Examinations Commencing from 7th January 2021 to 20th January 2021

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III

Course Code: ECC301 and Course Name: Engineering Mathematics III

Time: 2 hour Max. Marks: 80

Note: Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace transform of $f(t) = 1$, $0 < t < 5$; $f(t) = 0$, $t > 0$
Option A:	$\frac{1-e^{-5s}}{s}$
Option B:	$\frac{1}{2}e^{-5s}$
Option C:	
Option D:	$\frac{1+e^{-5s}}{s}$
	(10)
2.	If $L[f(t)] = log(\frac{s+3}{s+1})$, find $L[f(2t)]$
Option A:	$2 \log \left(\frac{s+3}{s+1} \right)$
Option B:	$2 \log \left(\frac{s+6}{s+2} \right)$
Option C:	$\frac{1}{2}log\left(\frac{s+3}{s+1}\right)$
Option D:	$\frac{1}{2}log\left(\frac{s+6}{s+1}\right)$
3.	Find $L[te^{-3t}sint]$
Option A:	$\frac{2s-6}{(s^2-6s+10)^2}$
Option B:	$\frac{2s+6}{(s^2+6s+10)^2}$
Option C:	$\frac{1}{(s+3)^2+1}$
Option D:	$\frac{1}{(s^2-6s+10)^2}$
4.	Find $L\left[\int_0^t u \sin 3u \ du\right]$
Option A:	$\frac{2}{(s^2+1)^2}$
Option B:	$\frac{2}{(s^2+3)^2}$
Option C:	$\frac{6}{(s^2+9)^2}$

Option D:	$\frac{2s}{(s^2+s)^2}$
	$(s^2+1)^2$
5.	$L^{-1} \left[\frac{s+5}{s^2-25} \right] = ?$
Option A:	cos5t + 5 sin5t
Option B:	cosh5t + 5 sinh5t
Option C:	cosh5t + sinh5t
Option D:	cosht + 5 sinht
•	
6.	Find $L^{-1} \left[\frac{s-2}{s^2 - 4s + 13} \right]$
Option A:	$e^{2t} \frac{\sin 3t}{3}$
Option B:	$e^{-2t} \frac{\sin 3t}{3}$
Option C:	$e^{2t}sin3t$
Option D:	$e^{2t}cos3t$
7.	In Fourier series of $f(x) = x\cos x$ in $(-\pi, \pi)$. The value of a_n is
Option A:	0
Option B:	
	$\frac{-1}{2}$
Option C:	$\frac{(-1)^n}{n^2-1}$
Option D:	$\frac{1}{n^2-1}$
0	
8.	$f(x) = \begin{cases} cosx, & -\pi < x < 0 \\ -cosx, & 0 < x < \pi \text{ is} \end{cases}$
Option A:	Both even and odd function
Option B:	neither even nor odd
Option C:	odd function
Option D:	Even function
9.	The Fourier series for $f(x)$ in $(0,2\pi)$ is $f(x) = \frac{\pi}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} cosnx$.
	Find the value of $\frac{1}{2\pi} \int_0^{2\pi} [f(x)]^2 dx$
Option A:	$\frac{\pi^3}{4} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^4}$
Option B:	$\frac{\pi^2}{4} + \frac{1}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^4}$
Option C:	$\frac{\pi^3}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^4}$
Option D:	0
option B.	
10.	A function $f(t)$ is periodic with period 2π if

Option B: $ f(t + 2\pi) = 2\pi $ Option C: $ f(t + 2\pi) = f(2\pi) $ Option D: $ f(t + 2\pi) = f(t) $ 11. Which of the following functions is NOT analytic Option A: Sinhz Option B: Cosz Option D: $ z^2 + z $ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $ f(z) \text{ may satisfy Cauchy-Riemann equation.} $ Option B: $ f(z) \text{ is constant function} $ Option D: $ u, v \text{ both are harmonic} $ 13. Find k such that $ f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y} \text{ is analytic} $ Option A: $ K=1 $ Option B: $ K=-1 $ Option C: $ K=0 $ Option D: $ K=2 $ 14. Find the characteristic roots of matrix A ,	Option A:	$f(t+2\pi)=0$
Option C: $f(t + 2\pi) = f(2\pi)$ Option D: $f(t + 2\pi) = f(t)$ 11. Which of the following functions is NOT analytic Option A: Sinhz Option B: Cosz Option C: \overline{z} Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option D: $f(z) = 0$ Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option C: $f($		
Option D: $f(t + 2\pi) = f(t)$ 11. Which of the following functions is NOT analytic Option A: Sinhz Option B: Cosz Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = $		
11. Which of the following functions is NOT analytic Option A: Sinhz Option B: Cosz Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: u, v both are harmonic 13. Find k such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option A: $K = 1$ Option B: $K = 1$ Option C: $K = 0$ Option D: $K = 0$ Option D: $K = 0$ Option D: $K = 0$ Option C: $K = 0$ Option C: $K = 0$ Option C: $K = 0$ Option D: $K = 0$ Option D: $K = 0$ 14. Find the characteristic roots of matrix A , $A = 0$ Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $A = 1, 2, 3$ Option B: $A = 1, 1, -2$ Option D: $A = 2, 3, 6$ Option D: $A = 2, 3, 6$ Option D: $A = 2, 3, 6$ Is so no of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding to eigenvalue $A = 5$ is	_	
Option A: Sinhz Option B: Cosz Option C: \bar{z} Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$		
Option B: Cosz Option C: \bar{z} Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: u, v both are harmonic 13. Find k such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option A: $K = 1$ Option B: $K = 1$ Option C: $K = 0$ Option D: $K = 0$ Option D: $K = 0$ Option A: $K = 1$ Option C: $K = 0$ Option B: $K = 0$ Option C: $K = 0$ Option A: $K = 0$ Option A: $K = 0$ Option C: $K = 0$ Option A: $K = 0$ Option C: $K = 0$ Opti	11.	Which of the following functions is NOT analytic
Option C: \overline{z} Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ If $f(z) = 0$ Option A: $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ $f(z) = 0$ Option B: $f(z) = 0$ $f(z) = 0$ Option B: $f(z) = 0$	Option A:	Sinhz
Option D: $z^2 + z$ 12. For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ O	_	Cosz
For $f(z) = u + iv$ analytic, which of the following statement is correct Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ If $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = 0$ Option C:		
Option A: $f(z)$ may satisfy Cauchy-Riemann equation. Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option C: $f(z) = 0$ If $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option C: $f(z) = 0$ Option D: $f(z) = 0$	Option D:	$z^2 + z$
Option B: $f(z)$ is constant function Option C: $f(z) = 0$ Option D: $f(z) = 0$ Option A: $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option A: $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option B: $f(z) = 0$ Option B: $f(z) = 0$ Option B: $f(z) = 0$ If $f(z) = 0$ Option A: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option C: $f(z) = 0$ Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option C: $f(z) = 0$ Option A: $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option D: $f(z) = 0$ Option A: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ Option A: $f(z) = 0$ Option B: $f(z) = 0$ $f($	12.	
Option C: $f(z) = 0$ Option D: u, v both are harmonic 13. Find k such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option A: $K = 1$ Option B: $K = -1$ Option C: $K = 0$ Option D: $K = 2$ 14. Find the characteristic roots of matrix A , $Where A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} Option A: \lambda = 1, 2, 3 Option B: \lambda = 1, 1, -2 Option C: \lambda = 2, 3, 6 Option D: \lambda = -2, -3, -6 15. \lambda = 5 is one of the eigenvalues of A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. Find the eigenvector corresponding to eigenvalue \lambda = 5 is$	Option A:	f(z) may satisfy Cauchy-Riemann equation.
Option D: u, v both are harmonic 13. Find k such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + itan^{-1} \frac{kx}{y}$ is analytic Option A: K=1 Option B: K=-1 Option C: K=0 Option D: K=2 14. Find the characteristic roots of matrix A, Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding to eigenvalue $\lambda = 5$ is	Option B:	f(z) is constant function
13. Find k such that $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic Option A: K=1 Option B: K=-1 Option C: K=0 Option D: K=2 14. Find the characteristic roots of matrix A , where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding to eigenvalue $\lambda = 5$ is		f(z) = 0
Option A: K=1 Option B: K=-1 Option C: K=0 Option D: K=2 14. Find the characteristic roots of matrix A , Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option D:	u, v both are harmonic
Option A: K=1 Option B: K=-1 Option C: K=0 Option D: K=2 14. Find the characteristic roots of matrix A , Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	13.	Find k such that $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\frac{kx}{y}$ is analytic
Option C: K=0 Option D: K=2 14. Find the characteristic roots of matrix A , Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option A:	
Option D: K=2 14. Find the characteristic roots of matrix A , where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ Find the eigenvector corresponding to eigenvalue $\lambda = 5$ is	Option B:	K=-1
14. Find the characteristic roots of matrix A , $Where A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option C:	K=0
Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option D:	K=2
Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$		
Where $A = \begin{bmatrix} -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ Option A: $\lambda = 1, 2, 3$ Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	14.	
Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$		Where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$
Option B: $\lambda = 1, 1, -2$ Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5 \text{ is one of the eigenvalues of A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option A:	$\lambda = 1, 2, 3$
Option C: $\lambda = 2, 3, 6$ Option D: $\lambda = -2, -3, -6$ 15. $\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding to eigenvalue $\lambda = 5$ is	Option B:	
15. $\lambda = 5 \text{ is one of the eigenvalues of A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}. \text{ Find the eigenvector corresponding to eigenvalue } \lambda = 5 \text{ is}$	Option C:	
to eigenvalue $\lambda = 5$ is	Option D:	$\lambda = -2, -3, -6$
to eigenvalue $\lambda = 5$ is		
to eigenvalue $\lambda = 5$ is	15.	$\lambda = 5$ is one of the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$. Find the eigenvector corresponding
Option A: [1 – 1 0]'		to eigenvalue $\lambda = 5$ is
<u> </u>	Option A:	[1 - 1 0]'
Option B: [1 1 1]'	Option B:	[1 1 1]'
Option C: $[1-1-1]'$	Option C:	[1-1-1]'

Option D:	$[1 \ 0 \ -1]'$	
16.	If $A = \begin{bmatrix} 1 & 2 & 8 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ Find Eigen Values of $A^2 + 3A + 2A^{-1} + I$	
Option A:	7,-3,12	
Option B:	6,-4,11	
Option C:	1,-1,2	
Option D:	7,-3,15	
-		
17.	If the matrix A has eigen value 1,1,5 then algebraic multiplicity of A for $\lambda = 1$ is	
Option A:	-1	
Option B:	0	
Option C:	1	
Option D:	2	
18.	The divergence and curl of $\bar{a} = 2i - 3j + k$ is	
Option A:	$\operatorname{div} \bar{a}=0$, curl $\bar{a}=5$	
Option B:	div \bar{a} =2, curl \bar{a} =0	
Option C:	div \bar{a} =3, curl \bar{a} =3	
Option D:	$\operatorname{div} \bar{a}=0$, $\operatorname{curl} \bar{a}=0$	
19.	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal	
Option A:	a = 2	
Option B:	a = -2	
Option C:	a = -4	
Option D:	a = 4	
20.		
	Evaluate $\int_C y dx + x dy$ along $y = x^2$ from A(0,0) to B(1,1)	
Option A:	0	
Option B:	2xy	
Option C:	-1	
Option D:	1	

Q2.	Solve any Four out of Six	5 marks each
(20 Marks Each)		
A	Find $L\left[e^{-t}\int_0^t e^u \cosh u du\right]$	
В	$L^{-1}\left[\log\left(1+\frac{4}{s^2}\right)\right]s$	
С	Obtain the Fourier series for e^{-x} in $(0,2\pi)$	
D	Find the analytic function $f(z)$ whose imaginary part is $e^{-x}(y\sin y + x\cos y)$	

Е	Show that $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence find A^{-1}
F	Evaluate by using Green's theorem $\int_C (x^2 - y) dx + (2y^2 + x) dy$, where C is the closed region bounded $by y = 4$ and $y = x^2$

Q3.	Solve any Four out of Six 5 marks each
(20 Marks Each)	
A	Evaluate $\int_0^\infty e^{-3t} \left(\frac{\sinh t \sin t}{t} \right) dt$
В	Find $L^{-1} \left[\frac{S}{(s^2 + 4s + 13)^2} \right]$
С	Obtain the half range Fourier sine series expansion for $f(x) = (x - x^2)$ in (0,2)
D	Obtain the orthogonal trajectories for the family of curves $e^{-x} \cos y = C$.
E	Check whether the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.

Examination 2020 under cluster 5(Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits Time: 2 Hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Cut in voltage for Si and Ge diode is respectively
Option A:	0.7 V and 0.3 V
Option B:	0.3 V and 0.7 V
Option C:	0.5 V and 0.3 V
Option D:	0.7 V and 0.5 V
2.	In forward bias diode current increases
Option A:	linearly
Option B:	exponentially
Option C:	parabolic
Option D:	hyperbolic
3.	In reverse bias current suddenly increase after
Option A:	breakdown
Option B:	breakover
Option C:	cut in
Option D:	cut out
4.	If temperature increases VI characteristics sifts to and if decreases it shifts to
Option A:	left, right
Option B:	right, left
Option C:	left, remains constant
Option D:	right, remains constant
5.	For Zener diode as a voltage regulator , line regulation means
Option A:	fixed input voltage and fixed load resistor
Option B:	variable input voltage and variable load resistor
Option C:	fixed input voltage and variable load resistor
Option D:	variable input voltage and fixed load resistor

Option A: KT/q, 28mV Option D: q/KT, 28mV Option D: q/KT, 28mV 7. A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 × 10exp-14 A. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option B: 6.41V Option D: 0.641V Option D: 0.641V S. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of τπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 3000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: Option B: 0° Option B: 0° Option B: 0° Option C: 0° Option B: AC only Option C: DC only Option D: Difference of AC and DC Option B: Cut off point Option C: Operating point Option C: Option Dint <th>6.</th> <th>The value of thermal voltage Vt at room temprature T=300K is calculated by and it is</th>	6.	The value of thermal voltage Vt at room temprature T=300K is calculated by and it is
Option B: KT/q. 28mV Option D: q/KT, 26mV Option D: q/KT, 28mV 7. A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 × 10exp-14 A. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option B: 6.41V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option D: 5000 ohm Option D: 5000 ohm Option A: 180° Option A: 180° Option B: 0° Option C: 90° Option C: 90° Option B: AC and DC Option B: AC only Option C: DC only Option B: AC only Option C: DC only Option B: AC and DC Option B: Cut off point Option B: Cut off point <	Option A:	KT/q, 26mV
Option C: q/KT, 26mV Qption D: q/KT, 28mV 7. A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 × 10exp-14 A. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option B: 0° Option B: 0° Option B: 0° Option C: 90° Option C: DC only Option A: Sum of AC and DC Option B: Octoor DC Option A: Saturation point Option C: DC only Option C: Operating point Option D: Critical point To amplify low frequency signal,		
Option D: q/KT, 28mV 7. A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 × 10exp-14 A. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option B: 6.41V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option B: Option B: 0° Option B: 0° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sun of AC and DC Option B: AC only Option C: DC only Option A: Saturation point Option A: Cut off point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,	_	-
7. A silicon pn junction at T = 300 K has a reverse saturation current of IS = 2 × 10exp-14 Λ. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option B: 6.41V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option D: 5000 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 99° Option C: 99° Option C: 90° Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called		*
10exp-14 A. Determine the required forward-bias voltage to produce a current of ID = 1 mA. Option A: 641V Option B: 6.41V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option D: 5000 ohm Option D: 5000 ohm The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option A: 180° Option D: 270° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	1	
Option B: 6.41V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: Option B: 0° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	7.	10exp-14 A. Determine the required forward-bias voltage to produce a current of
Option C: 64.1V Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option D: 5000 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option B: Option B: 0° Option B: 0° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option B: AC only Option B: AC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option B: Cut off point Option B: Cut off point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	Option A:	641V
Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	Option B:	6.41V
Option D: 0.641V 8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	Option C:	64.1V
8. A transistor with β = 120 is biased to operate at a dc collector current of 1.2 mA. Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option B: 0° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	Option D:	0.641V
Find the value of rπ. Option A: 625 ohm Option B: 1250 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling		
Option B: 1250 ohm Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	8.	_
Option C: 2500 ohm Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	Option A:	625 ohm
Option D: 5000 ohm 9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	Option B:	1250 ohm
9. The phase difference between the output and input voltages of a CE amplifier is Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	Option C:	2500 ohm
Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	Option D:	5000 ohm
Option A: 180° Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is		
Option B: 0° Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option C: Operating point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	9.	The phase difference between the output and input voltages of a CE amplifier is
Option C: 90° Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	Option A:	180°
Option D: 270° 10. When a transistor amplifier is operating, the current in any branch is	Option B:	0°
10. When a transistor amplifier is operating, the current in any branch is	Option C:	90°
Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	Option D:	270°
Option A: Sum of AC and DC Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling		
Option B: AC only Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal, is used in multistage amplifiers. Option A: RC coupling	10.	When a transistor amplifier is operating, the current in any branch is
Option C: DC only Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	Option A:	Sum of AC and DC
Option D: Difference of AC and DC 11. The point of intersection of d.c. and a.c. load lines is called Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,	Option B:	AC only
11. The point of intersection of d.c. and a.c. load lines is called	Option C:	DC only
Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	Option D:	Difference of AC and DC
Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling		
Option A: Saturation point Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	11.	The point of intersection of d.c. and a.c. load lines is called
Option B: Cut off point Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling	Option A:	_
Option C: Operating point Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling		Cut off point
Option D: Critical point 12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling		
12. To amplify low frequency signal,is used in multistage amplifiers. Option A: RC coupling		
amplifiers. Option A: RC coupling	-	-
	12.	
	Option A:	RC coupling

Option C:	impedance coupling
Option D:	direct coupling
13.	Which of the following is the fastest switching device?
Option A:	MOSFET
Option B:	Triode
Option C:	JFET
Option D:	BJT
14.	Before the invention of power amplifiers for the amplification of audio signals
	generally device was used
Option A:	Diode
Option B:	OPAMP
Option C:	Vacuum tubes
Option D:	SCR
15.	Power amplifier directly amplifies
Option A:	Voltage of signal but not Current
Option B:	Current of the signal but not Voltage
Option C:	Power of the signal but not Voltage and Current
Option D:	Voltage, Current and Power of the signal
16.	In a multistage amplifier, generally the output stage is also called
Option A:	Mixer stage
Option B:	Power stage
Option C:	Detector stage
Option D:	Amplifier stage
17.	The maximum efficiency of resistance loaded class A power amplifier is
Option A:	5 %
Option B:	50 %
Option C:	30 %
Option D:	25 %
18.	The Maximum and minimum output of the Differential amplifiers is defined as:
Option A:	$Vmax = V_{DD}$, $Vmin = -V_{DD}$
Option B:	$Vmax = V_{DD}$, $Vmin = R_D x Iss$
<u> </u>	
Option C:	$Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$
	$Vmax = V_{DD}, Vmin = V_{DD} - R_D x Iss$ $Vmax = -V_{DD}, Vmin = -V_{DD}$
Option C: Option D:	$Vmax = -V_{DD}$, $Vmin = -V_{DD}$
Option C:	
Option C: Option D:	$Vmax = -V_{DD}$, $Vmin = -V_{DD}$ In Common Mode Differential Amplifier, the outputs $Vout_1$ and $Vout_2$ are related as:
Option C: Option D:	$Vmax = -V_{DD}, Vmin = -V_{DD}$ In Common Mode Differential Amplifier, the outputs $Vout_1$ and $Vout_2$ are related

Option C:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other and their
	respective inputs.
Option D:	Vout ₁ and Vout ₂ have same amplitude and are in phase with each other but out of
	phase with their respective inputs.
20.	If output is measured between two collectors of transistors, then the Differential
	amplifier with two input signal is said to be configured as
Option A:	Dual Input Balanced Output
Option B:	Dual Input Unbalanced Output
Option C:	Single Input Balanced Output
Option D:	Single Input Unbalanced Output

Q2.	Solve any Two Questions out of Three 10 marks each
A	Determine the following for the network given below Fig. 1 Voltage gain, Current gain, input impedance and output impedance 47K R1 Ref 2.7K 22K R2 RE 31.2K RE Fig. 1
В	With neat diagram derive the efficiency of transformer coupled class –A power amplifier? State its uses.
С	Explain construction and working of n-channel E-MOSFET with output characteristics

Q3.	
A	Solve any Two 5 marks each
i.	Compare BJT and JFET
ii.	Explain working of pn junction diode with the help of VI characteristics.
iii.	Determine the range of values of Vi that will maintain the Zener diode of
	Fig. 2 in the "on" state.

	$V_{Z} = 20 \text{ V}$ $I_{ZM} = 60 \text{ mA}$ $V_{Z} = 20 \text{ V}$ $I_{ZM} = 60 \text{ mA}$ I_{Z} I_{Z
В	Solve any One 10 marks each
i.	For the circuit shown in Fig. 3, the transistor parameter are V_{BE} (on) = 0.7 V , β = 200, $VA = \infty$, i. Derive the expression for lower cutoff frequency due to input coupling capacitor. ii. Determine lower cut-off frequency and voltage gain
ii.	Explain the MOS differential pair amplifier with a common-mode input voltage v_{CM} .

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Electronics and Telecommunication

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 Hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	A C 11 11 1 1 C
1.	A full adder can be made out of
Option A:	two half adders
Option B:	two half adders and a OR gate
Option C:	two half adders and a NOT gate
Option D:	three half adders
2.	POS expressions can be implemented usinglogic circuit.
Option A:	2-level OR-AND
Option B:	2-level OR-AND and NOR
Option C:	2-level XOR
Option D:	2-level NOR
3.	To program basic logic functions which type of PLD should be used?
Option A:	PAL
Option B:	PLA
Option C:	CPLD
Option D:	SLD
4.	Sequential structure of VHDL
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option B:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration
Option C:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration
Option D:	Library Declaration; Entity Declaration; Architecture Declaration; Configuration
-	•
5.	VHDL is based on which programming language
Option A:	С
Option B:	PHP
Option C:	Assembly
Option D:	ADA
6.	TTL inputs are the emitters of a
Option A:	Transistor-transistor logic
Option B:	Multiple-emitter transistor
Option C:	Resistor-transistor logic
Option D:	Diode-transistor logic
1	

7.	In case of XOR/XNOR simplification we have to look for the
,.	following
Option A:	Both Diagonal and Straight Adjacencies
Option B:	Only Offset Adjacencies
Option C:	Both Offset and Straight Adjacencies
Option D:	Both Diagonal and Offset Adjacencies
1	
8.	On addition of 28 and 18 using 2's complement, we get
Option A:	00101110
Option B:	0101110
Option C:	00101111
Option D:	1001111
9.	One example of the use of an S-R flip-flop is as
Option A:	Transition pulse generator
Option B:	Racer
Option C:	Switch debouncer
Option D:	Astable oscillator
10.	Being a universal gate, it is possible for NOR gate to get converted into AND
	gate by inverting the inputs
Option A:	before getting applied to NOR gate
Option B:	after getting applied to NOR gate
Option C:	before getting applied to AND gate
Option D:	after getting applied to AND gate
11.	On subtracting (01010)2 from (11110)2 using 1's complement, we get
Option A:	01001
Option B:	11010
Option C:	10101
Option D:	10100
•	
12.	Which of the following is the most widely employed logic family?
Option A:	Emitter-coupled logic
Option B:	Transistor-transistor logic
Option C:	CMOS logic family
Option D:	NMOS logic
13.	The time required for a gate or inverter to change its state is called
Option A:	Rise time
Option B:	Decay time
Option C:	Propagation time
Option D:	Charging time
14.	Internal propagation delay of asynchronous counter is removed by
Option A:	Ripple counter
Option B:	Ring counter
Option C:	Modulus counter
Option D:	Synchronous counter

15.	One of the major drawbacks to the use of asynchronous counters is that
Option A:	Low-frequency applications are limited because of internal propagation delays
Option B:	High-frequency applications are limited because of internal propagation delays
Option C:	Asynchronous counters do not have major drawbacks and are suitable for use in
1	high- and low-frequency counting applications
Option D:	Asynchronous counters do not have propagation delays, which limits their use in
	high-frequency applications
16.	What is the preset condition for a ring shift counter?
Option A:	All FFs set to 1
Option B:	All FFs cleared to 0
Option C:	A single 0, the rest 1
Option D:	A single 1, the rest 0
17.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state
Option B:	Low state
Option C:	Toggle state
Option D:	No Change State
18.	Which is the major functioning responsibility of the multiplexing combinational
	circuit?
Option A:	Decoding the binary information
Option B:	Generation of all minterms in an output function with OR-gate
Option C:	Generation of selected path between multiple sources and a single destination
Option D:	Encoding of binary information
10	The cotal number (651 124)8 is equivalent to
19.	The octal number (651.124)8 is equivalent to
Option A:	(1A9.2A)16 (1B0.10)16
Option B:	(180.10)16
Option C: Option D:	(180.80)16
Option D:	(100.00)10
20.	The addition of +19 and +43 results as in 2's complement system.
Option A:	11001010
Option B:	101011010
Option C:	00101010
Option D:	0111110
Crush D.	\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{

Subjective/Descriptive Questions

Option 1

Q2	Solve any Four out of Six 5 marks each
(Total 20 Marks)	
A	Compare SRAM with DRAM.
В	Design full adder using 3:8 decoder.
С	Convert (532.125) base 8, into decimal, binary and hexadecimal.
D	VHDL Code for full Adder.
Е	Convert JK Flip Flop to T Flip Flop.
F	Compare TTL and CMOS Logic Families.

Option 2

Q3.	Solve any Two Questions out of Three 10 marks each
(Total 20 Marks)	
A	Design 3 bit gray to binary converter.
В	Minimize the following expression using Quine Mc-cluskey technique.
	$F(A,B,C,D)=\sum M(0,1,2,3,5,7,9,11)$
С	Design Synchronous counter using T-type flip flops for getting the
	following sequence 0-2-4-6-0.take care of lockout condition.

Examination 2020 under cluster 5 (Lead College: APSIT)

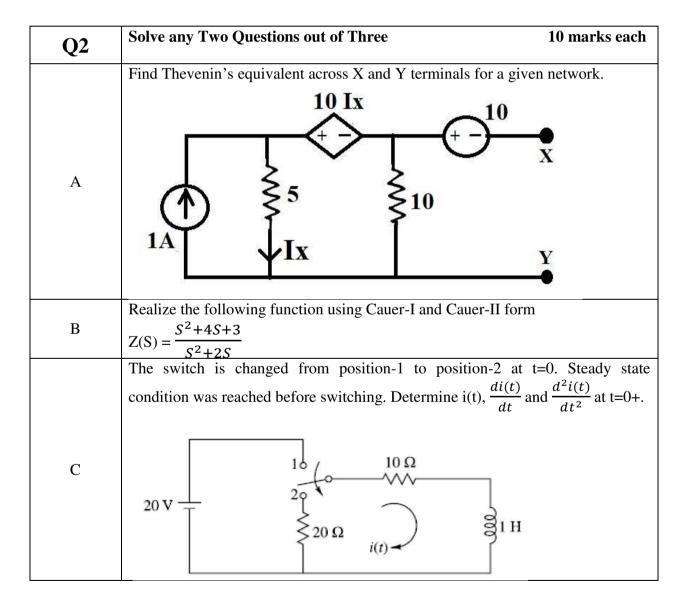
Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021

Program: Electronics and Telecommunication Engineering

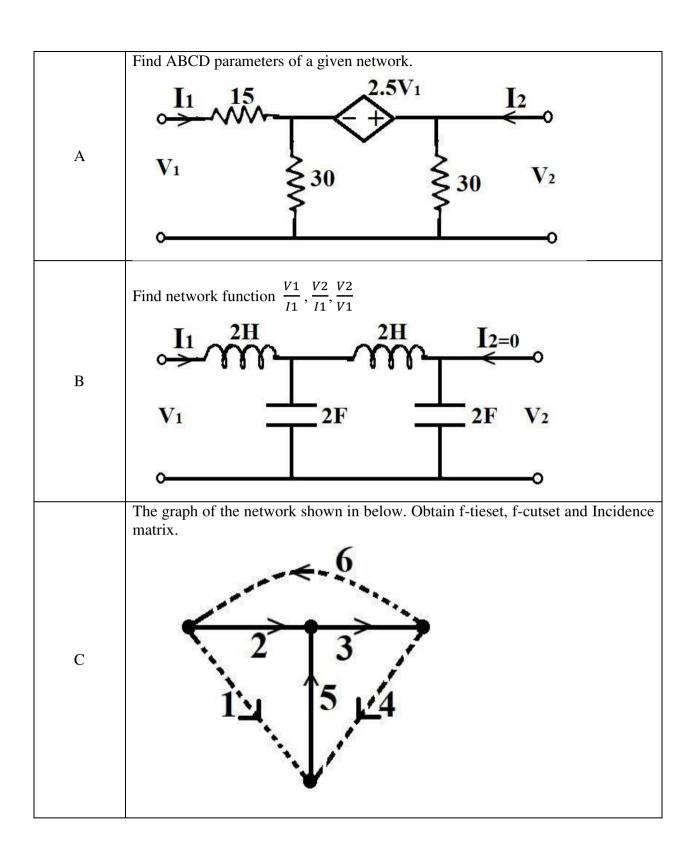
Curriculum Scheme: Rev-2019 Examination: SE Semester III

Course Code: ECC304 and Course Name: Network Theory

Time: 2 Hour Max. Marks: 80


Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following conditions delivers maximum power to the load?
Option A:	$R_L > R_{TH}$
Option B:	$R_L = R_{TH}$
Option C:	$R_L < R_{TH}$
Option D:	Depends upon source.
2.	Determine value of Va shown in the following figure.
Option A:	1 V
Option B:	2 V
Option C:	3 V
Option D:	4 V
- I	
3.	Refer the following figure to find current Ia. 2 1 8 V 2 Ia 2 Ia
Option A:	4 A
Option B:	3 A

Option C:	2 A
Option D:	1 A
1	
4.	Two inductively coupled coils are connected in series with the Aiding method, where L1=6mH, L2=6mH and M=1mH. Determine Total inductance of combination.
Option A:	12 mH
Option B:	13 mH
Option C:	14 mH
Option C:	10 mH
Option D.	
5.	Number of fundamental cutsets in following oriented graphs are
Option A:	3
Option B:	4
Option C:	5
Option D:	6
6.	Which of the following is the correct generalized KCL equation in graph theory?
Option A:	$B.Z_b.B_m^TI_1 = B.Vs - B.Z_bI_S$
Option B:	$QY_b Q^T \cdot V_t = Q I_S - Q Y_b V_S$ $Y = QY_b Q^T$
Option C:	$Y = QY_b Q^1$
Option D:	$QY_b Q^T.V_t = Q (1 - Q Y_b V_s)$
7.	Reduced Incidence matrix can be obtained by
Option A:	Eliminating a row of complete incidence matrix
Option B:	Multiplying complete incidence matrix with its transpose
Option C:	
Option D:	Obtaining tree
8.	Laplace transform of $\int_0^t f(t) dt$ is equal to
Option A:	d F(S) / dS
Option B:	S F(S) - f(0)
Ontion C:	F(S) / S
Option C:	1'(3) / 3


9.	Voltage source V is applied to series connected R and L networks. Equation of
) .	the current in the inductor is
Option A:	I.t
	$i(t) = V(1 - e^{-\frac{2t}{R}}) / R$
Option B:	0
Option C:	$i(t) = V \left(1 - e^{-\frac{Rt}{L}}\right) / R$ $i(t) = \left(e^{-\frac{Rt}{L}}\right)$
Option D:	$i(t) = \left(a^{-\frac{Rt}{L}}\right)$
_	
10.	In the following figure, a switch was opened for a long time and then closed at $t = 0$. Determine $i(t)$ at $t = 0^+$.
	7 i(t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	10
Option A:	1 A
Option B:	0.3 A
Option C:	0.7 A
Option D:	0 A
1	
11.	For a series connected R-C network where $R = 100$ ohm and $C = 0.1$ uF
	connected in series. Time constant (τ) of a given circuit is
Option A:	10 uSec
Option B:	1 / 100 Sec
Option C:	100 <u>u</u> Sec
Option D:	1 uSec
12.	The driving point impedance function $Z(S)$ of a network has pole-zero location shown in figure, then $Z(S)$ is given by
	↑
	×3j
	-4 -3 -2 -1
	*
	50 B.D.
	V
Option A:	H(S+2-3j)(S+2+3j)
	$\frac{(S+1)}{H(S-1)}$
Option B:	
	$\overline{(S-2-3j)(S-2+3j)}$

tz. Elements in the
iz. Elements in the
impedance is
nbination is to be
btained by adding
•
to current ratio at
to current ratio at
same if excitation
same ii cacitativii

Option D:	Series combination of two capacitors
19.	Realization of function using Cauer-II can be obtained by
Option A:	Partial fraction expansion on Y(S)
Option B:	Partial fraction expansion on Z(S)
Option C:	Division operation on Z(S)
Option D:	Continued fraction expansion
20.	Function F(S) = $\frac{(S-3)}{S^2+9S+20}$ is not positive real function because
Option A:	A zero is right half of S-Plane
Option B:	Poles are lies on left side of S plane
Option C:	A zero is at left half of S plane
Option D:	All poles lie on left half of S-Plane

03	Solve any Two Questions out of Three	10 marks each
Q5		

Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021 to 20th January 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 "C")

Examination: SE Semester III

Course Code: **ECC305** and Course Name: **Electronic Instrumentation & Control Systems**Time: 2 Hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	On which principle Wheatstone bridge works?
Option A:	full deflection
Option B:	partial deflection
Option C:	null deflection
Option D:	no diffraction
2.	The simplest type of bridge used for the measurement of medium inductance is a
Option A:	Maxwell
Option B:	Schering
Option C:	Hey
Option D:	Wheatstone
2	The principle of Home consists and supremodition is applied to
3.	The principle of Homogeneity and superposition is applied to
Option A:	Linear time-variant system
Option B:	Non-linear time-variant system
Option C:	Linear time-invariant system
Option D:	Non-linear time-invariant system
4.	In Force-Voltage analogy, damper is analogous to
Option A:	Inductance
Option B:	Charge
Option C:	Current
Option D:	Resistance
5.	A Schering bridge can be used for the
Option A:	protecting the circuit from temperature rises
Option B:	testing capacitors
Option C:	measuring voltages
Option D:	measuring currents
6.	The overall transfer function, from block diagram reduction, for parallel blocks is
Option A:	Sum of individual gain
Option B:	Difference of individual gain

Option C:	Product of individual gain
Option D:	Division of individual gain
1	
7.	The steady state error due to a step input $Au(t)$ is given by
Option A:	A/(1+Kp)
Option B:	A/Kp
Option C:	1/AKp
Option D:	<i>Kp/(1+A)</i>
8.	What is the Type and the Order of the system,
	100(s+5)(s+30)
	$G(s) = \frac{100(s+5)(s+30)}{s^3(s+2)(s^2+3s+10)}.$
Option A:	4 and 9
Option B:	4 and 7
Option C:	3 and 5
Option D:	3 and 6
Pron D.	
9.	Which among the following second order systems will take more time to reach it's
	steady state value?
Option A:	Undamped system
Option B:	Critically damped system
Option C:	Overdamped system
Option D:	Underdamped system
10.	The characteristic equation of a system is given below. Find the range of values for k.
	$s^3 + 3ks^2 + (k+2)s + 4 = 0$
Option A:	0 <k<0.523< td=""></k<0.523<>
Option B:	0.527 <k<infinity< td=""></k<infinity<>
Option C:	0.678 <k<infinity< td=""></k<infinity<>
Option D:	0.21 <k<0.527< td=""></k<0.527<>
11.	Function of transducer is to convert
Option A:	Electrical signal into non electrical quantity
Option B:	Electrical signal into mechanical quantity
Option C:	Non electrical quantity into electrical signal
Option D:	To do nothing
12.	The change in loading and unloading curves is known as
Option A:	Zero drift characteristics
Option B:	Sensitivity drift
Option C:	Hysteresis
Option D:	Zero drift plus sensitivity drift characteristics
- T	r
t	I .

13.	Phase margin of the system is used to specify
Option A:	relative stability
Option B:	absolute stability
Option C:	time response
Option D:	frequency response
14.	If damping ratio of a given system is 0.5, then the lines joining complex poles with origin are inclined to negative real axis at
Option A:	±90 deg
Option B:	±60 deg
Option C:	±45 deg
Option D:	±30 deg
15.	In Bode diagram, the factor $1/(jw)(jw)$ in the transfer function gives a line having slope
Option A:	20 dB per decade
Option B:	40 dB per decade
Option C:	-20 dB per decade
Option D:	-40 dB per decade
16.	Where are the closed loop poles of the following system located?
	$G(s)H(s) = \frac{1}{s^2 + 49}$
Option A:	They are located on negative real axis
Option B:	They are located on jw axis
Option C:	They are located on right half of s-plane
Option D:	They are located, one on the right half and one on the left half
option 2.	They are recared, one on the right hair and one on the fert hair
17.	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K(s+2)}{s(s^2+2s+2)}$. The centroid is
Option A:	0
Option B:	-1/2
Option C:	-2/3
Option D:	1/2
18.	Gain margin is the reciprocal of the gain at the frequency at which the phase angle is
Option A:	90 deg
Option B:	180 deg
Option C:	-180 deg
Option D:	0 deg
19.	A system has 8 poles and 3 zeros. The slope of its highest frequency asymptote in its magnitude plot is
Option A:	-40 dB/decade
Option B:	-60 dB/decade
Option C:	-100 dB/decade
Option D:	-150 dB/decade
20.	Settling time is inversely proportional to product of the damping ratio and

Option A:	Time constant
Option B:	Maximum overshoot
Option C:	Peak time
Option D:	Undamped natural frequency

Q2.	Answer the following:	
A	Solve any Two 5 mar	rks each
i.	Explain functional blocks of a measurement system.	
ii.	Compare temperature transducers RTD and Thermocouple.	
iii.	Find resonance peak and resonance frequency for a unity feedback	system
	having forward path transfer function as	
	$G(s) = \frac{36}{s(s+8)}.$	
В	Solve any One 10 mar	rks each
i.	Obtain transfer function of the block diagram shown in figure –	
	H_3 H_3 H_3 H_2 H_2	
ii.	Sketch the root locus for the following system with $K>0$	
	$G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+4)}$	

Q3.	Answer the following:	
A	Solve any Two 5 marks each	:h
i.	Explain the working principle of LVDT with a neat sketch.	
ii.	What are compensators? Why are they needed in control systems?	
iii.	Sketch polar plot of	
	$G(s) = \frac{1}{s(s+a)(s+b)}.$	
В	Solve any One 10 marks each	:h
i.	Draw Bode plot for a unity feedback control system with open loop transfe	er
	function,	
	$G(s) = \frac{K}{s(1+s)(1+0.1s)}.$	
ii.	Investigate the stability of the system that has the characteristic equation :	
	$s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$	

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III

Course Code: ECC301 and Course Name: Engineering Mathematics III

Time: 2 hour Max. Marks: 80

Note: All Questions are compulsory.

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. 2 marks each
1.	Laplace Transform of $\{t \ sin 3t\}$ is
Option A:	$-\frac{6s}{(s^2+9)^2}$
Option B:	$-\frac{3}{(s^2+9)^2}$ $6s$
Option C:	$\frac{6s}{(s^2+9)^2}$
Option D:	$-\frac{6}{(s^2+9)^2}$
2.	Laplace Transform of $\{sin2t \ sin3t\}$ is
Option A:	$\frac{1}{2} \left[\frac{\mathrm{s}}{\mathrm{s}^2 + 1} - \frac{\mathrm{s}}{\mathrm{s}^2 + 25} \right]$
Option B:	$\frac{1}{2} \left[\frac{s}{s^2 + 1} + \frac{s}{s^2 + 25} \right]$
Option C:	$\frac{1}{2} \left[\frac{s}{s^2 + 25} - \frac{s}{s^2 + 1} \right]$
Option D:	$\left[\frac{s}{s^2+1} - \frac{s}{s^2+25}\right]$
3.	Laplace Transform of $\{e^{2t}(1+sint)\}$ is
Option A:	$\frac{1}{(s+2)} + \frac{1}{(s+2)^2 + 1}$
Option B:	$\frac{1}{(s-2)} + \frac{s}{(s-2)^2 + 1}$
Option C:	$\frac{1}{(s-2)} + \frac{1}{(s-2)^2 + 1}$
Option D:	$\frac{1}{(s-2)} + \frac{1}{(s-2)^2 - 1}$

4.	If $L\{f(t)\} = \frac{1}{s\sqrt{s+1}}$, then $L\{f(2t)\}$ is
Option A:	
Option A.	$\frac{1}{2s}\sqrt{\frac{2}{(s+2)}}$
	$2s\sqrt{(s+2)}$
Option B:	
	$\left \frac{1}{s}\sqrt{\frac{2}{(s+2)}}\right $
0 1 0	\ \ <u></u>
Option C:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\left \frac{1}{2}\sqrt{\frac{s}{(s+2)}}\right $
Option D:	
_	$\sqrt{\frac{2}{(s+2)}}$
	$\sqrt{(s+2)}$
5.	1
J.	Inverse Laplace Transform of $\frac{1}{s^4}$ is
Option A:	$\frac{1}{3!} t^4$
Option B:	$\frac{1}{2!} t^4$
Ontion C:	2! 1 . 2
Option C:	$\frac{1}{3!} t^3$
Option D:	$\frac{1}{4!}$ t ⁴
	4!
6.	Inverse Laplace Transform of $\frac{1}{s} + \frac{1}{(s+2)^2}$ is
	5 (3.2)
Option A:	$1-te^{-2t}$
	24
Option B:	$1+te^{2t}$
Option C:	$1 + e^{-2t}$
option C.	
Option D:	
Option D.	$1 + te^{-2t}$
7.	Inverse Leplace Transform of 1 is
, , , , , , , , , , , , , , , , , , ,	Inverse Laplace Transform of $\frac{1}{(s-2)^2-1}$ is
	24
Option A:	e^{-2t} sinht
Option B:	e^{2t} sint
Option C: Option D:	e^{2t} sinht
Орион D.	$e^{2t}cosht$
8.	Find Fourier coefficient a_0 for the function $f(x) = 2x - 3x^2$, $0 \le x \le 2\pi$?
	$\frac{1}{2}$
Option A:	$1-2\pi$

Option B:	$\pi(1-2\pi)$
Option C:	$\begin{pmatrix} n(1-2n) \\ 0 \end{pmatrix}$
Option C:	$2\pi(1-2\pi)$
Option B.	
9.	Find Fourier coefficient b_1 in half range sine series for the function
	$f(x) = \sin x, \ 0 < x < \pi$?
Option A:	$\frac{\pi}{2}$
	2
Option B:	0
1	
Option C:	1
Option C.	
Option D:	-1
10	
10.	Find Fourier coefficient a_0 for the function $f(x) = 1 - x^2$, $-1 \le x \le 1$
Ontion A.	2
Option A:	$\frac{2}{3}$
Option B:	1
opuon 2.	3
Option C:	0
Option D:	2
	$-\frac{1}{3}$
11.	Which of the following is related to Cauchy-Riemann equations?
Option A:	$u_x = v_y$, $u_y = v_x$
Option B:	$u_x = -v_y$, $u_y = v_x$
Option C:	$u_x = v_y$, $u_y = -v_x$
Option D:	$u_x = u_y$, $v_y = v_x$
10	
12.	If the eigenvalues of a 4x4 matrix A are given as 2,-3,-13 and 7, then determinant
	of A is
Option A:	19
Option B:	45
Option C:	546
Option D:	25
13.	What is the divergence of the vector field $\vec{f} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + xyz^3\hat{k}$ at the
	point (1, 2, 3)?
Option A:	89
Option B:	80
Option C:	124
Option D:	100

14.	The Eigen values of the following matrix are
	$A = \begin{bmatrix} -2 & 5 & 4 \\ 0 & 7 & 5 \\ 0 & 0 & 2 \end{bmatrix}$
	$A = \begin{bmatrix} 0 & 7 & 5 \\ 0 & 0 & 2 \end{bmatrix}$
Option A:	-3, 12, -6
Option B:	2,4,5
Option C:	1, 2, 3
Option D:	-2,2,7
1.7	
15.	If $u = 2x + kx^3 + 3xy^2$ is harmonic then the value of the constant k is
Option A:	3
Option B:	-1
Option C:	2
Option D:	0
=	
16.	A vector field which has a vanishing divergence is called as
Option A:	Solenoidal field
Option B:	Rotational field
Option C:	Hemispheroidal field
Option D:	Irrotational field
17.	If all Eigen values are distinct then the matrix is
Option A:	Non-diagonalizable
Option B:	Diagonalizable
Option C:	Symmetric
Option D:	Singular
18.	If $f(z) = ze^z$ then it's real part u is given by
Option A:	$e^{x} \{x \sin y + y \cos y\}$
Option B:	$e^{x} \{ y \sin y + x \cos y \}$
Option C:	$e^x \{x \cos y - y \sin y\}$
Option D:	$e^x \{ y \sin y - x \cos y \}$
19.	If the Eigenvalues of a matrix A are 1,-2,-1 then the Eigenvalues of
Ont: A	$A^2 - A - 2I$ are
Option A:	-4,4,0
Option B:	2,4,1
Option C: Option D:	2,4,0
<i>-</i> Ծրոսու D.	-2,4,0
20.	Determine the constants a, b, c if \bar{F} is irrotational where $\bar{F} = (axy + bz^3)i + (3x^2 - cz)j$
Option A:	-6,0,1
Option B:	6,0,0
Option C:	0,6,0
Option D:	6,6,1

Q2.	Solve any Four out of Six. 5 marks each
(20 Marks)	
A	Find $L[(t + sint)^2]$
В	Find $L^{-1}\left[\frac{4s+12}{s^2+8s+12}\right]$
C	Obtain the Fourier series for $f(x) = x$ in $(0,2\pi)$.
D	Find the analytic function $f(z)$ in terms of z whose real part is $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$.
Е	Find the Eigenvalues of matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ and Show that matrix satisfies the characteristic equation .
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.

Q3.	Solve any Four out of Six. 5 marks each	h
(20 Marks)		
A	Evaluate $\int_0^t \frac{\sin u}{u} du$	
В	Find $L^{-1}\left[\frac{1}{s(s^2+9)}\right]$	
С	Obtain half range Fourier sine series for $f(x) = x(\pi - x)$ $(0,\pi)$.	
D	Find the constants a, b, c, d, e if $f(z) = (ax^3 + bxy^2 + 3x^2 + cy^2 + x) + i(dx^2y - 2y^3 + exy + y)$ is analytic.	
Е	Find Eigenvalues & Eigenvectors for the matrix $A = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix}$	
F	Evaluate by using Green's theorem $\int_C (x^2 - y) dx + (2y^2 + x) dy$, where C is the closed region bounded $by y = 4$ and $y = x^2$.	

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC302 and Course Name: Electronic Devices & Circuits

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The model suffers from being limited to a particular set of operating conditions if it is to be considered accurate.	
Option A:	Hybrid equivalent (h-model)	
Option B:	Re	
Option C:	Hybrid pi	
Option D:	Thevenin	
2.	The process to getting all the DC sources to zero is associated with	
Option A:	DC equivalent circuit	
Option B:	AC equivalent circuit	
Option C:	Entire amplifier circuit	
Option D:	Voltage divider biased circuit	
3.	In the load line concept when AC and DC load lines are intersect with each other, then that intersection point is called as	
Option A:	Active Point	
Option B:	Saturation Point	
Option C:	Cutoff Point	
Option D:	Operating Point	
4.	In the amplifier circuit using transistor, the emitter resistance is used for	
Option A:	To prevent increase in gain	
Option B:	To increase gain	
Option C:	To prevent thermal runaway	
Option D:	To lower the output impedance	
5.	In MOSFET, the input resistance (Ri) is not equal to zero is related to which configuration	
Option A:	Common source configuration	
Option B:	Common source configuration with source resistance	
Option C:	Common gate configuration	
Option D:	Common drain configuration	
6.	Generally the E-MOSFET is known as normally-OFF MOSFET because it works only with	

Option A:	Large positive drain voltage
Option B:	Large positive gate voltage
Option C:	Large negative drain voltage
Option D:	Large negative gate voltage
Орион В.	Large negative gate voltage
7.	The of the two values of higher cutoff frequencies is the dominant
' .	frequency of the complete system.
Option A:	Highest
Option B:	Lowest
Option C:	Middle
Option D:	Average
opuon 2 ·	
8.	Which BJT transistor has a better high frequency response?
Option A:	NPN
Option B:	PNP
Option C:	Depends on type of coupling
Option D:	Depends on other components
9.	What should be the gain of an amplifier at 20 kHz if the half power frequencies
	are $fL = 20$ Hz and $fH = 15$ kHz along with mid band gain = 80?
Option A:	28.28
Option B:	48.07
Option C:	62.47
Option D:	78.77
10.	An amplifier has an output voltage of 7.6 V p-p at the midpoint of the frequency
	range. What is the output at fc?
Option A:	3.8 V p-p
Option B:	3.8 Vrms
Option C:	5.4 Vrms
Option D:	5.4 V p-p
11.	If the voltage gain of a CE amplifier is -57 and its internal capacitances are $C\pi =$
	20 pF and $C\mu = 2.4$ pF. Its output Miller capacitance will be
Option A:	2.44 pF
Option B:	20.34 pF
Option C:	140.23 pF
Option D:	1.17 pF
10	
12.	Miller's theorem is applicable in a single stage CE hybrid π model in order to deal
0 1: 1	with
Option A:	Series combination of CC and r'bc
Option B:	Series combination of Ce and r'be
Option C:	Parallel combination of CC and r'bc
Option D:	Parallel combination of Ce and r'be
12	Miller the course in comparelly year 1 to
13.	Miller theorem is generally used to
Option A:	Determine the higher cut-off frequencies.
Option B:	Determine the voltage gain of the circuits.
Option C:	Simplify the analysis of feedback elements.

Option D:	Determine the equivalents capacitance.
14.	Which class of power amplifier has the output swing as shown below
17.	V _o
	180° output swing
	0 V
Option A:	A
Option B:	В
Option C:	AB
Option D:	C
15.	Power amplifier generally uses transformer coupling because transformer permits
Option A:	Cooling of circuits
Option B:	Impedance matching
Option C:	Distortionless output
Option D:	Good frequency response
16	
16.	A transformer coupled class A power amplifier has a load of 100Ω on the
	secondary. If the turns ratio is 10: 1 what is the value of load appearing on
Ontion A.	primary? 10k Ω
Option A: Option B:	5k Ω
Option C:	20k Ω
Option C:	100k Ω
Option D.	100K 22
17.	If Ad= 3500 and Acm = 0.35, the CMRR is
Option A:	25 dB
Option B:	40 dB
Option C:	60 dB
Option D:	80 dB
1.0	
18.	The common-mode gain should be
Option A:	very high
Option B:	very low
Option C:	always unity
Option D:	Infinite
19.	In class A operation, the operating point is generally located of the d.c.
	load line
Option A:	At cut off point
Option B:	At the middle
Option C:	At the saturation
Option D:	Just above the cutoff but below the center of load line
20.	A class A power amplifier has maximum a.c. power output of 30W. Find the
20.	power rating of the transistor.
Option A:	60W
Option B:	15W
Option C:	30W

Option D:	90W

Q2	Solve any Two Questions out of Three 10 marks each
A	Derive the equation of Av, Zi and Zo of CS amplifier using bypass RS. For the circuit shown in Fig. 1, the transistor parameter are VBE (on) = 0.7
В	V, $\beta = 200$, VA = ∞ , Derive the expression for lower cutoff frequency due to input coupling capacitor. Determine lower cut-off frequency and voltage gain
С	In a class A transformer coupled amplifier, the collector current alternates between 3mA and 110 mA and its Quiescent value is $58mA$. The load resistance is 13Ω and when referred to primary winding, it is 325Ω . The supply voltage is $20V$. Calculate (i) transformer turn ratio (ii) a.c. output power (iii) collector efficiency

Q3.	Solve any Two Questions out of Three	10 marks each
A	Calculate the Voltage gain(AVS),input impedance(a) impedance(Zo) and Current gain(AIS) for the circular following figure using hybrid- π model. Assume β = VA=100 V.	it shown in the

	75KN R1 Rc 5.6KN Rs C1 270 N 7.5 R2 Re 550 N CE
В	Draw a high frequency equivalent circuit of MOSFET CS amplifier with Rs un-bypassed and self- bias. Derive the expression for input and output upper cutoff frequencies with considering input signal resistor (Rsig) and load resistor (RL).
С	Explain the MOS differential pair amplifier with a common-mode input voltage vCM.

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC303 and Course Name: Digital System Design

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	The decimal equivalent of hex number 1A53 is
Option A:	$(2053)_{10}$
Option B:	$(6739)_{10}$
Option C:	$(2050)_{10}$
Option D:	$(6736)_{10}$
2.	Which one of the following statements best describes the operation of a negative edge triggered D flip flop?
Option A:	The logic level at D input is transferred to Q at the negative edge of the clock
Option B:	The Q output is always identical to the clock input if the D input is high
Option C:	The Q output is always equal to the D input when the clock is positive
Option D:	The Q output is always equal to the D input
-	
3.	In a J K flip flop, we have $J=Q'$ and $K=1$. Assume the flip flop was initially cleared and then clocked for 6 pulses, the sequence at the output will be $ \begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$
Option A:	010000
Option B:	011001
Option C:	010010
Option D:	010101
•	
4.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state
Option B:	Low state

Option C:	Toggle state	
Option D:	No Change State	
1		
5.	Decimal 43 in Hexadecimal and BCD number system is respectively	
Option A:	B2, 0100 0011	
Option B:	2B, 0100 0011	
Option C:	2B, 0011 0100	
Option D:	B2, 0100 0100	
6.	On subtracting (01010)2 from (11110)2 using 1's complement, we get	
Option A:	01001	
Option B:	11010	
Option C:	10101	
Option D:	10100	
7.	The Boolean expression Y= AB+CD is to be realized using only 2 input NAND	
	gates. The minimum number of gates required is	
Option A:	2	
Option B:	3	
Option C:	4	
Option D:	5	
8.	For the circuit shown below, the output F is given by	
	X° DO F	
Option A:	F=1	
Option B:	F=0	
Option C:	F=X	
Option D:	F=X'	
9.	The output of a logic gate is '1' when all its inputs are at logic '0'. The gate is either	
Option A:	a NAND or an EX-OR gate	
Option B:	a NOT or an EX-NOR gate	
Option C:	an OR or an EX-NOR gate	
Option D:	an AND or an EX-OR gate	
10.	The canonical sum of product form of the function $y(C,D) = C + D$ is	
Option A:	CD + DD + C'C	
Option B:	CD + CD' + C'D	
Option C:	DC + DC' + C'D'	
opnon c.		

Option D:	CD' + C'D + C'D'
Pron 2.	
11.	Complement of the expression A'B + CD' is
Option A:	(A' + B)(C' + D)
Option B:	(A + B')(C' + D)
Option C:	(A' + B')(C' + D)
Option D:	(A' + B')(C' + D')
opusi 2.	(11 · 2)(e · 2)
12.	If each successive code differs from its preceding code by a single bit only then
	this code is called as
Option A:	BCD code
Option B:	Weighted code
Option C:	Gray code
Option D:	Binary code
13.	The hit sequence 0010 is socially entered (right most hit first) into a 4 hit perellel
13.	The bit sequence 0010 is serially entered (right-most bit first) into a 4-bit parallel out shift register that is initially clear. What are the O outputs after two cleak
	out shift register that is initially clear. What are the Q outputs after two clock pulses?
Ontion A:	0000
Option A: Option B:	0010
Option C:	1000
Option C:	1111
Option D.	
14.	Which of the following describes the structure of a VHDL code correctly?
Option A:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option B:	Library Declaration; Entity Declaration; Architecture Declaration; Configurations
Option C:	Library Declaration; Entity Declaration; Configuration; Architecture Declaration
Option D:	Library Declaration; Configuration; Architecture Declaration; Entity Declaration
15.	The difference between a PLA and a PAL is
Option A:	the PAL has a programmable OR plane and a programmable AND plane, while
	the PLA only has a programmable AND plane
Option B:	the PLA has a programmable OR plane and a programmable AND plane, while
	the PAL only has a programmable AND plane
Option C:	the PAL has more possible product terms than the PLA
Option D:	PALs and PLAs are the same thing.
16	Which of the following connect he are output of a magnitude commenter.
16.	Which of the following cannot be an output of a magnitude comparator
Option A:	A < B
Option B:	A > B A – B
Option C:	A - B A = B
Option D:	Λ-υ
17.	The number of flip-flops required to construct an 8-bit shift register will be
Option A:	32
Option B:	16
Option C:	4
Option D:	8
18.	Which of the following VHDL design units contain the description of the circuit?
Option A:	Configurations
Option B:	Architecture

Option C:	Library
Option D:	Entity
19.	The addition of binary numbers 10011011010 and 010100101 is
Option A:	10101111111
Option B:	1100110110
Option C:	10011010011
Option D:	0111001000
20.	A product term containing all K variables of the function in either complemented
	or uncomplemented form is called
Option A:	Minterm
Option B:	Maxterm
Option C:	Midterm
Option D:	Least term

Q2.	Answer the following:	
A	Solve any Two	5 marks each
i.	Convert J-K flip flop to D flip flop.	
ii.	Prove that NAND and NOR gates are universal gates.	
iii.	Compare PAL with PLA.	
В	Solve any One	10 marks each
i.	What is a shift register? Explain working of Serial In Seria	l Out shift
	register?	
ii.	Minimize the following expression using Quine McClusky	technique.
	$F(A, B, C, D) = \sum m(1,3,7,11,15) + d(0,2,5)$	

Q3.	Answer the following:
A	Solve any Two 5 marks each
i.	Convert (365.24) ₈ into decimal, binary and hexadecimal.
ii.	Write VHDL code for the full subtractor.
iii.	For the given minterms, obtain the simplified POS expression
	$F(A, B, C, D) = \sum m (2,3,5,7,12) + d(6, 13, 14, 15)$
В	Solve any One 10 marks each
i.	With the help of a truth table explain the full adder circuit and implement it
	using logic gates.
ii.	Design 3 bit binary to gray code converter.

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC304 and Course Name: Network Theory

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
	compulsory and carry equal marks.
1.	Which of the following conditions delivers maximum power to the load?
Option A:	R _L > R _{TH}
Option B:	$R_L = R_{TH}$
Option C:	$R_L - R_{TH}$
Option D:	Depends upon source.
Option D.	Depends upon source.
2.	A network consists of dependent current source with value 4V _X . Which type of dependent source it is?
Option A:	Voltage Controlled Current Source
Option B:	Current Controlled Current Source
Option C:	Voltage Controlled Voltage Source
Option D:	Current Controlled Voltage Source
3.	Refer the following figure and determine current I_1 .
	$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & \\ & & & &$
Option A:	0.5 A
Option B:	1 A
Option C:	2 A
Option D:	7 A
4.	Refer the following figure to find voltage Va.

	18 + Va - 9V — + 8 Va
Option A:	2 V
Option B:	8 V
Option C:	18 V
Option D:	1 V
•	
5.	Refer the following figure to find current Ia.
Oution A	6A 2 2 2 Ia
Option A:	3 A
Option B:	2 A
Option C:	1 A
Option D:	0.5 A
6.	If the graph consists of 4 nodes and 6 branches then the number of twigs and number of links are and respectively.
Option A:	5, 5
Option B:	4, 4
Option C:	3, 4
Option D:	3, 3
7.	For the graph shown in figure, the number of rows in complete incidence matrix are

	A 1 B 2 C 3 A 4 D
Option A:	5
Option B:	4
Option C:	3
Option D:	6
8.	The number of maximum possible trees for a graph is calculated by
Option A:	N -1
Option B:	b-(n+1)
Option C:	b + n -1
Option D:	$ AA^{T} $
9. Option A: Option B: Option C: Option D:	Which of the following is the correct generalized KCL equation in graph theory? $B.Z_b.B^TI_1 = B.Vs - B.Z_bI_S$ $QY_b Q^T.V_t = Q I_S - Q Y_b Vs$ $B.Z_b.B^TI_1 = -B.Vs$ $QY_b Q^T.V_t = Q Y_b + Q I_S Vs$ Refer the following figure and determine current i(t) in at t=0.
Option A:	10V O A
Option B:	1.25A
Option C:	1.1A
Option D:	1 A
11.	If u(t) signal is applied to the R-C network where $R = 1$ K Ω and $C = 1$ uF are connected in series. Calculate RC time constant (τ) .
Option A:	3 uSec
Option B:	63.2 mSec
Option C:	1 mSec

Option D:	2 mSec
12.	Time constant of a series connected R-L network is
Option A:	L/R
Option B:	R/L
Option C:	Product of R and L
Option D:	LS
13.	Which of the following represent Voltage across inductors in time domain?
Option A:	$Lx \frac{di(t)}{dt}$
Option B:	$L\int i(t).dt$
Option C:	Lxi(t)
Option D:	LxI(S)
14.	If the inductor and capacitor are connected in series then equivalent impedance is
Option A:	1/LS + CS
Option B:	S(L+C)
Option C:	LS + 1/CS
Option D:	$S^2(1+1/LC)$
15.	Pole-zero location of the transfer function T(s) is shown in the following figure. Determine T(s).
Option A:	H x $\frac{(S-1)(S-3)}{(S-2)(S-4)}$
Option B:	H x $\frac{(S-2)(S-4)}{(S-1)(S-3)}$
Option C:	H x $\frac{(S+1)(S+3)}{(S+2)(S+4)}$
Option D:	H x $\frac{(S+2)(S+4)}{(S+1)(S+3)}$
16.	A system is represented by transfer function $T(s) = \frac{18}{(S+3)(S+2)}$, the DC gain of this system is
Option A:	18
Option B:	3
Option C:	2
Option D:	6

17. Which among the following represents the precise condition of reciprocity for transmission parameters? Option A: AD-BC=1 Option B: AB-CD=1 Option C: AC-BD=1 Option D: A=D 18. A two port network is represented by the following equation. I ₁ = 65 V ₂ + 86 I ₂ V ₁ = 43 V ₂ + 24 I ₂ A and B parameters of the networks are given by respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86 Option D: 43, -24
Option A: AD-BC=1 Option B: AB-CD=1 Option C: AC-BD=1 Option D: A=D 18. A two port network is represented by the following equation. $I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
Option B: AB-CD=1 Option C: AC-BD=1 Option D: A=D 18. A two port network is represented by the following equation. $I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
Option C: AC-BD=1 Option D: A=D 18. A two port network is represented by the following equation. $I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
Option C: AC-BD=1 Option D: A=D 18. A two port network is represented by the following equation. $I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
18. A two port network is represented by the following equation. $I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
$I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
$I_1 = 65 \text{ V}_2 + 86 \text{ I}_2$ $V_1 = 43 \text{ V}_2 + 24 \text{ I}_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
$V_1 = 43 \ V_2 + 24 \ I_2$ A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
A and B parameters of the networks are given by and respectively. Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
Option A: 43, 24 Option B: 65, 86 Option C: 65, -86
Option B: 65, 86 Option C: 65, -86
Option C: 65, -86
Ontion D: 43 -24
Option D. +3, -2+
19. Determine Z_{11} and Z_{12} parameters of the following network.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Option A: $Z_{11} = 15 \Omega, Z_{12} = -7 \Omega,$
Option B: $Z_{11} = 17 \Omega$, $Z_{12} = 15 \Omega$,
Option C: $Z_{11} = 7 \Omega$, $Z_{12} = 15 \Omega$,
Option D: $Z_{11} = 15 \Omega$, $Z_{12} = 7 \Omega$,
Z parameter of two port network are $Z_{11} = 20 \Omega$, $Z_{22} = 30 \Omega$ and $Z_{12} = Z_{21} = 10 \Omega$.
Then the network is
Option A: Reciprocal
Option B: Non-Reciprocal
Option C: Symmetrical
Option D: Neither reciprocal nor symmetrical

Q2.	Answer the following:
A	Solve any One 10 marks each
i.	For the circuit shown in below, find current through 3 Ω using superposition theorem.
ii.	For the graph shown in figure find, 1) Complete incidence matrix 2) Reduced incidence matrix 3) f-Tie-set matrix and 4) f-Cutset matrix
В	Solve any two 5 marks each
i.	For the network shown in figure, plot poles and zeros function of $\frac{I0}{Ii}$. $I_0 = 0.5 \text{F}$ 2H
ii.	Derive condition of symmetry for Z parameters.
iii.	Calculate number of possible trees of following graphs. (6) (2) (4) (3) (5)

Q3.	Answer the following:
A	Solve any One 10 marks each
i.	In the network shown in figure, the switch was at 1 st position for a long
	time and then it is moved to 2^{nd} position at t=0. Determine $Vc(t)$.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ii.	Determine ABCD parameter for the network shown in figure.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
В	Solve any One 10 marks each
i.	The switch in the network shown was opened for a long time, then it is
	closed at $t = 0$. Determine the voltage across the capacitor using Laplace.
	$ \begin{array}{c c} & 10 \Omega \\ \hline & 10 \Omega \\ \hline & 10 \Omega \\ \hline \end{array} $ $ \begin{array}{c c} & 10 \Omega \\ \hline \end{array} $ $ \begin{array}{c c} & v_c(t) \\ \hline \end{array} $
ii.	Write any five necessary conditions for driving point functions and transfer
	functions.

University of Mumbai

Examination 2021 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC305 and Course Name: Electronic Instrumentation & Control Systems

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Poles are those values of s which makes
Option A:	Numerator of transfer function=0
Option B:	Numerator of transfer function=1
Option C:	Denominator of transfer function=0
Option D:	Denominator of transfer function =1
2.	Megger is used to measure
Option A:	Unknown Resistance of Low value
Option B:	Unknown Resistance of High value
Option C:	Unknown Capacitance of Low value
Option D:	Unknown Capacitance of High value
3.	Following is the phase angle for the factor $(1+j\omega/3)$
Option A:	$Tan^{-1} 3/\omega$
Option B:	$\operatorname{Tan}^{-1} \omega/3$
Option C:	-Tan ⁻¹ ω/3
Option D:	-Tan ⁻¹ 3/ω
4.	In a bode magnitude plot, which one of the following slopes would be exhibited
	at high frequencies by a 4th order all-pole system?
Option A:	-80 dB/decade
Option B:	-40 dB/decade
Option C:	40 dB/decade
Option D:	80 dB/decade
5.	When the number of poles is equal to the number of zeroes, how many branches
	of root locus tends towards infinity?
Option A:	0
Option B:	1
Option C:	2
Option D:	3
6.	The unknown capacitance of Schering bridge is given by
Option A:	Cx=C2R4
	R3

Option B:	Cx=R2R4
	R3
Option C:	Cx=R <u>2C4</u> C3
Option D:	Cx=R2C3
1	$\overline{C4}$
7.	For the given system the poles and zeros are $G(s) = \frac{s(s+1)}{(s+3)(s+4)}$
Option A:	P=1, Z=3,4
Option B:	P=3,4, Z=0,1
Option C:	P=-3,-4, Z=0,-1
Option D:	P=-3,-4, Z=-1
8.	The forward path transfer function of a unity feedback system is given by
	$(s) = \frac{100}{(s^2 + 10s + 100)}$. The frequency response of this system will exhibit the
	resonance peak at:
Option A:	10 rad/sec
Option B:	8.66 rad/sec
Option C:	7.07 rad/sec
Option D:	5 rad/sec
9.	The phase angle for the open loop transfer function $G(s)H(s) = 5$
	$\frac{s(s+1)(s+3)}{s(s+1)(s+3)}$
Option A:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/3$
Option B:	
	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}\omega/5$
Option C:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}3\omega$
Option D:	$\phi = -90^{\circ} - \tan^{-1}\omega - \tan^{-1}5\omega$
10.	The place where the locii meet while moving to or from infinity is called
Option A:	Centroid
Option B:	Intersection with imaginary axis
Option C:	Root point
Option D:	Breakaway point
11.	Consider the open loop transfer function $G(s) = \frac{K(s+6)}{(s+3)(s+5)}$.
	In the root locus diagram the centroid will be located at: $(s+3)(s+5)$
Option A:	-4
Option B:	-1
Option C:	-2
Option D:	-3
•	
12.	Attenuation, amplification and filtering is done by
Option A:	Signal conditioner
Option B:	A/D converter Display systems
Option C: Option D:	Display systems Transducer
орион Б.	11411044001

13.	For Nyquist contour, the size of radius is
Option A:	25
Option B:	0
Option C:	1
Option D:	∞
14.	Kelvin's double bridge is a modified Wheatstone's bridge which consider
Option A:	Galvanometer error
Option B:	Contact Resistance
Option C:	High Resistance
Option D:	Battery error
15.	The number of branches terminating at infinity is given by, where P is number of open loop poles and Z is number of open loop zeros.
Option A:	P+Z
Option B:	P-Z
Option C:	P*Z
Option D:	P/Z
16.	The breakaway point calculated mathematically
Option A:	Does not lie on root locus
Option B:	May or may not lie on root locus
Option C:	Always lie on root locus
Option D:	Lies on no root locus area only.
17.	The polar plot of the open loop transfer function of a feedback control system intersects the real axis at -2. The gain margin of the system is
Option A:	-5 dB
Option B:	0 dB
Option C:	- 6 dB
Option D:	40 dB
18.	The bridge is balanced when
Option A:	Detector or galvanometer voltage is infinity
Option B:	Detector or galvanometer current is zero
Option C:	Detector or galvanometer voltage is zero
Option D:	Detector or galvanometer current is infinity
_	, , , , , , , , , , , , , , , , , , ,
19.	The polar plot of a transfer function passes through the critical point (-1,0). Gain margin is
Option A:	Zero
Option B:	1 dB
Option C:	100 dB
Option D:	Infinity
20.	is an undesired phenomenon
Option A:	Accuracy
Option B:	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Precision
Option C:	Hysterisis Hysterisis

Q2.	Answer the following:
A	Solve any Two 5 marks each
i.	Explain in detail the components of a generalized measurement system with the help of block diagram.
ii.	List and explain all the general rules for constructing root locus.
iii.	What is the relationship between frequency domain specifications and time
	domain specifications?
В	Solve any One 10 marks each
i.	State the advantages of Kelvin's double bridge over Wheatstone bridge and
	derive expression for finding unknown resistance using Kelvin's double
	bridge.
ii.	Draw the polar plot for the given system
	$G(s)H(s) = \frac{100}{s^2(s+2)(s+4)(s+8)}$

Q3.	Answer the following:
A	Solve any Two 5 marks each
i.	Differentiate between Accuracy and Precision.
ii.	Explain in detail one bridge circuit used for measuring inductance.
iii.	Find the intersection points with imaginary axis for the given system
	G(s)H(s)= k
	s(s+3)(s+6)
В	Solve any One 10 marks each
i.	Sketch the root locus for the given system (draw it on normal paper)
	G(s)H(s)= k
	$(s+2)^3$
ii.	List the magnitude plot and phase plot table for the given system:
	G(s)H(s) = 0.75(1+0.2s)
	s(1+0.5s)(1+0.1s)