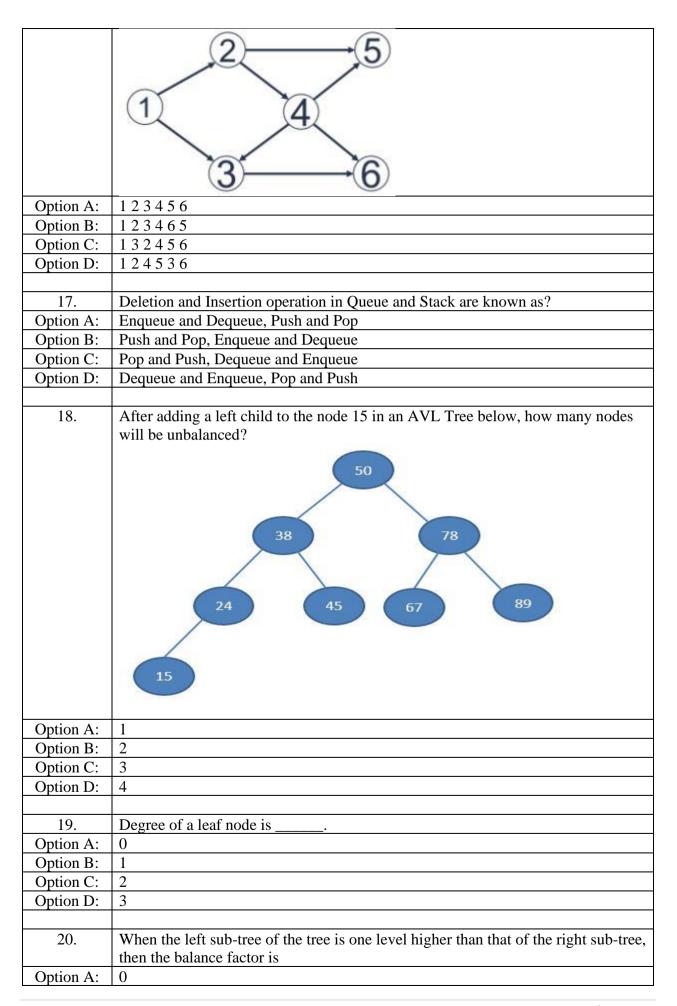
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
С	 What is a group? Let S={0,3,6,9,12} i) Prepare the composition table w.r.t. the operation of addition modulo 15. ii) Show that it is an abelian group. iii) Find the inverses of all the elements. iv) Whether it is a cyclic group?

Examination 2020 under cluster 4 (Lead College: PCE)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering Curriculum Scheme: Rev2019

Examination: SE Semester: III(for Direct Second Year-DSE) Course Code: CSC303 and Course Name: Data Structure


Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which among the following is not a linear data structure?
Option A:	Stack
Option B:	Queue
Option C:	Tree
Option D:	Array
•	
2.	Using division method, in a given hash table of size 114, the key 131 will be placed at position.
Option A:	31
Option B:	17
Option C:	14
Option D:	16
•	
3.	For the implementation of parentheses balancing program using stack. What is the maximum number of parentheses that will remain on the stack [({()})][[]{([])}?
Option A:	0
Option B:	1
Option C:	2
Option D:	3
•	
4.	Which of the following data structure is based on LIFO principle?
Option A:	Tree
Option B:	Graph
Option C:	Queue
Option D:	Stack
5.	If we insert the values 25, 14, 9, 18 and 37 in the Binary Search Tree then degree of root node will be
Option A:	0
Option B:	1
Option C:	2
Option D:	3
6.	Given the following input (22, 34, 71, 79, 89, 51, 73, 99) and the hash function x mod 10, which of the following statements are true? i) 79, 89, 99 hash to the same value

	I 100 Tax Tax 1
	ii) 71, 51 hash to the same value
	iii) All elements hash to the same value
	iv) Each element hashes to a different value
Option A:	i only
Option B:	ii only
Option C:	i and ii
Option D:	iii or iv
7.	What will be the front and rear of an initially empty queue after the following operations on it? enqueue(12), enqueue(10), enqueue(3), dequeue(), enqueue(18), dequeue(), enqueue(15), enqueue(15), dequeue()
Option A:	12, 15
Option B:	15, 18
Option C:	18, 15
Option D:	15, 15
8.	In a Doubly linked list which statement is correct for dynamically allocating a memory for the node? struct node { struct node *prev;
	char data;
	struct node *next;
	}; typdef struct node NODE; NODE *ptr;
Option A:	ptr=(NODE*)malloc(sizeof(NODE));
Option B:	ptr=(NODE*)malloc(NODE);
Option C:	ptr=(NODE*)malloc(sizeof(NODE*));
Option D:	ptr=(NODE)malloc(sizeof(NODE));
opusii 2 ·	
9.	Which node pointers should be updated if a node B present between node A and node C of a doubly linked list is to be deleted.
Option A:	NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C and PREVIOUS pointer of C
Option B:	NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of C and PREVIOUS pointer of C
Option C:	NEXT pointer of A, PREVIOUS pointer of C
Option D:	PREVIOUS pointer of A, NEXT pointer of C
•	
10.	Consider the Binary Search Tree given below and find the result of in-order traversal sequence.
1	

Option A:	60, 30, 14, 78, 72, 89
Option B:	14, 30, 72, 89, 78, 60
Option C:	60, 30, 78, 14, 72, 89
Option D:	14, 30, 60, 72, 78, 89
Option D.	14, 50, 60, 72, 76, 67
11.	You are given a stack with elements 2, 5, 8, 3, 9, 10 where 10 is the top of the stack.
	The elements are popped one-by-one and enqueued into a queue, until the stack
	becomes empty. The elements are again dequeued from the queue one-by-one and
	pushed into the stack. What is the final arrangement of elements in the stack (from
	top to bottom)?
Option A:	10, 9, 3, 8, 5, 2
Option B:	2, 5, 8, 3, 9, 10
Option C:	2, 3, 5, 8, 9, 10
Option D:	10, 9, 8, 5, 3, 2
12.	Which of the following is false about a doubly linked list?
Option A:	We can navigate in both the directions
Option B:	It requires more space than a singly linked list
Option C:	The insertion and deletion of a node take a bit longer
Option D:	Implementing a doubly linked list is easier than singly linked list
13.	The Data structure used in the standard implementation of Breadth First Search is?
Option A:	Tree
Option B:	Linked List
Option C:	Queue
Option D:	Stack
14.	In the linked list implementation of a queue, where does a new element get
	inserted?
Option A:	At the head of the linked list
Option B:	At the tail of the linked list
Option C:	At the centre position in the linked list
Option D:	After the specified position in a linked list
1	
15.	Which type of linked list begins with a pointer to the first node and each node
	contains a pointer to the next node, and the pointer in the last node points back to
	the first node?
Option A:	Singly linked list
Option B:	Doubly linked list
Option C:	Circular singly linked list
Option D:	Circular doubly linked list
16.	What will be the topological ordering for the below graph.

Option B:	1
Option C:	-1
Option D:	2

Q2	Solve any Four out of Six 5 marks each
A	What is Data Structure? List different data structures along with applications.
В	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
С	Write functions in 'C' for the following operations of Input Restricted Deque. i) insert_right() ii) delete_left() iii) delete_right()
D	Make a comparison between linked list and linear array. Which one will you prefer to use and when?
Е	Construct Huffman tree and determine the code for each symbol in the string "SUCCESSFUL".
F	Show Depth First Search traversal for the following graph with all the steps.

Q3	Solve any Two Questions out of Three	0 marks each
	Write a program to perform the following operations on doubly linked list:	
	i) Insert a node in the beginning	
Α	ii) Delete a node from the end	
	iii) Search for a given element in the list	
	iv) Display the list	
В	Insert the following elements in an AVL tree: 25, 44, 58, 15, 19, 11, 37, 32. Ex	xplain different
ь	rotations that can be used.	
	Using modulo division method, hash the following elements in a table of size	e 10. Use
С	Linear probing and Quadratic probing to resolve the collisions. 28, 55, 71,	67, 11, 10,
	90, 44	

Examination 2020 under cluster __(Lead College: ______

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering in Computer Engineering

Curriculum Scheme: Rev2019 Examination: DSE SemesterIII

Course Code: CSC304 and Course Name: Digital Logic & Computer Architecture

Time: 2 hour Max. Marks: 80

Choose the correct option for following questions. All the Questions are **Q1.** compulsory and carry equal marks. 1. Which of the following options represents the correct matching? Addressing Mode | Description Immediate A. the address field refers to the address of a word in the memory, which in-turn contains the address of the operand B. the address field contains the address (in main 2. Direct memory) where the operand is stored Indirect C. operand value is present in the instruction itself (address field) D. the address field of the operand is a register Register Direct Option A: 1->A; 2->D; 3->C; 4->B; Option B: 1->C; 2->B; 3->D; 4->A; Option C: 1->C; 2->B; 3->A; 4->D; Option D: 1->A; 2->D; 3->B; 4->C; Consider an example of memory organization as shown in the figure 2. below. Which value will be loaded into the accumulator when the instruction "LOAD DIRECT 3" is executed? Memory 0 1 2 3 5 6 7 Location address 10 23 25 20 12 3 1 2 Content Option A: 3 Option B: 25 Option C: 12 Option D: 20 3. For a 0-address instruction format, what would be the top element of the stack following sequences of instructions? PUSH 20; PUSH 5; PUSH 5; ADD; SUB; PUSH 20; MULT

	100
Option A:	100
Option B:	200
Option C:	10
Option D:	5
4.	What is the value of n in Booth's multiplication of 110* 1000?
Option A:	2
Option B:	3
Option C:	4
Option D:	0
option 2.	
5.	In restoring division algorithm, after performing operations (1) left shift
J.	operation on A,Q and (2) $A=A-M$, if magnitude of $A>0$ then ?
Ontion A:	Q0=0, A=A+M
Option A:	
Option B:	A=A+M
Option C:	Q0=1
Option D:	A=A-M
-	
6.	In non-restoring division algorithm, after performing left shift operation on
	A, Qregisters, if magnitude of A < 0 then?
Option A:	Q0=0, A=A+M
Option B:	A=A+M
Option C:	Q0=1
Option D:	A=A-M
7.	In single precision, IEEE754 floating point standard exponent represent by
	bits and mantissa represent by bits.
Option A:	8, 23
Option B:	7, 24
Option C:	7, 23
Option D:	8, 24
option 2.	
8.	How many bits of opcode is required to implement a CPU with 10
0.	arithmetic and logical instructions, 2 control instructions, and 5 data
	transfer instructions?
Ontion A:	2
Option A:	
Option B:	3
Option C:	4
Option D:	5
	• • • • • • • • • • • • • • • • • • •
9.	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as
Option A:	D flip-flop
Option A: Option B:	D flip-flop S-R flip-flop
Option A: Option B: Option C:	D flip-flop S-R flip-flop T flip-flop
Option A: Option B:	D flip-flop S-R flip-flop

10.	The instruction read from memory is then placed in the and
	contents of program counter is so that it contains the address
	of instruction in the program.
Option A:	Program counter, incremented and next
Option B:	Instruction register, incremented and previous
Option C:	Instruction register, incremented and next
Option D:	Address register, decremented and next
11.	Which is the simplest method of implementing hardwired control unit?
Option A:	State Table Method
Option B:	Delay Element Method
Option C:	Sequence Counter Method
Option D:	Using combinational Circuits
12.	Which instruction does the following set of micro-operations refer to: Steps Action
	1 PCout, MARin, Read, Select4, Add, Zin
	2 Zout, PCin, Yin, WMFC
	3 MDRout, IRin
	4 R1out, Yin 5 R2out, SelectY, Add, Zin
	6 Zout, R1in, End
Option A:	ADD R2, R1
Option B:	ADD R1, R2
Option C:	MOVE R1, R2
Option D:	MOVE R2, R1
орион В.	NOVERZ, KI
13.	Which of the following statements is false?
Option A:	Diagonal micro-instructions encoding requires multiple decoders.
Option B:	In vertical micro-instructions encoding, more than one control signals
•	cannot be activated at a time.
Option C:	Horizontal micro-instructions encoding has a lower cost of implementation.
Option D:	On one end of a spectrum, a <i>vertical</i> microinstruction is highly encoded and may look like a simple macroinstruction containing a single opcode field and one or two operand specifiers.
14.	In mapping, the data can be mapped anywhere in the Cache Memory.
Option A:	Associative
Option B:	Direct
Option C:	Set Associative
Option D:	Indirect
15.	A second factor in locality of reference is the presence of loops in programs. Instructions in a loop, even when they are far apart in spatial terms, are executed repeatedly, resulting in a high frequency of reference to their addresses. This characteristic is referred to as

1	
Option A:	Spatial locality.
Option B:	temporal locality
Option C:	branch locality.
Option C:	
Орион D.	Equidistant locality
16.	consists assentially of internal flip flore that store the binary
10.	consists essentially of internal flip-flops that store the binary information.
Option A:	Static RAM
Option B:	Dynamic RAM
	PROM
Option C:	
Option D:	EEPROM
17	CIMD represents an exemization that
17.	SIMD represents an organization that
Option A:	refers to a computer system capable of processing several programs at the same time.
Option B:	represents organization of single computer containing a control unit,
Option b .	processor unit and a memory unit.
Option C:	includes many processing units under the supervision of a common control
Option C.	unit.
Option D:	similar to Von Neumann architecture.
Орион Б.	Similar to Von recumann arcinecture.
18.	In parallelization, if P is the proportion of a system or program that can be made parallel, and 1-P is the proportion that remains serial, then the maximum speedup that can be achieved using N number of processors is
	1/((1P)+(P/N). This law is called
Ontion A.	Nowton's law
Option A:	Newton's law
Option B:	Ohms law
Option B: Option C:	Ohms law Amdahl's law
Option B:	Ohms law
Option B: Option C: Option D:	Ohms law Amdahl's law Flynn's law
Option B: Option C: Option D:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use
Option B: Option C: Option D: 19. Option A:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS
Option B: Option C: Option D: 19. Option A: Option B:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator
Option B: Option C: Option D: 19. Option A: Option B: Option C:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access
Option B: Option C: Option D: 19. Option A: Option B:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option C:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following.
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option C:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20. Option A:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast speeds of data transfers.
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20. Option A: Option A:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast speeds of data transfers. In USB the devices can communicate with each other.
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20. Option A: Option A: Option C: Option C:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast speeds of data transfers. In USB the devices can communicate with each other. The type/s of packets sent by the USB is/are Data.
Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20. Option A: Option A:	Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast speeds of data transfers. In USB the devices can communicate with each other.

Q.2 Solve any Four out of Six.

- a) Briefly describe the Von Neumann Model computer architecture.
 b) Write a short note on Interleaved and Associative Memory.
 5
 c) Differentiate between hardwired control unit and Microprogrammed Control unit.
 d) What is meaning of delayed branch and branch prediction? Write a difference between them.
 5
 e) Draw and explain instruction cycle state diagram.
 5
- Q.3 Solve any Two out of Three.

f)

a) Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using this Algorithm.

Multiply (-10) and (-8) using Booth's algorithm.

- **b)** Explain with suitable diagrams Flynn's Classification of Computer **10** Architecture.
- c) Consider a Cache memory of 16 words. Each block consists of 4 words. Size of the main memory is 128 bytes. Draw the Associative Mapping and Calculate the TAG and WORD size.

5

Examination 2020 under cluster (Lead College:

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: **Computer Engineering**Curriculum Scheme: Rev2019

Examination: SE Semester III(for Direct Second Year-DSE) Course Code: CSC305 and Course Name: Computer Graphics

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which one of the following is the primarily used input device?
Option A:	Keyboard
Option B:	Scanner
Option C:	Monitor
Option D:	Speaker
2.	The midpoint ellipse drawing algorithm uses to find the pixel points
	along the ellipse path
Option A:	8-way symmetry
Option B:	4-way symmetry
Option C:	2- way symmetry
Option D:	6 – way symmetry
3.	Quality of the picture is
Option A:	directly proportional to the density of pixels on the screen.
Option B:	dependent on the size of a screen
Option C:	not proportional to the density of pixels on the screen
Option D:	not dependent on the number of pixels
4.	The aliasing effect can be minimized by
Option A:	decreasing resolution of the raster display
Option B:	By increasing slope of the line
Option C:	increasing resolution of the raster display.
Option D:	By decreasing slope of the line
5.	In DDA algorithm, if slope of the line is less than or equal to one (m<=1) then the
	next pixel point along the line path is calculated by
Option A:	Taking unit steps along the positive x direction and adding slope value to the
	previous y coordinate value
Option B:	Adding and subtracting slope value from the previous x and y coordinate value
Option C:	Taking unit steps along the positive x direction and y direction
Option D:	Taking unit steps along the positive x direction and subtracting slope value to the
	previous y coordinate value
6.	Which of the following is the correct representation to define 2D point using
	homogeneous coordinate [Hint: - (Xw, Yw, w)]
Option A:	(0,0,0)
Option B:	(4,4,0)

Option C:	(0,0,1)
Option D:	(1.5,1.8,0)
7.	If the scaling factors values of Sx and $Sy = 1$ then
Option A:	Size of an object remains same
Option B:	Size of an object is increased
Option C:	Size of an object is reduced
Option D:	It slants the shape of an object
8.	The negative values of 'θ' gives
Option A:	Anticlockwise Rotation
Option B:	Clockwise Rotation
Option C:	Shearing Transformation
Option D:	Reflection
9.	When the 3D point (x, y, z) is reflected about the XY plane then new coordinates
	of the point are given by
Option A:	(-x, -y, z)
Option B:	(x, -y, z)
Option C:	(y, x, z)
Option D:	(x, y, -z)
1.0	
10.	In Cohen Sutherland line clipping algorithm, if Bit code for two endpoints of the
	line segment is 0101 and 1001 respectively then line is
Option A:	Partially visible
Option B:	Completely visible
Option C:	Completely Inside the clipping boundary
Option D:	Completely Outside the clipping boundary
11.	is Irnovym as conceptized line alimning algorithm
-	Liona Paralty line alimning algorithm
Option A:	Liang Barsky line clipping algorithm
Option B:	Cohen Sutherland line clipping algorithm
Option C:	Digital Differential Analyzer algorithm Bresenham's line drawing algorithm
Option D:	Bresennam's line drawing algorium
12.	defines where the object will be displayed on computer
12.	screen
Option A:	Window
Option B:	Viewport
Option C:	Frame buffer
Option C:	World coordinate system
Option D.	mond coordinate system
13.	It is the process of changing position of an object along the circular path from one
15.	coordinate location to other
Option A:	Translation
Option B:	Rotation
Option C:	Scaling
Option D:	Reflection

14.	In 3 D translation, translation factors Tx, Ty, Tz are in to the original				
	coordinates of the polygon				
Option A:	Added				
Option B:	Subtracted				
Option C:	Multiplied				
Option D:	Divided				
*					
15.	In 3D rotation about z- axis, the value of the z coordinate of new object				
Option A:	is doubled				
Option B:	zero				
Option C:	remains same				
Option D:	decreases				
Option D.	decreases				
16.	The Surfaces of an object which are oriented away from the viewer are called as				
	Back surfaces				
Option A:	Front surfaces				
Option B:					
Option C:	Top surfaces				
Option D:	Side surfaces				
17.	Consider equation of the plane, $Ax + By + Cz + D = 0$				
	If $Ax + By + Cz + D > 0$, then point (x, y, z)				
Option A:	lies in the background				
Option B:	lies in the foreground				
Option C:	lies anywhere				
Option D:	lies on the plane				
18.	In Z buffer algorithmis used				
	I. Z buffer				
	II. Frame buffer				
	III. Vector refresh buffer				
Option A:	Only I				
Option B:	Only II				
Option C:	Only III				
Option D:	Both I and II				
•					
19.	figures are manipulated to appear as moving images				
Option A:	Animation				
Option B:	Rotation				
Option C:	Translation				
Option D:	Scaling				
Орион Б.	beamig				
20.	It is a process that are applied in the animation evaluation and do not make				
20.	permanent changes to the original object				
Ontion A:	Facial animation				
Option A:					
Option B:	Motion capture Deformation				
Option C:	Deformation				
Option D:	Character animation				

Q2. (20 Marks)	
A	Solve any Two 5 marks each
i.	Rasterize the line segment using DDA line drawing algorithm. The two endpoint coordinates of the line segment are P1(0,0) and P2(5, 2)
ii.	Scale the square ABCD with coordinates A (0,0), B (5,0), C (5,5), D (0,5) by 3 units in x direction and 4 units in y direction
iii.	Define the following terms with example a) Scan Conversionb) Frame buffer
В	Solve any One 10 mark each
i.	Clip the line segment using Cohen Sutherland Line clipping Algorithm, The Coordinates of the line segment are P1(-1, 5) and P2(3, 8) and coordinates of the window boundaries are (Xwmin, Ywmin) = (-3, 1) and (Xwmax, Ywmax) = (2, 6)
ii.	What is visible surface detection? Explain Area subdivision method with example

Q3.	
(20 Marks)	
A	Solve any Two 5 marks each
i.	What is homogeneous transformation matrix for 2D. Write homogeneous
	transformation matrix for Translation, Rotation and Scaling in terms of
	P'=P*T (Where P= Original object matrix, and P'=New object matrix and
	T= 2D transformation matrix)
ii.	What is an Animation? Write and explain principles of animation?
iii.	A point has coordinates in the x, y, z direction i.e., P (4, 5, 6). The
	translation is done in the x-direction and y direction by 2 units and 5 units
	in the z- direction. Shift the point and find the new coordinates of the point.
В	Solve any One 10 mark each
i.	What is World Coordinate System (WCS) and Physical Device Coordinate
	System (PDCS)? Obtain viewing transformation matrix to map WCS on to
	PDSCS
ii.	Derive and explain midpoint ellipse drawing algorithm

Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 23^{rd} December 2020 to 6^{th} January 2021 and from 7^{th} January 2021 to 20^{th} January 2021

Program: **Computer Engineering**Curriculum Scheme: Rev 2019

Examination: Second Year Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics-3

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace transform of $\cos(\sqrt{3}t)$ is
Option A:	$\frac{s}{s^2+9}$
Option B:	$\frac{s}{s^2-9}$
Option C:	$\frac{s}{s^2+3}$
Option D:	$\frac{s}{s^2-3}$
2.	The value of $\int_0^\infty e^{-3t} \left(\frac{\sinh t}{t} \right) dt$ is
Option A:	$\frac{1}{3} \ln 3$
Option B:	$\frac{1}{3} ln\left(\frac{1}{3}\right)$
Option C:	$\frac{1}{2} ln 2$
Option D:	$\frac{1}{2} ln\left(\frac{1}{2}\right)$
3.	Laplace transform of $f(t) = t^2 e^{-t}$ is
Option A:	$\frac{2}{(s-1)^3}$
Option B:	$\frac{2}{(s+1)^3}$

Ontion C	Γ(2)
Option C:	$\frac{\Gamma(2)}{(s-1)^3}$
Option D:	
or was a s	$\frac{\Gamma(2)}{(s+1)^3}$
4.	Laplace transform of $\int_0^t \sin 2t \cosh 2t \ dt$ is
Option A:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} - \frac{1}{(s+2)^2 - 4} \right]$
Option B:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} + \frac{1}{(s+2)^2 - 4} \right]$
Option C:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} - \frac{1}{(s+2)^2 + 4} \right]$
Option D:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} + \frac{1}{(s+2)^2 + 4} \right]$
5.	Inverse Laplace transform of $\frac{s-1}{s^2}$ is
Option A:	-1-t
Option B:	-1+t
Option C:	1+t
Option D:	1-t
6.	$L^{-1}\left[\frac{s+2}{s^2+4s+5}\right]$ is
Option A:	$e^{-2t} \cos t$
Option B:	$e^{-2t} \sin t$
Option C:	$e^{2t}\cos t$
Option D:	$e^{2t} \sin t$
7.	$L^{-1}(tan^{-1}s)$ is
Option A:	$\frac{\sin t}{t}$
Option B:	$\frac{\cos t}{t}$
Option C:	sin t
Option D:	$-\frac{\cos t}{t}$
L	l .

8.	$\begin{bmatrix} s(2s^2-3) \end{bmatrix}$.
0.	$L^{-1}\left[\frac{s(2s^2-3)}{(s^2+1)(s^2-4)}\right]$ is
Option A:	cosh t + cosh 2t
Option B:	cos t + cosh 2t
Option C:	cos t + cos 2t
Option D:	cosh t + cos 2t
9.	Fourier coefficient a_2 for $f(x)=x$, x belongs to $(-1, 1)$ is
Option A:	-1
Option B:	1
Option C:	0
Option D:	2
10.	Fourier coefficient b_1 for $f(x) = x$. $sinx$, where $x \in (0, 2\pi)$ is
Option A:	0
Option B:	π
Option C:	$-\pi$
Option D:	$\frac{\pi}{\sqrt{2}} - \frac{\pi}{\sqrt{3}}$
	V2 V3
11.	Fourier coefficient a_0 in half range cosine series for $f(x) = e^x$, $x \in (0,1)$ is
Option A:	e+1
Option B:	-e-1
Option C:	-e+1
	e-1
Option D:	C-1
12.	Value of constant real number m such that
	$f(z) = f(x + iy) = e^{3mx + 2iy}$ is analytic function is
Option A:	2/3
Option B:	-2/3
Option C:	3/2
Option D:	-3/2

13.	For real variables x , y function $u(x,y) = 2xy$				
Option A:	does not satisfy Laplacian equation.				
Option B:	is not continuous.				
Option C:	is harmonic.				
Option D:	is continuous but not partially differentiable.				
14.	For $f(z) = sinx cosh(y) + i cosx sinh(y)$, where $z = x + iy$, $f'(z)$ is				
Option A:	$-\sin z$				
Option B:	sinh z				
Option C:	cos z				
Option D:	cosh z				
15.	If coefficients of correlation between variables x , y is 0.5 and coefficient of regression b_{xy} is 0.2 then coefficient of correlation b_{yx} is				
Option A:	1.25				
Option B:	-1.25				
Option C:	2.5				
Option D:	-2.5				
16.	If a straight line is y=ax+b is fitted to following data x 0 1 2 3 4				
	y 1 2 3 4 5				
	Then values of a & b are				
Option A:	a=1, b=0				
Option B:	a=1, b=1				
Option C:	a=0, b=1				
Option D:	a=-1, b=1				
17.	The coefficient of rank correlation between two variables with unequal ranks is - 0.9. If the number of pairs is 5, then the sum of				
Ontion A:	squares of differences in ranks is				
Option A:	37 36				
Option B: Option C:					
Option C:	39 38				
Option D:					

18.	If random variable X has the probability distribution as						
	X	-2	-1	0	1	2	
	P(X=x)	3k	2k	2k	k	0.2	
	Then P(-2 <x< td=""><td>(≤ 2) is</td><td></td><td></td><td></td><td></td><td></td></x<>	(≤ 2) is					
Option A:	1						
Option B:	0.7						
Option C:	0.8						
Option D:	0.5						
19.	A random variance		as probability	distribution	with $E(X) = 1$	$1.5 , E(X^2)$	=3 then
Option A:	0.75						
Option B:	1.5	1.5					
Option C:	3	3					
Option D:	5.25						
20.	A continuo k^2x^3 ,			X has to a value of k in x	the probabil s	lity law	f(x) =
Option A:	2/81						
Option B:	4/81						
Option C:	4/9						
Option D:	2/9						

Q2 (20 Marks)	Solve any Four or	ıt of Six		5	marks ea	ach	
A	Find Laplace transform of $f(t) = \sin^2 t \cos^3 t$.						
В	Using convolution	theorem		inverse I $= \frac{s}{s^4 - 1}$		ansform of	
С	Find Fourier series	Find Fourier series of $f(x) = x \sin x \operatorname{in}(-\pi, \pi)$.					
D	Find an analytic function $\omega = f(z) = u + iv$, where $z = x + iy$, whose real part is $u(x,y) = x^2 - y^2 + 2y - \sin(x)$. sinh (y)						
E	Calculate Spearma coefficient of corre 5 students. Height(in inches) Weight(In kgs)						

The warranty of electronic device in thousand of days has the density function $f(x) = \begin{cases} 4e^{-4x}, x > 0 \\ 0, otherwise \end{cases}$ Find the expected warranty of the device.

Q3	Solve any Four out of Six	5 ma	rks each			
(20 Marks)						
A	Given $f(t) = \begin{cases} 4, & 0 \le x < 3 \\ 0, & x > 3 \end{cases}$. Find $L[f(t)], L[f'(t)]$.					
В	Find inverse Laplace transform of $\emptyset(s) = \frac{3s}{s^3 + s^3}$	Find inverse Laplace transform of $\emptyset(s) = \frac{3s^2 + 11s + 11}{s^3 + 6s^2 + 11s + 6}$				
С	Find half range sine series for $f(x) = e^{-x}$, $0 < x < 3$	Find half range sine series for $f(x) = e^{-x}$, $0 < x < 1$.				
D	In the polar coordinates, let $\omega = u + iv$, $u(r, \theta) = r^2 sin 2\theta$. Show that u satisfies Laplace's equation and find $v(r, \theta)$.					
	Fit a second degree parabolic curve to the following da	ta.				
Е	x 0 1 2 3 4	5	6			
	y 1 1 3 7 13	21	31			
F	A random variable X has the probability distribution P $x = 0,1,2,3,4$. Write Probability distribution and find st		10			

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 23^{rd} December 2020 to 6^{th} January 2021 and from 7^{th} January 2021 to 20^{th} January 2021

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Let $A = \{2,3,4,5,6\}$ and let R1,R2 be relations on A such that
	$R1=\{(a,b) \mid a-b=2 \}$ and
	$R2=\{(a,b) a+1=b \text{ or } a=2b\}$ Find the assumption platfor R2 R12
	Find the composite relation R2.R1?
Option A:	$\{(4,3),(5,4),(6,2),(6,5)\}$
Option B:	{(3,2),(5,4),(4,3)}
Option C:	{(5,2),(6,3)}
Option D:	{(2,3),(3,4),(4,5),(5,6)}
2.	Which of the following is the correct representation of the sentence "Someone is
	liked by everyone ".
Option A:	$(\exists x)(\exists y)$ likes (x,y)
Option B:	$(\forall x)(\ \forall y)\ likes(x,y)$
Option C:	$(\exists y)(\forall x)$ likes (x,y)
Option D:	$(\forall x)(\exists y)$ likes (x,y)
3.	Draw the Hasse diagram of D30.
	i) It is Complemented Lattice
	ii) It is Distributive Lattice
	Which of the above statement is True?
Option A:	Only i
Option B:	Only ii
Option C:	Both i and ii
Option D:	Neither i nor ii
4.	Consider the set N of positive integers, and let * denote the operation of least
	common multiple(lcm) on N. Which of the following sentence is True?
Option A:	(N,*) is not a Semi group.
Option B:	(N,*) is commutative Semi group
Option C:	(N,*) is not commutative Semi group.
Option D:	None of the Above.
	There were true distance there distance is a first true to the first true true to the first true true true true true true true tru
5.	How many two digits or three digits numbers can be formed using the digits

	1,2,3,4,5,6,7,8 and 9, if no digits are repeated?
Option A:	210
Option B:	24
Option C:	212
Option D:	252
Орион В.	
6.	Consider the following subsets of the positive integers N. Which of the following
	is not closed under multiplication operation?
Option A:	$A = \{0,1\}$
Option B:	$E=\{1,3,5,\}$
Option C:	C={x: x is prime}
Option D:	$F=\{0,1,2\}$
7.	If every vertex of simple graph has same degree it is called as
Option A:	Bipartite Graph
Option B:	Regular Graph
Option C:	Planner Graph
Option D:	Sub graph
8.	The less than relation,<, on real is
Option A:	A Partial ordering since it is asymmetric and reflexive.
Option B:	A partial ordering since it is asymmetric and reflexive. A partial ordering since it is anti-symmetric and reflexive.
Option C:	Not a partial ordering because it is not asymmetric and not reflexive.
Option D:	Not a partial ordering because it is not anti-symmetric and not reflexive.
Option D.	1 vot a partial ordering occause it is not unit symmetric and not remeative.
9.	Consider set of integers from 1 to 250. Find how many of these numbers are divisible by 5 or 6 but not by 8?
Option A:	83
Option B:	69
Option C:	100
Option D:	31
10.	Consider G={1,5,7,11,17} under multiplication modulo 18. Find inverse of 5, 7 and 17?
Option A:	11,17 and 13
Option B:	11,13 and 17
Option C:	11 , 17 and 7
Option D:	13,11 and 7
11.	The following graph is
	A B 6
	A B
	7
	F B
Option A:	Bipartite Graph
Option B:	Complete Bipartite Graph
Option C:	Eulerian Graph
Option D:	Eulerian but not Bipartite Graph

12.	The set of integers Z with binary operation '*' defined as $a*b=a+b+1$ for $a,b \in Z$,
12.	is a group. The identity element of this group is
Option A:	0
Option B:	1
Option C:	-1
Option D:	12
Орион Б.	12
13.	How many persons must be chosen in order that at least five of them will have birthdays in the same calendar month?
Option A:	28
Option B:	69
Option C:	49
Option D:	52
14.	Which of the following is true for above graph? i) It is Eulerian Graph ii) It is Hamiltonian Graph
Option A:	Only i
Option B:	Only ii
Option C:	Both i and ii
Option D:	Neither i nor ii
15.	A Poset in which every pair of elements has both a least upper bound and a
	greatest lower bound is termed as
Option A:	Walk
Option B:	Trail
Option C:	Sub lattice
Option D:	Lattice
16.	State the type of function for following example
	"To each country assign the number of people living in the country"
Option A:	Many-One
Option B:	One-Many One-Many
Option C:	One-One
Option D:	Many-Many
17.	Let P: We should be trustworthy. Q: We should be committed. R: We should be overconfident. Then 'We should be trustworthy or committed but not overconfident.' is best represented by?

Option A:	$PVQ \wedge R$
Option B:	~P V ~Q V R
Option C:	PVQ \(\sigma \cdot R \)
Option D:	P A ~Q A R
1	
18.	Total how many Cut Vertex exists in the following graph? a b f e g
Option A:	2
Option B:	4
Option C:	3
Option D:	1
19.	The binary relation {(a,a), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b)} on the set {a,b,c}
	is
Option A:	irreflexive, symmetric and transitive
Option B:	reflexive, symmetric and transitive
Option C:	irreflexive and antisymmetric
Option D:	neither reflexive, nor irreflexive but transitive
20.	Which rule of inference is used in this argument?
	"No humans can fly. John is human. Therefore John can not fly."
Option A:	Universal instantiation
Option B:	Existential instantiation
Option C:	Universal generalization
Option D:	Existential generalization

Q2	
A	Solve any Two 5 marks each
i.	Let A={1,2,3,4,5}, R={(a.b) (a+b) is even}. R is a relation on set A. Check whether R s an equivalence relation?
ii.	X={2,3,6,1,24,36}
	R on $X = \{(x,y) \in R, x \text{ divides } y\}$
	a) Construct Hasse diagram
	b) Maximum and Minimal elements?
	c) Give Chain and Ant chains.
	d) Maximum length of chain?
	e) Is a poset lattice?
iii.	Define the following with suitable example
	a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planner Graph

В	Solve any One 10 marks each
i.	Define with example Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit. Determine if following diagram has Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit and state the path/circuit.
ii.	Find the number of code word generated by the parity check matrix H given below. Find all the code words generated. $H = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$

Q3.	
A	Solve any Two 5 marks each
i.	Define Isomorphic Graph. Determine if following graphs G1 and G2 are isomorphic or not.
ii.	Convert into CNF: $((P \rightarrow Q) \rightarrow R)$
iii.	Functions f,g,h are defined on a set $X=\{a,b,c\}$ as $f=\{(a,b),(b,c),(c,a)\}$ $g=\{(a,b),(b,a),(b,b)\}$ $h=\{(a,a),(b,b),(c,a)\}$ i) Find fog, gof . Are they equal? ii) Find fogoh and fohog?
В	Solve any One 10 marks each
i.	Prove that (z5,+5) is a Abelian group.
ii.	Solve the recurrence relation for Fibonacci sequence 1,1,2,3,5,8,13.

Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 23^{rd} December 2020 to 6^{th} January 2021 and from 7^{th} January 2021 to 20^{th} January 2021

Program: COMPUTER ENGINEERING Curriculum Scheme: Rev2019 Examination: SE Semester: III

Course Code: CSC303 and Course Name: DATA STRUCTURE

1. Which data structure has fixed size? Option A: Array Option D: Linked List Option D: Tree 2. The result of evaluating the postfix expression 59+84-*8/ Option B: 7 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () {	Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
Option A:		
Option B: Linked List Option C: Graph Option D: Tree 2. The result of evaluating the postfix expression 59+84-*8/ Option A: 6 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>1.</td><td>Which data structure has fixed size?</td></len;>	1.	Which data structure has fixed size?
Option C: Graph Option D: Tree 2. The result of evaluating the postfix expression 59+84-*8/ Option A: 6 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () {	Option A:	Array
Option D: Tree 2. The result of evaluating the postfix expression 59+84-*8/ Option A: 6 Option B: 7 Option D: 4 3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>Option B:</td><td>Linked List</td></len;>	Option B:	Linked List
2. The result of evaluating the postfix expression 59+84-*8/ Option A: 6 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] = "STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>Option C:</td><td>Graph</td></len;>	Option C:	Graph
Option A: 6 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>Option D:</td><td>Tree</td></len;>	Option D:	Tree
Option A: 6 Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td></td><td></td></len;>		
Option B: 7 Option C: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] = "STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>2.</td><td>The result of evaluating the postfix expression 59+84-*8/</td></len;>	2.	The result of evaluating the postfix expression 59+84-*8/
Option D: 5 Option D: 4 3. What will be the output of the following program? void main () { char str [] = "STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td>Option A:</td><td>6</td></len;>	Option A:	6
Option D: 4 3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (head)="" (i="0;" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" front="" head="" however,="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td>Option B:</td><td>7</td></len;>	Option B:	7
3. What will be the output of the following program? void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" stack="" structure="" tail="" td="" the="" which="" }=""><td>Option C:</td><td>5</td></len;>	Option C:	5
void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (head)="" (i="0;" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" front="" head="" however,="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td>Option D:</td><td>4</td></len;>	Option D:	4
void main () { char str [] ="STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (head)="" (i="0;" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" front="" head="" however,="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" th="" the="" to="" which="" }=""><th></th><th></th></len;>		
{ char str [] = "STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td>3.</td><td>What will be the output of the following program?</td></len;>	3.	What will be the output of the following program?
{ char str [] = "STRUCTURE"; int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td></td></len;>		
int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>void main ()</td></len;>		void main ()
int len = strlen(str); int i; for (i=0; i <len; ();="" (i="0;" 4.="" a="" a:="" added="" also="" an="" as="" b:="" be="" because="" c:="" can="" cturestru="" d:="" data="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" head="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>\</td></len;>		\
int i; for (i=0; i <len; ();="" (head)="" (i="0;" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" front="" head="" however,="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>,</td></len;>		,
for (i=0; i <len; ();="" (head)="" (i="0;" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" for="" from="" front="" head="" however,="" i++="" i++)="" i<len;="" into="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" push(str[i]);="" pushes="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>int len = strlen(str);</td></len;>		int len = strlen(str);
push(str[i]); // pushes an element into stack for (i=0; i <len; ();="" (head)="" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" from="" front="" head="" however,="" i++="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>int i;</td></len;>		int i;
push(str[i]); // pushes an element into stack for (i=0; i <len; ();="" (head)="" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" from="" front="" head="" however,="" i++="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td></td></len;>		
for (i=0; i <len; ();="" (head)="" (tail)?="" 4.="" a="" a:="" added="" also="" an="" as="" b:="" back="" be="" because="" c:="" can="" cturestru="" d:="" data="" deleted="" element="" elements="" erutcurts="" eucrstutr="" from="" front="" head="" however,="" i++="" is="" known="" linked="" list="" middle.<="" no="" option="" or="" pop="" pops="" removed="" stack="" structure="" tail="" td="" the="" to="" which="" }=""><td></td><td>for (i=0; i<len; i++)<="" td=""></len;></td></len;>		for (i=0; i <len; i++)<="" td=""></len;>
Option A: ERUTCURTS Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		push(str[i]); // pushes an element into stack
Option A: ERUTCURTS Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
Option A: ERUTCURTS Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
Option A: ERUTCURTS Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		}
Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
Option B: CTURESTRU Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.	Option A:	ERUTCURTS
Option C: EUCRSTUTR Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.	-	
Option D: STRUCTURE 4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
4. Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.		
be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.	4.	Which data structure is also known as a head tail linked list because elements can
can be added or deleted from the middle.		
	Option A:	

Option B:	Stack
Option C:	Deque
Option D:	Priority queue
5.	A circular queue is implemented using an array of size 15. The array index starts with 0, front is 10, and rear is 14. The insertion of next element takes place at which array index?
Option A:	15
Option B:	1
Option C:	0
Option D:	11
6.	What will the output of the following function if nodes present in linked list are $6 \rightarrow 5 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow NULL$ and START points the first node.
	<pre>void fun (struct node* START) { if (START == NULL) return; fun (START > novt); }</pre>
	fun (START→next); printf ("%d ", START→data); }
Option A:	6,5,2,8,9
Option B:	9,8,2,5,6
Option C:	9,6,5,2,8
Option D:	9,8,2,6,5
7.	What is the output of following function if start pointing to first node of following linked list? $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow \text{NULL}$
	void fun (struct node* start) { if (start == NULL) return; printf ("%d ", start→data);
	<pre>if (start→next! = NULL) fun(start→next); printf ("%d ", start→data); }</pre>
Option A:	6,5,4,3,2,1,6,5,4,3,2,1
Option B:	1,3,5,5,3,1,1,3,5,5,3,1
Option C:	1,3,5,2,4,6,1,3,5,2,4,6
Option D:	1,2,3,4,5,6,6,5,4,3,2,1
8.	Which type of linked list has no beginning and no ending.
Option A:	Circular Linked List
Option B:	Doubly Linked List
Option C:	Singly Linked List
Option D:	Multi Linked List
1	

9.	In a doubly linked list, the number of pointers affected for an insertion operation
).	in middle will be
	in middle win be
Option A:	1
Option B:	4
Option C:	0
Option D:	2
Option D.	
10.	struct node *ptr = start->next;
10.	struct node pur – start->next,
	what "ptr" will contain if it is variable of type struct node? (start points to first
	node)
Option A:	Address of second node
Option B:	Address field of second node
•	Data of second node
Option C:	
Option D:	Data fields of second field
11.	What are the number of nodes in left and might sub-tree of the root node if the date
11.	What are the number of nodes in left and right sub-tree of the root node if the data
	is inserted in the following order in binary search tree 45, 15, 8, 56, 64, 65, 47,
0 1: 1	12, 59, 10, 73, 50, 16, 61?
Option A:	6,7
Option B:	7,6
Option C:	8,5
Option D:	5,8
10	
12.	Consider the following code segment in C to traverse a binary tree using the
	preorder
	void proceed on (nodo *trac)
	void preorder (node *tree)
	\mathbf{i} \mathbf{i} \mathbf{f} \mathbf{f}
	Statement1
	Statement2
	Statement3
)
	The above Statements should be,
Option A:	printf("%d", tree->info);
Option A.	print(%d , tree->into), preorder(tree->right);
	preorder(tree->light), preorder(tree->left);
Option B:	preorder(tree->left); preorder(tree->left);
Орион Б.	preorder(tree->ight); preorder(tree->right);
	priorite("%d", tree->info);
Ontion C:	
Option C:	preorder(tree->left); printf("% d"_tree > infe);
	printf("%d", tree->info);
Ontina	preorder(tree->right);
Option D:	printf ("%d", tree->info);
1	<pre>preorder(tree->left);</pre>
	preorder(tree->right);

13.	A BST is traversed in the following order recursively: Right, root, left
13.	The output sequence will be in,
Option A:	Ascending order
Option B:	Descending order Descending order
Option C:	
•	No specific sequence
Option D:	Random sequence
14.	What is the maximum possible number of nodes in a binary tree at level 6?
Option A:	64
Option B:	32
Option C:	48
Option C:	80
Option D.	
15.	Assume that a structure for a Binary Search Tree exists. What does the following function do? int function(root) { ptr = root; while (ptr->left!= NULL) { ptr = ptr->left; } return(ptr->data); }
Option A:	Leftmost child of BST
Option B:	Rightmost child of BST
Option C:	It gives error
Option D:	Root of BST
opusii 2.	1000 01 25 1
16.	When in-order and post-order traversing a tree resulted D, B, E, A, C, G, F and D, E, B, G, F, C, A respectively. the pre-order traversal would return:
Option A:	A, B, C, F, G, D, E
Option B:	A, D, E, B, C, F, G
Option C:	A, B, D, E, C, F, G
Option D:	A, B, G, F, D, E, C
17.	What is the number of edges present in a complete graph having n vertices?
Option A:	(n*(n+1))/2
Option B:	n
Option C:	(n-1)/2
Option D:	(n*(n-1))/2
4.5	
18.	What is the maximum possible number of edges in a directed graph with no self-
	loops having 7 vertices?
Option A:	28
Option B:	35
Option C:	42
Option D:	56

19.	Using division method, in a given hash table of size 153, the key of value 172 be
	placed at position.
Option A:	19
Option B:	72
Option C:	17
Option D:	15
20.	What are the values of h1(k) and h2(k) in the double hashing?
Option A:	$h1(k) = (m \mod k) \text{ and } h2(k) = 1 + (m' \mod k)$
Option B:	$h1(k) = (1 + (m \mod k)) \text{ and } h2(k) = m' \mod k$
Option C:	$h1(k) = (k \mod m)$ and $h2(k) = k \mod m$
Option D:	$h1(k) = (k \mod m) \text{ and } h2(k) = 1 + (k \mod m')$

Q2	Solve any Four out of Six	5 marks each
(20 Marks Each)		
A	Write a C program to test if a string is a palindrome or not us data structure (Note: palindromes ignore spacing, punctuation, and	· ·
В	Write a C program that compresses a string by deleting all spin the string using queue data structure	pace characters
С	Give the breadth-first traversal of the graph for following grafrom vertex 0. Show all the steps.	aph, starting
D	Consider a hash table with size = 10. Using quadratic probin keys 27, 72, 63, 42, 36, 18, 29, 101 into the table. Take c1 =	
Е	Explain types of data structure with example	
F	Write an algorithm to convert infix expression to postfix exp stepwise execution of algorithm for converting infix expression expression for following expression A * B + C * D	

Q3.	Solve any Two Questions out of Three 10 marks ea	ach
(20 Marks Each)		
A	Create an AVL tree using the following data entered as a sequential set. Show all the steps. 15, 20, 24, 10, 13, 7, 30, 36, 25. Show which rotation are used while constructing AVL tree.	.S
В	Write a C program for Singly Linked list for performing following operations i. Create SLL ii. Display SLL iii. Delete a node from SLL iv. Append two SLLs	
С	Draw the B-tree of order 3 created by inserting the following data arrivin in sequence: 92 24 6 7 11 8 22 4 5 16 19 20 78	ıg

University of Mumbai

Examination 2020 under cluster (Lead College: ____)

Examinations Commencing from 23^{rd} December 2020 to 6^{th} January 2021 and from 7^{th} January 2021 to 20^{th} January 2021

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour Max. Marks: 80

Q1. 40 Marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2 marks each)
1.	Convert number (723.17) ₈ into equivalent hexadecimal number
Option A:	(0D3.3C)16
Option B:	(1D3.3C)16
Option C:	(1E3.3C)16
Option D:	(1D3.4C)16
2.	What is the equivalent of (52) ₁₀ in Gray code
Option A:	110100
Option B:	1011101
Option C:	111000
Option D:	101110
3.	As per Boolean Laws which of the expressions results in 0 (i) A+A (ii) A.A (iii) A.O (iv) A. 1
Option A:	ii only
Option B:	ii &iii
Option C:	iii only
Option D:	ii,iii,iv
4.	For 4 bit number what is the range of 2's complement representation? Also perform $(5)_{10}$ - $(7)_{10}$ using 2's complement method
Option A:	-7 to +7 , 1101
Option B:	-8 to +8 , 1110
Option C:	-8 to +7 , 1110
Option D:	-7 to +8 , 1101
5.	Arrange the steps for obtaining IEEE representation of floating point in proper

	format
	1) calculate the biased exponent
	2) convert to binary
	3) convert to normalized form
Option A:	1,2,3
Option B:	3,2,1
Option C:	2,3,1
Option D:	2,1,3
6.	In Restoring division Algorithm if A<0 then which of the following is immediate step (Assume M as Dividend Q as Divisor and A as result)
Option A:	Q ₀ =0
Option B:	A= A +M
Option C:	Q ₀ =0 & A=A-M
Option D:	Q ₀ =0 & A=A+M
7.	In full adder, Boolean expression of sum will be
Option A:	S=A XOR B
Option B:	S=A XOR B
Option C:	S = A XOR B XOR C
Option D:	$S = A XOR B XOR \overline{C}$
8.	Which of the following Twos Complement binary numbers is equivalent to decimal
Ontion A.	75 ?
Option A:	1001011
Option B:	1001100 0001100
Option C:	
Option D:	0110101
9.	Identify the type of addressing mode
	Instruction
	OPCODE Address
	memory
	Pointer to operand
	Operand
Option A:	Register Addressing mode
Option B:	Register Indirect Addressing mode
Option C:	Direct Addressing mode
Option D:	Indirect Addressing mode

10.	Choose appropriate sequence of instruction cycle
Option A:	Instruction fetch, Instruction address calculation, Instruction decode, operand address calculation, fetch operand, data operation, operand address calculation, operand store
Option B:	Instruction address calculation, Instruction fetch, operand address calculation fetch operand, Instruction decode, data operation, operand address calculation and operand store
Option C:	Instruction address calculation, Instruction fetch, Instruction decode, operand address calculation, fetch operand, data operation, operand address calculation, operand store
Option D:	Instruction address calculation, Instruction fetch, Instruction decode, operand address calculation, fetch operand, operand address calculation, operand store, data operation
11.	Basic task for control unit is
Option A:	To perform logical operations
Option B:	Execution
Option C:	To initiate the resources
Option D:	To decode instructions and generate control signal
12.	A micro instruction has
Option A:	Control field
Option B:	Address field
Option C:	Status field
Option D:	Both control and address field
13.	Microprogram consisting of is stored in control memory of control unit
Option A:	instructions
Option B:	micro instructions
Option C:	micro program
Option D:	macro program
14.	In memory Hierarchy which is the fastest memory
Option A:	SRAM
Option B:	DRAM
Option C:	Register
Option D:	Cache
15.	The correspondence between the main memory blocks and those in the cache is given by
Option A:	Mapping function
Option B:	Hash function
Option C:	Locale function
Option D:	Assign function
16.	Consider a direct mapped cache of size 64 KB with block size 16 bytes. The CPU generates 28-bit addresses. The number of bits needed for cache indexing are

	respectively are:
Option A:	13
Option B:	10
Option C:	12
Option D:	11
17.	In Instruction Pipelining Structural Hazard means
Option A:	any condition in which either the source or the destination operands of an
	instruction are not available at the time expected in the pipeline
Option B:	a delay in the availability of an instruction causes the pipeline to stall
Option C:	the situation when two instructions require the use of a given hardware resource at
	the same time.
Option D:	When a data gets overwritten by branching
18.	Identify the Type of Flynn's Classification of Parallel Processing
	Instruction Memory Control Unit Processing Unit Data Memory
	Institutional financial forms of the first financial fin
	Instruction Stream Data Stream
	Instruction Memory → Control Unit → Processing Unit → Data Memory
	Instruction Stream Data Stream
	Instruction Memory → Control Unit → Processing Unit ← → Data Memory
	Instruction Memory → Control Unit → Processing Unit → Data Memory
	Instruction Stream Data Stream
Option A:	SISD
Option B:	SIMD
Option C:	MISD
Option D:	MIMD
19.	To resolve the clash over the access of the System Bus we use
Option A:	BUS arbitrator
Option B:	Multiple BUS
Option C:	Priority access
Option D:	virtual access
20.	SIMD represents an organization that
Option A:	refers to a computer system capable of processing several programs at the same time.
Option B:	represents organization of single computer containing a control unit, processor unit
opnon b.	and a memory unit.
Option C:	includes many processing units under the supervision of a common control unit
Option D:	includes many processing units with many control unit.
opnon D.	morages many processing aims with many control aims.

Q2 20 Marks	Solve any Four out of Six (5 marks each)
A	Show the mathematical step for the following conversion

	i) Convert decimal (123.25) to its equivalent octal
	ii) Convert decimal (123.25) to its equivalent hexadecimal
	iii) Convert Hexadecimal (ABCD) to its equivalent binary
	iv) Convert binary (10111100) to equivalent gray code
	v) Convert decimal (1543) to Excess-3 code
В	Write short note on Von-Neumann Model
C	Explain the single and double precision format for representing floating point
С	number using IEEE 754 standards
D	Define Instruction cycle. Explain it with a detailed state diagram.
E	Differentiate between static RAM and dynamic RAM.
E	What are the functions of following Register
F	1. IR 2. PC 3. MAR 4. MDR 5. SP

Q3.	
20 marks	
A	Solve any Two Questions out of Three (5 marks each)
i)	Write micro program for the instruction ADD A, B (Register A and B are added and result is stored at Register A.)
ii)	Differentiate between Hardwired control unit and Micro programmed control unit
iii)	Explain memory Hierarchy
В	Solve any One Question out of two (10 marks each)
i)	A program having 10 instructions (without Branch and Call instructions) is executed on non-pipeline and pipeline processors. All instructions are of same length and having 4 pipeline stages and time required to each stage is 1nsec. (Assume the four stages as Fetch Instruction ,Decode Instruction, Execute Instruction, Write Output) i. Calculate time required to execute the program on Non-pipeline and Pipeline processor. Ii Show the pipeline processor with a diagram.
ii)	Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using this Algorithm

University of Mumbai

Examination 2020 under cluster (Lead College: _____)

Examinations Commencing from 23^{rd} December 2020 to 6^{th} January 2021 and from 7^{th} January 2021 to 20^{th} January 2021

Program: **Computer Engineering** Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CSC305 and Course Name: Computer Graphics

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In mid point allings mathed, accordingte of points lying on allings are calculated in
	In mid point ellipse method, coordinate of points lying on ellipse are calculated in
Option A:	One quadrant first and others by successive rotation
Option B:	One quadrant first and others by successive reflection
Option C:	One quadrant first and others by successive translation
Option D:	All quadrants
2.	In DDA line drawing method, for lines having negative slope with absolute value greater than 1 and taking right end point as starting point, the X and Y coordinate increments are
Option A:	1/m and -1
Option B:	-1/m and 1
Option C:	-1 and -m
Option D:	1 and m
-	
3.	In Homogenous Coordinate System, all Transformations are captured by
Option A:	Addition
Option B:	Subtraction
Option C:	Multiplication
Option D:	Division
-	
4.	In Liang Barsky line clipping method, for a parallel lines, k indicates window boundary if
Option A:	$P_k > 0$
Option B:	$P_k < 0$
Option C:	$P_k = 0$
Option D:	$P_k \neq 0$
5.	What is the 1 st point on the circumference of the circle centered at (10,10) with
	radius = 10, using midpoint circle method
Option A:	(0, 10)
Option B:	(1,10)
Option C:	(1,9)
Option D:	(10,20)
6.	Coordinates of clipping window are (4,4) and (9,8). A line is drawn from point A(2,2) to point B(12,9). The result of logical AND operation on the region codes

	is
Ontion A.	0101
Option A:	1010
Option B:	
Option C:	1111
Option D:	0000
7	A -:1-:1
7.	A circle is drawn at $(30,30)$ with radius = 10. Its mirror image cannot be obtained
O :: 4: - : : A :	by Proving the 000
Option A:	Rotation by 90°.
Option B:	Reflection about Y-axis
Option C:	Translation by $T_x = 60$ and $T_y = 0$
Option D:	Scaling by $S_x = -1$ and $S_y = 1$
0	
8.	A conceptual line is drawn starting from the particular point and extending to a
	distance point outside the coordinate extends of the object in direction of X-axis,
	the line intersects twice with the polygon edges and once with the polygon vertex.
Ontion A:	Then according to inside outside test, the point lies
Option A:	Outside the polygon
Option B: Option C:	Inside the polygon On the boundary of the polygon
-	On the boundary of the polygon
Option D:	Cannot say
0	To alim any course which of the following algorithm is best suited
9.	To clip concave area, which of the following algorithm is best suited
Option A:	Cohen Sutherland line clipping method
Option B: Option C:	Liang barsky line clipping method Sutherland Hodgeman polygon clipping method
Option D:	Weiler Atherton polygon clipping method
10.	In death buffer method, when $z > death of (y, y)$
Option A:	In depth buffer method, when z > depth of (x,y) Point is visible
Option B:	Z value is not stored in depth buffer
Option C:	Z value is stored as surface intensity value
Option C:	Z value is stored in depth buffer
Орион Б.	Z value is stored in depth burier
11.	Give the series of transformation required to rotate an object about any arbitrary
11.	axis not parallel to any one of the coordinate axes in 3D space
Option A:	$R = [T] [R_x] [R_y] [R_z] [R_y^{-1}] [T^{-1}]$
Option B:	$R = [T] [R_y] [R_z] [R_y] [R_x] [T^{-1}]$ $R = [T] [R_y] [R_z] [R_x] [R_y^{-1}] [T^{-1}]$
Option C:	$R = [T] [R_y] [R_z] [R_x] [R_y^{-1}] [T^{-1}]$
Option D:	$R = [R_x][R_y][R_z][T][R_x^{-1}][R_y^{-1}][R_z^{-1}]$
option D.	[A][Y][-A][-A] [-A] [-A] [-A]
12.	In window to viewport mapping, which of the following set of transformations
12.	are involved
Option A:	Translation and scaling
Option B:	Scaling and rotation
Option C:	Scaling and reflection
Option D:	Rotation and translation
Sprion D.	
13.	What happens when in 3D space uniform scaling with respect to origin is
	performed,
	I) Original shape of object may change
•	

	II) Original position of object may change
Option A:	Only I
Option B:	Only II
Option C:	Both I and II
Option D:	Neither I nor II
14.	Which of the following input is accepted only by Boundary Fill method and not
	by Flood fill method
Option A:	Fill color
Option B:	Background color
Option C:	Edge color
Option D:	Seed pixel
15.	To convert a square into a parallelogram, which transformation is used
Option A:	Scaling
Option B:	Shear
Option C:	Scaling followed by rotation
Option D:	Rotation
16.	Which of the following is not a property of Bezier curve
Option A:	Bezier curves are multivalued.
Option B:	A Bezier curve is independent of the coordinate system used to measure the
0 0	location of control points.
Option C:	Bezier curves provide global control.
Option D:	Bezier curves are not variation diminishing
17.	Which of the following statement does not define computer graphics
Option A:	The technology that deals with designs and pictures on computers.
Option B:	Visual images or designs on some surface such as wall, paper to inform, illustrate
opnon 2.	or entertain.
Option C:	Almost everything on computer that is not text or sound.
Option D:	It is an art of drawing pictures on a computer screen with the help of
	programming.
18.	First reflect a point about x-axis, then perform a counter clock wise rotation of
	90°, this is equivalent to
Option A:	Reflection about a line X=Y
Option B:	Reflection about a line X=-Y
Option C:	Rotation about a line X=Y
Option D:	Rotation about a line X=-Y
10	
19.	What is the length of Koch curve after second Approximation
Option A:	16/9
Option B:	24/9
Option C:	8/6
Option D:	64/27
20	Lat N he the normal vector of the plane surface with N=(A D C). For a plane to be
20.	Let N be the normal vector of the plane surface with N=(A,B,C). For a plane to be a back face
Option A:	$C \le 0$
Option A:	C \- U

Option B:	C >= 0
Option C:	C < 0
Option D:	C > 0

Q.2 A	Solve any Two 5 marks each
i.	What is computer graphics? Discuss application areas in computer graphics
ii.	Write a boundary fill procedure to fill a polygon using 8-connected
	approach.
iii.	Derive the composite matrix to scale an object with respect to a fixed point
Q.2 B	Solve any One 10 marks each
i.	Given radius $r = 12$ and center coordinates (50,50), compute the
	coordinates of points lying on the circle using Mid point circle algorithm
ii.	Derive transformation matrix for perspective projection.

Q.3 A	Solve any Two 5 mark	s each
i.	What is aliasing and explain any one antialiasing technique.	
ii.	Prove that 2D rotations are additive	
iii.	Define the following terms with suitable example/diagram	
	a. Variation diminishing property	
	b. Order of continuity	
Q.3 B	Solve any One 10 mark	s each
i.	Define window, viewport and derive the equations for window to vie	wport
	transformation	
ii.	What is keyframing and explain character and facial animation	