## **Examination 2020 under cluster 5 (Lead College: APSIT)**

Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20<sup>th</sup> January 2021

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: SE Semester IV

Course Code: ECC405 and Course Name: Principles of Communication Engineering
Time: 2 hour Max. Marks: 80

\_\_\_\_\_

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | Noise Feeten (E) and Noise Figure (NE) are related as                                                                                                                                                                                                   |
| Option A: | Noise Factor (F) and Noise Figure (NF) are related as $NF = 10 \log(F)$                                                                                                                                                                                 |
| Option B: | $F = 10 \log(10)$ $F = 10 \log(10)$                                                                                                                                                                                                                     |
| Option C: | NF = 10 (F)                                                                                                                                                                                                                                             |
| Option C. |                                                                                                                                                                                                                                                         |
| Option D: | F = 10  (NF)                                                                                                                                                                                                                                            |
| 2.        | Overmodulation results in                                                                                                                                                                                                                               |
| Option A: | Weakening of the signal                                                                                                                                                                                                                                 |
| Option B: | Excessive carrier power                                                                                                                                                                                                                                 |
| Option C: | Distortion                                                                                                                                                                                                                                              |
| Option D: | Signal boosting                                                                                                                                                                                                                                         |
| option D. | orginal coopering                                                                                                                                                                                                                                       |
| 3.        | A 50 kW carrier is to be amplitude modulated to a level of 85%. What is the                                                                                                                                                                             |
|           | carrier power after modulation?                                                                                                                                                                                                                         |
| Option A: | 50 kW                                                                                                                                                                                                                                                   |
| Option B: | 5 kW                                                                                                                                                                                                                                                    |
| Option C: | 8 kW                                                                                                                                                                                                                                                    |
| Option D: | 25 kW                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                         |
| 4.        | An AM broadcast station transmits modulating frequencies up to 6 kHz. If the AM station is transmitting on a frequency of 894 kHz, the values for maximum and minimum upper and lower sidebands and the total bandwidth occupied by the AM station are: |
| Option A: | 894 KHz, 884 KHz, 12 KHz                                                                                                                                                                                                                                |
| Option B: | 894 KHz, 888 KHz, 6 KHz                                                                                                                                                                                                                                 |
| Option C: | 900 KHz, 888 KHz, 6 KHz                                                                                                                                                                                                                                 |
| Option D: | 900 KHz, 888 KHz, 12 KHz                                                                                                                                                                                                                                |
|           |                                                                                                                                                                                                                                                         |
| 5.        | Which of the following modulating signal voltages would cause over-modulation                                                                                                                                                                           |
|           | on a carrier voltage of 15v?                                                                                                                                                                                                                            |
| Option A: | 12V                                                                                                                                                                                                                                                     |
| Option B: | 15V                                                                                                                                                                                                                                                     |
| Option C: | 17V                                                                                                                                                                                                                                                     |
| Option D: | 10V                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                         |
| 6.        | The advantages of DSB over SSB full carrier AM is:                                                                                                                                                                                                      |

| Option A:           | Less available channel space                                                 |  |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Option B:           | More stable transmitter gives better reception                               |  |  |  |  |  |  |  |
| Option C:           | More power to transmit same signal                                           |  |  |  |  |  |  |  |
| Option C:           | Signal is less resistant to noise                                            |  |  |  |  |  |  |  |
| Option D.           | Signal is less resistant to noise                                            |  |  |  |  |  |  |  |
| 7.                  | VSB modulation is preferred in TV because:                                   |  |  |  |  |  |  |  |
| Option A:           | it increases the bandwidth                                                   |  |  |  |  |  |  |  |
| Option B:           | it decreases the bandwidth requirement to half                               |  |  |  |  |  |  |  |
|                     | -                                                                            |  |  |  |  |  |  |  |
| Option C:           | t transmits more power                                                       |  |  |  |  |  |  |  |
| Option D:           | simple modulator circuit                                                     |  |  |  |  |  |  |  |
|                     |                                                                              |  |  |  |  |  |  |  |
| 8.                  | Armstrong method is used for the generation of                               |  |  |  |  |  |  |  |
| Option A:           | Direct FM                                                                    |  |  |  |  |  |  |  |
| Option B:           | Indirect FM                                                                  |  |  |  |  |  |  |  |
| Option C:           | SSB-SC                                                                       |  |  |  |  |  |  |  |
| Option D:           | DSB-SC                                                                       |  |  |  |  |  |  |  |
|                     |                                                                              |  |  |  |  |  |  |  |
| 9.                  | What is the required bandwidth according to Carson's rule, when a 100 MHz    |  |  |  |  |  |  |  |
|                     | carrier is modulated with a sinusoidal signal at 1KHz, the maximum frequency |  |  |  |  |  |  |  |
|                     | deviation being 50 KHz.                                                      |  |  |  |  |  |  |  |
| Option A:           | 1 KHz                                                                        |  |  |  |  |  |  |  |
| Option B:           | 50 KHz                                                                       |  |  |  |  |  |  |  |
| Option C:           | 102 KHz                                                                      |  |  |  |  |  |  |  |
| Option D:           | 150 KHz                                                                      |  |  |  |  |  |  |  |
| 10                  |                                                                              |  |  |  |  |  |  |  |
| 10.                 | The ratio of actual frequency deviation to the maximum allowable frequency   |  |  |  |  |  |  |  |
| Ontion A.           | deviation is called  Multi tone modulation                                   |  |  |  |  |  |  |  |
| Option A: Option B: |                                                                              |  |  |  |  |  |  |  |
| Option C:           | Percentage modulation Phase deviation                                        |  |  |  |  |  |  |  |
|                     |                                                                              |  |  |  |  |  |  |  |
| Option D:           | Modulation index                                                             |  |  |  |  |  |  |  |
| 11.                 | What is the value of carrier frequency in the following equation for the FM  |  |  |  |  |  |  |  |
| 11.                 | signal? $v(t) = 5 \cos (6600t + 12\sin 2500t)$                               |  |  |  |  |  |  |  |
| Option A:           | 1150 Hz                                                                      |  |  |  |  |  |  |  |
| Option B:           | 6600 Hz                                                                      |  |  |  |  |  |  |  |
| Option C:           | 2500 Hz                                                                      |  |  |  |  |  |  |  |
| Option C:           | 1050 Hz                                                                      |  |  |  |  |  |  |  |
| орион Б.            | 10001111                                                                     |  |  |  |  |  |  |  |
| 12.                 | VCO is used to generate                                                      |  |  |  |  |  |  |  |
| Option A:           | Direct FM                                                                    |  |  |  |  |  |  |  |
| Option B:           | Indirect FM                                                                  |  |  |  |  |  |  |  |
| Option C:           | SSB-SC                                                                       |  |  |  |  |  |  |  |
| Option D:           | DSB-SC                                                                       |  |  |  |  |  |  |  |
| phon D.             |                                                                              |  |  |  |  |  |  |  |
| 13.                 | The term "Delayed AGC" implies Application of AGC                            |  |  |  |  |  |  |  |
| Option A:           | After some time lag                                                          |  |  |  |  |  |  |  |
| Option B:           | Only when signal strength has increased beyond a specified value             |  |  |  |  |  |  |  |
| Option C:           | To the last stage of receiver                                                |  |  |  |  |  |  |  |
| Option D:           | After switch of on-off switch                                                |  |  |  |  |  |  |  |
| Cruon D.            | The survey of our out of the                                                 |  |  |  |  |  |  |  |

| 14.       | Basically, selectivity measures:                                                                                         |  |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Option A: | the range of frequencies that the receiver can select                                                                    |  |  |  |  |  |  |  |
| Option B: | with two signals close in frequency, the ability to receive one and reject the other                                     |  |  |  |  |  |  |  |
| Option C: | how well adjacent frequencies are separated by the demodulator                                                           |  |  |  |  |  |  |  |
| Option D: | how well the adjacent frequencies are separated in the mixer                                                             |  |  |  |  |  |  |  |
| opusi 2.  |                                                                                                                          |  |  |  |  |  |  |  |
| 15.       | In a receiver, which of the following device has IF input but RF output?                                                 |  |  |  |  |  |  |  |
| Option A: | Demodulator                                                                                                              |  |  |  |  |  |  |  |
| Option B: | Loudspeaker                                                                                                              |  |  |  |  |  |  |  |
| Option C: | Audio amplifier                                                                                                          |  |  |  |  |  |  |  |
| Option D: | Frequency changer                                                                                                        |  |  |  |  |  |  |  |
|           |                                                                                                                          |  |  |  |  |  |  |  |
| 16.       | Calculate the minimum sampling rate to avoid aliasing when a continuous time signal is given by $x(t) = 5 \cos 400\pi t$ |  |  |  |  |  |  |  |
| Option A: | 400 Hz                                                                                                                   |  |  |  |  |  |  |  |
| Option B: | 250 Hz                                                                                                                   |  |  |  |  |  |  |  |
| Option C: | 100 Hz                                                                                                                   |  |  |  |  |  |  |  |
| Option D: | 800 Hz                                                                                                                   |  |  |  |  |  |  |  |
|           |                                                                                                                          |  |  |  |  |  |  |  |
| 17.       | Multiplication of input signal with pulse train is done in sampling.                                                     |  |  |  |  |  |  |  |
| Option A: | Impulse sampling                                                                                                         |  |  |  |  |  |  |  |
| Option B: | Natural sampling                                                                                                         |  |  |  |  |  |  |  |
| Option C: | Flat top sampling                                                                                                        |  |  |  |  |  |  |  |
| Option D: | Direct sampling                                                                                                          |  |  |  |  |  |  |  |
|           |                                                                                                                          |  |  |  |  |  |  |  |
| 18.       | A PAM signal can be detected using                                                                                       |  |  |  |  |  |  |  |
| Option A: | Low pass filter                                                                                                          |  |  |  |  |  |  |  |
| Option B: | High Pass filter                                                                                                         |  |  |  |  |  |  |  |
| Option C: | Bandpass filter                                                                                                          |  |  |  |  |  |  |  |
| Option D: | All pass filter                                                                                                          |  |  |  |  |  |  |  |
|           |                                                                                                                          |  |  |  |  |  |  |  |
| 19.       | Why is sync pulse required in TDM?                                                                                       |  |  |  |  |  |  |  |
| Option A: | to avoid interference                                                                                                    |  |  |  |  |  |  |  |
| Option B: | to identify the beginning of frame                                                                                       |  |  |  |  |  |  |  |
| Option C: | to send message                                                                                                          |  |  |  |  |  |  |  |
| Option D: | to carry information                                                                                                     |  |  |  |  |  |  |  |
|           |                                                                                                                          |  |  |  |  |  |  |  |
| 20.       | To combine the multiple signals in FDM the circuit required to be used is                                                |  |  |  |  |  |  |  |
| Option A: | Oscillator                                                                                                               |  |  |  |  |  |  |  |
| Option B: | filter                                                                                                                   |  |  |  |  |  |  |  |
| Option C: | linear mixer                                                                                                             |  |  |  |  |  |  |  |
| Option D: | nonlinear mixer                                                                                                          |  |  |  |  |  |  |  |

| Q2 | Solve any Four out of Six 5 marks each                                           |
|----|----------------------------------------------------------------------------------|
| A  | Why is IF selected as 455 KHz in AM?                                             |
| В  | Draw the block diagram of digital communication and explain each block in short. |
| С  | Explain FM demodulator using PLL with suitable diagram.                          |
| D  | Define any 3 parameters of radio receivers.                                      |
| Е  | State and explain the sampling theorem in brief.                                 |
| F  | Explain square law detector                                                      |

| Q3.  |                                                            |               |
|------|------------------------------------------------------------|---------------|
| A    | Solve any Two                                              | 5 marks each  |
| i.   | Explain varactor diode modulator                           |               |
| ii.  | Explain frequency division multiplexing                    |               |
| iii. | Explain PAM signal generation and detection in brief.      |               |
| В    | Solve any One                                              | 10 marks each |
| i.   | Explain the working of Superheterodyne receiver in detail  |               |
| ii.  | The unmodulated carrier power of AM transmitter is 20 Ky   |               |
|      | frequency is 2 MHz. The carrier is modulated to a depth of | 70% by an     |
|      | audio signal of 5KHz. Assume $R=1\Omega$ .                 |               |
|      | i) Determine the total transmitted power.                  |               |
|      | ii) Determine the SSB power.                               |               |
|      | iii) Percentage of power saving if SSB is transmitted.     |               |
|      | iv) Draw the frequency spectrum and find the bandwidth.    |               |

#### Examination 2020 under cluster \_\_ (Lead College: \_\_\_\_\_)

**Program: Electronics and Telecommunication Engineering** 

Curriculum Scheme: Rev2016 Examination: SE Semester IV

Course Code: ECC401 and Course Name: Applied Mathematics IV

Time: 2 hours Max. Marks: 80

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Q1. (s)   | What is the suitable formula to find extremals of $\int_{x_1}^{x_2} 1 + y^2 - y' dx$                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Option A: | $\frac{\partial F}{\partial y} = c$                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Option B: | $\frac{\partial F}{\partial y'} - \frac{d}{dx} \left( \frac{\partial F}{\partial y} \right) = 0$                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Option C: | $\frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = 0$                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Option D: | $\frac{\partial F}{\partial y} = c$ $\frac{\partial F}{\partial y'} - \frac{d}{dx} \left( \frac{\partial F}{\partial y} \right) = 0$ $\frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = 0$ $F - y' \frac{\partial F}{\partial y'} = c$ |  |  |  |  |  |  |  |  |
| 2.(s)     | Euler differential formula for extremals $\int_{x_1}^{x_2} (y''^2 - y^2 + x) dx$ is                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Option A: | $\frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) + \frac{d^2}{dx^2} \left( \frac{\partial F}{\partial y''} \right) = 0$                                                                                                                |  |  |  |  |  |  |  |  |
| Option B: | $\frac{\partial F}{\partial v} = c$                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Option C: | $\frac{\partial F}{\partial y} = c$ $\frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = c$                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Option D: | $\frac{\partial F}{\partial y'} = c$                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 3.D       | Find extremals $\int_0^1 1 + x^2 y' y' dx$                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Option A: | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Option B: | $y = c_1 + c_2 x^2$                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Option C: | $y = c_1 + c_2 x$ $y = c_1 + c_2 x^2$ $y = \frac{c_1}{x} + c_2$                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Option D: | $y = \frac{1}{2}(x^3 + c_1)$                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 4.        | The sets of functions $\{f_1, f_2, f_3\}$ where $f_1 = x$ , $f_2 = x^2$ , $f_3 = x^3$ are                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Option A: | Linearly dependent                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Option B: | Linearly independent                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Option C: | Linearly independent and satisfies $1 + f_1 + \frac{f_2}{2!} = f_3$                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Option D: | Linearly dependent and satisfies $1 + f_1 + \frac{f_2}{2!} = f_3$                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |

| 5.M                 | 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                           |  |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 5.1.1               | One of eigen vector of $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ is                                                      |  |  |  |  |  |  |  |  |
| Option A:           | (1 -2)'                                                                                                                           |  |  |  |  |  |  |  |  |
| Option B:           | (2 -2)'                                                                                                                           |  |  |  |  |  |  |  |  |
| Option C:           | (1 -1)'                                                                                                                           |  |  |  |  |  |  |  |  |
| Option D:           | (1  2)'                                                                                                                           |  |  |  |  |  |  |  |  |
|                     |                                                                                                                                   |  |  |  |  |  |  |  |  |
| 6.s                 | If the product of eigen values of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16 then thethird |  |  |  |  |  |  |  |  |
|                     | eigenvalue is                                                                                                                     |  |  |  |  |  |  |  |  |
| Option A:           | 0                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option B:           |                                                                                                                                   |  |  |  |  |  |  |  |  |
| Option C:           | 3                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option D:           | 3                                                                                                                                 |  |  |  |  |  |  |  |  |
| 7 D                 | r3 11 .                                                                                                                           |  |  |  |  |  |  |  |  |
| 7.D                 | If A = 1/2 $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ then $4^A =$                                                            |  |  |  |  |  |  |  |  |
| Option A:           | [10 -6]                                                                                                                           |  |  |  |  |  |  |  |  |
| Option B:           | [16 10]<br>[10 6]                                                                                                                 |  |  |  |  |  |  |  |  |
| Option <b>B</b> .   | $\begin{bmatrix} 16 & 0 \\ 6 & 10 \end{bmatrix}$                                                                                  |  |  |  |  |  |  |  |  |
| Option C:           | [10 6]                                                                                                                            |  |  |  |  |  |  |  |  |
|                     | L-6_10J                                                                                                                           |  |  |  |  |  |  |  |  |
| Option D:           |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                     | <u> </u>                                                                                                                          |  |  |  |  |  |  |  |  |
| 8.s                 | Find the Euclidian norms of $u = (3, -4, 0, 12)$                                                                                  |  |  |  |  |  |  |  |  |
|                     | 11 11                                                                                                                             |  |  |  |  |  |  |  |  |
| Option A:           | 12                                                                                                                                |  |  |  |  |  |  |  |  |
| Option B: Option C: |                                                                                                                                   |  |  |  |  |  |  |  |  |
| Option C:           | 0                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option D.           |                                                                                                                                   |  |  |  |  |  |  |  |  |
| 9.m                 | If U = (3,4,2) and V = (4,-3,1) Find d (U,V)                                                                                      |  |  |  |  |  |  |  |  |
| Option A:           |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                     | $\sqrt{3}$                                                                                                                        |  |  |  |  |  |  |  |  |
| Option B:           | $\sqrt{2}$ $\sqrt{5}$                                                                                                             |  |  |  |  |  |  |  |  |
| Option C:           | √5                                                                                                                                |  |  |  |  |  |  |  |  |
| Option D:           | $\sqrt{7}$                                                                                                                        |  |  |  |  |  |  |  |  |
|                     |                                                                                                                                   |  |  |  |  |  |  |  |  |
| 10.s                | For solving the boundary value problem $\int_0^1 1 + x^2 y' dx$ , $y(0) = y(1) = 0$ using                                         |  |  |  |  |  |  |  |  |
|                     | Rayleigh Ritz method, we assume the trial solution                                                                                |  |  |  |  |  |  |  |  |
| Option A:           | $\frac{1}{V(x)} = c_1 x + c_2 x^2$                                                                                                |  |  |  |  |  |  |  |  |
| Option B:           | $\overline{y(x)} = c_1 x + c_2 x^2$ $\overline{y(x)} = c_0 + c_2 x^2$                                                             |  |  |  |  |  |  |  |  |
| Option C:           | $\frac{y(x) - c_0 + c_2 x}{y(x) = c_0 + c_1 x + c_2 x^2}$                                                                         |  |  |  |  |  |  |  |  |
| Option D:           | $\frac{y(x) - c_0 + c_1 x + c_2 x}{y(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3}$                                                       |  |  |  |  |  |  |  |  |
| Option D.           | $y(\lambda) - c_0 + c_1 \lambda + c_2 \lambda + c_3 \lambda$                                                                      |  |  |  |  |  |  |  |  |
| 11.d                | The value of k for which $u = (2, 1, 3)$ and $v = (4, 7, k)$ are orthogonal is                                                    |  |  |  |  |  |  |  |  |
| Option A:           | The value of K for which $u = (2, 1, 3)$ and $v = (4, 7, K)$ are orthogonal is                                                    |  |  |  |  |  |  |  |  |
| Option B:           | -1                                                                                                                                |  |  |  |  |  |  |  |  |
| Option C:           | -3                                                                                                                                |  |  |  |  |  |  |  |  |
| opnon C.            | 1 5                                                                                                                               |  |  |  |  |  |  |  |  |

| Option D: | -5                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|           |                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| 12.s      | If a random variable has the moment generating function is $\frac{3}{3-t}$ then Mean and                                                                                  |  |  |  |  |  |  |  |  |
|           | Standad deviation is given by                                                                                                                                             |  |  |  |  |  |  |  |  |
| Option A: | 1/2 , 1/2                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option B: | 3,3                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Option C: | 1/3 , 1/3                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option D: | 1,1                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| 10.5      |                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| 13.D      | For a normally distributed variable X with mean 1 and standard distribution 3,                                                                                            |  |  |  |  |  |  |  |  |
|           | then the probability that $-1.43 \le X \le 6.19$ is                                                                                                                       |  |  |  |  |  |  |  |  |
| Option A: | 0.6792                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Option B: | 0.7492                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Option C: | 0.07492                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Option D: | 0.06792                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 14 N4     | Change that are of the 10 taleshare line is because the incident of                                                                                                       |  |  |  |  |  |  |  |  |
| 14.M      | Chance that one of the 10 telephone line is busy at an instance is 0.2 then the                                                                                           |  |  |  |  |  |  |  |  |
| 0 1: 1    | chance that five of the lines are busy is                                                                                                                                 |  |  |  |  |  |  |  |  |
| Option A: | 0.0264                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Option B: | 0.264                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Option C: | 0.00264                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Option D: | 0.000264                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 15.s      | $r_{xy} = 0.4$ , $COV(x, y) = 1.6$ , $\sigma_y^2 = 25$ then $\sigma_{x=}$                                                                                                 |  |  |  |  |  |  |  |  |
| Option A: | 0.6                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Option B: | 0.7                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Option C: | 0.8                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Option C: | 0.9                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Орион Б.  | 09                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 16.D      | The equations of the two lines of regression are $6y = 5x + 90$ are                                                                                                       |  |  |  |  |  |  |  |  |
|           | 15 x = 8 y + 130 then coefficient of correlation is                                                                                                                       |  |  |  |  |  |  |  |  |
| Option A: | 1                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 1         | $r=-\frac{1}{3}$                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Option B: | 2                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| •         | $r=\frac{1}{3}$                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Option C: | 5                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| •         | $r=\frac{1}{3}$                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Option D: | r = 1                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| 17.M      | r 2 3 1                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|           | The matrix $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ is diagonalisable, then diagonalizing matrix $D = \begin{bmatrix} 1 & 3 & 1 \\ -3 & -4 & 1 \end{bmatrix}$ |  |  |  |  |  |  |  |  |
| Option A: | $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$                                                                                                                           |  |  |  |  |  |  |  |  |
| Option B: | $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$                                                                                                                           |  |  |  |  |  |  |  |  |
| Option C: |                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Ontion D. | $\begin{bmatrix} L_0 & -2J \\ r-1 & 0 \end{bmatrix}$                                                                                                                      |  |  |  |  |  |  |  |  |
| Option D: |                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|           |                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| 18.m      | Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along $y = \frac{x}{2}$                                                                                                            |  |  |  |  |  |  |  |  |
| 10        | Evaluate $\int_0^\infty (z)^{-\alpha} z$ along $y = \frac{1}{2}$                                                                                                          |  |  |  |  |  |  |  |  |

| O 4: A    | Is                                                                                         |
|-----------|--------------------------------------------------------------------------------------------|
| Option A: | $\frac{3}{3}(2-i)$                                                                         |
| Option B: | $\frac{1}{3}(2-i)$                                                                         |
| Option C: | $\frac{5}{3}(2+i)$                                                                         |
| Option D: | $\frac{\frac{5}{3}(2-i)}{\frac{1}{3}(2-i)}$ $\frac{\frac{5}{3}(2+i)}{\frac{5}{3}(2-i)}$    |
|           |                                                                                            |
| 19.s      | Evaluate $\int_{c} \frac{1}{(z+1)^4}$ where c is the circle $ z  = 0.1$                    |
| Option A: | 1                                                                                          |
| Option B: | i                                                                                          |
| Option C: | 2 π i                                                                                      |
| Option D: | 0                                                                                          |
|           |                                                                                            |
| 20.D      | The value of $\int_c \frac{1-\cos 2(z-3)}{(z-3)^3} dz$ where c is the curve $ z-3  = 1$ is |
| Option A: | 4 π i                                                                                      |
| Option B: | 0                                                                                          |
| Option C: | πί                                                                                         |
| Option D: | 2 т і                                                                                      |

| Q2     | Solve any Four out of Six                                                                  | 5 marks each                            |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| (20    |                                                                                            |                                         |  |  |  |  |  |  |  |
| Marks) |                                                                                            |                                         |  |  |  |  |  |  |  |
| A      | Find the extremal of $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 2xy) dx$                        |                                         |  |  |  |  |  |  |  |
| В      | Construct orthonormal basis of $R^2$ us                                                    | sing Gram Schmidth proess to            |  |  |  |  |  |  |  |
| Б      | $S = \{ (3,1), (2,2) \}$                                                                   | •                                       |  |  |  |  |  |  |  |
| ~      | For $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ verify Cayle |                                         |  |  |  |  |  |  |  |
| С      | For $A = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$ verify Cayle                            | ey Hamilton Thm and hence find $A^{-1}$ |  |  |  |  |  |  |  |
|        | $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$                                                 |                                         |  |  |  |  |  |  |  |
|        | Calculate spearman rank coefficient of correlation from following data                     |                                         |  |  |  |  |  |  |  |
| D      | X   10   12   18   18                                                                      | 15 40                                   |  |  |  |  |  |  |  |
|        | y 12 18 25 25                                                                              | 50 25                                   |  |  |  |  |  |  |  |
|        | Find the probability that at most 5 defective diodes will be found in a pack of 600        |                                         |  |  |  |  |  |  |  |
| Е      | diodes if previous data shows that 3 % of such diodes are defective.                       |                                         |  |  |  |  |  |  |  |
| F      | Evaluate $\int_{c}^{\infty} \frac{1}{(z)^{2}(z-1)(z+1)} dz$ where                          | c is circle  z =3                       |  |  |  |  |  |  |  |

| Q3<br>(20 | Solve any Four out of Six 5 marks each                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marks)    |                                                                                                                                                                       |
| A         | Find the curve C of given length L which encloses a maximum area                                                                                                      |
| В         | Check whether $V = R^3$ is a vector space with respect to the operations $(a,b)+(c,d)=(a+c,b+d-3)$ , $k(a,b)=(ka+k-1,kb+1)$                                           |
| С         | Find from the following values of the demand and the corresponding price of a commodity, the degree and price by computing Karl Pearson's co-efficient of correlation |

|   | Demand in quintals                                                                                                                                                                                               | 65                     | 66  | 67 | 67 | 68 | 69 | 70 | 72 |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|----|----|----|----|----|----|--|
|   | Price in paise per k.g                                                                                                                                                                                           | 67                     | 68  | 65 | 68 | 72 | 72 | 69 | 71 |  |
| D | Evaluate $\int_0^\infty \frac{1}{(1-x)^2}$                                                                                                                                                                       | $\frac{1}{(x)^4 + 16}$ | -dx |    |    |    |    |    |    |  |
| Е | Is $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ Derogatory? Find its minimal polynomial.                                                                                            |                        |     |    |    |    |    |    |    |  |
| F | The ratio of the probability of 3 successes in 5 independent trials to the probability of 2 successes in 5 independent trials is $\frac{1}{4}$ . What is the probability of 4 successes in 6 independent trials? |                        |     |    |    |    |    |    |    |  |

### **Examination 2020 under cluster 5(Lead College: APSIT)**

Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20<sup>th</sup> January 2021

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev 2016 Examination: SE Semester IV

Course Code: ECC402 and Course Name: Electronic Devices & Circuits-II

Time: 2 hour Max. Marks: 80

\_\_\_\_\_

| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | What is the frequency of oscillation for an RC phase shift oscillator with R of 10                                                                                                                                                              |
| 1.        | $k\Omega$ and C of 0.001 $\mu$ F in each of its RC sections?                                                                                                                                                                                    |
| Option A: | 5 kHz                                                                                                                                                                                                                                           |
| Option B: | 5.5 kHz                                                                                                                                                                                                                                         |
| Option C: | 6 kHz                                                                                                                                                                                                                                           |
| Option D: | 6.5 kHz                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                                                 |
| 2.        | In designing of two stage RC coupled cascaded amplifiers if the requirement of input impedance is greater than 1 M $\Omega$ and voltage gain requirement is more than 600 then which amplifier should be selected as the first stage amplifier? |
| Option A: | Common source JFET amplifier                                                                                                                                                                                                                    |
| Option B: | Common emitter BJT amplifier                                                                                                                                                                                                                    |
| Option C: | Common Base BJT amplifier                                                                                                                                                                                                                       |
| Option D: | Common gate JFET amplifier                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                 |
| 3.        | To obtain very high input and output impedance in a feedback amplifier, the topology mostly used is                                                                                                                                             |
| Option A: | Voltage series                                                                                                                                                                                                                                  |
| Option B: | Current shunt                                                                                                                                                                                                                                   |
| Option C: | Voltage shunt                                                                                                                                                                                                                                   |
| Option D: | Current series                                                                                                                                                                                                                                  |
| •         |                                                                                                                                                                                                                                                 |
| 4.        | An n-channel MOSFET has $I_{DSS} = 2mA$ , and $V_P = -4V$ . Its transconductance gm = (in mA/V) for an applied gate to source voltage $V_{GS} = -2 \text{ V}$ is                                                                                |
| Option A: | 0.25                                                                                                                                                                                                                                            |
| Option B: | 0.5                                                                                                                                                                                                                                             |
| Option C: | 0.75                                                                                                                                                                                                                                            |
| Option D: | 1                                                                                                                                                                                                                                               |
|           |                                                                                                                                                                                                                                                 |
| 5.        | In designing of cascade amplifier if the overall voltage gain is 110 and the                                                                                                                                                                    |
|           | relation between the voltage gains of individual stages is $A_{V1} = 0.6 A_{V2}$ then                                                                                                                                                           |
|           | calculate the gains of the first stage and second stage respectively are                                                                                                                                                                        |
| Option A: | 8.12, 13.54                                                                                                                                                                                                                                     |
| Option B: | 13.54, 8.12                                                                                                                                                                                                                                     |
| Option C: | 8.12, 25                                                                                                                                                                                                                                        |
| Option D: | 25, 8.12                                                                                                                                                                                                                                        |

| 6.        | In case of Class A amplifier, the ratio of efficiency of transformer less amplifier                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.        | to the efficiency of transformer coupled amplifier is                                                                                                               |
| Option A: | 2                                                                                                                                                                   |
| Option B: | 1.36                                                                                                                                                                |
| Option C: | 1                                                                                                                                                                   |
| Option D: | 0.5                                                                                                                                                                 |
| option D. |                                                                                                                                                                     |
| 7.        | Determine the frequency of oscillations of a Wein Bridge oscillator circuit having R as $10 \text{ k}\Omega$ and capacitor of 1 nF.                                 |
| Option A: | 15.92 kHz                                                                                                                                                           |
| Option B: | 15.92 Hz                                                                                                                                                            |
| Option C: | 30.15 kHz                                                                                                                                                           |
| Option D: | 30.15 Hz                                                                                                                                                            |
| 1         |                                                                                                                                                                     |
| 8.        | In designing of CS-CE multistage amplifier if the lower cut-off frequency is 20 Hz, $X_{CE2} = 100 \Omega$ , then the value of the emitter bypass capacitor will be |
| Option A: | 0.5 mF                                                                                                                                                              |
| Option B: | 79.5 mF                                                                                                                                                             |
| Option C: | 79.5 μF                                                                                                                                                             |
| Option D: | 50 nF                                                                                                                                                               |
|           |                                                                                                                                                                     |
| 9.        | is a fixed frequency oscillator                                                                                                                                     |
| Option A: | Phase shift oscillator                                                                                                                                              |
| Option B: | Hartley oscillator                                                                                                                                                  |
| Option C: | Colpitt's oscillator                                                                                                                                                |
| Option D: | Crystal oscillator                                                                                                                                                  |
|           |                                                                                                                                                                     |
| 10.       | Ina negative feedback amplifier shunt mixing                                                                                                                        |
| Option A: | Tends to increase the input resistance                                                                                                                              |
| Option B: | Tends to decrease the input resistance                                                                                                                              |
| Option C: | Does not alter the input impedance                                                                                                                                  |
| Option D: | Produces the same effect on input resistance as the series mixing                                                                                                   |
|           |                                                                                                                                                                     |
| 11.       | For a Depletion MOSFET $V_{GS}$ = - 3V, $I_{DSS}$ =5mA, and $I_{D}$ =2mA. Find the pinch of voltage $V_P$                                                           |
| Option A: | - 4.08 V                                                                                                                                                            |
| Option B: | - 8.16 V                                                                                                                                                            |
| Option C: | 8.16 V                                                                                                                                                              |
| Option D: | 0 V                                                                                                                                                                 |
|           |                                                                                                                                                                     |
| 12.       | If a transistor is operated in such a way that output current flows for 60° of the                                                                                  |
|           | input signal, then it is operation.                                                                                                                                 |
| Option A: | Class B                                                                                                                                                             |
| Option B: | Class C                                                                                                                                                             |
| Option C: | Class A                                                                                                                                                             |
| Option D: | Class AB                                                                                                                                                            |
| 1.0       |                                                                                                                                                                     |
| 13.       | The advantage of using RC coupling technique in multistage amplifiers is                                                                                            |
| Option A: | Good impedance matching                                                                                                                                             |

| Option B: Maximum power transfer                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Option C: Simple circuit with low cost                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| <u>.</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Option D: Operation point is shifted due to variation in temperatu                                                                                                                                                                                                                                                                                                                                                                                        | re                         |
| 14. An amplifier has an open loop gain of 100, an inp                                                                                                                                                                                                                                                                                                                                                                                                     | nt in a dama of 1 10 A     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| feedback network with a feedback factor of 0.99 is con                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| voltage series feedback mode. The new input impedant Option A: $10 \Omega$                                                                                                                                                                                                                                                                                                                                                                                | ce with feedback is        |
| Option B: 100 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Option C: 100 kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| Option D: $1 \text{ k}\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Option D.   1 ks2                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| 15. An oscillator differs from an amplifier because it                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Option A: Has more gain Option B: Requires no input signal                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| 117                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Option D: Always has the same input                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| 16. The three amplifiers are connected in a multistage                                                                                                                                                                                                                                                                                                                                                                                                    | arrangament and with a     |
| voltage gain of 30dB. Compute for the overall voltage                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gam.                       |
| Option A: 90 Option B: 27000                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| Option C: 10                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| Option D: 30                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| Option D. 30                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| 17. Power amplifier generally uses transformer coupling be                                                                                                                                                                                                                                                                                                                                                                                                | ecause transformer permits |
| Option A: Cooling of circuits                                                                                                                                                                                                                                                                                                                                                                                                                             | ceause transformer permits |
| Option B: Impedance matching                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| Option C: Distortion less output                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| Option D: Good frequency response                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| spanner coordinates response                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| 18. For the operation of enhancement only n channel                                                                                                                                                                                                                                                                                                                                                                                                       | MOSFET , value of gate     |
| 18. For the operation of enhancement only n channel voltage has to be                                                                                                                                                                                                                                                                                                                                                                                     | MOSFET, value of gate      |
| voltage has to be                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOSFET, value of gate      |
| voltage has to be Option A: high positive                                                                                                                                                                                                                                                                                                                                                                                                                 | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative                                                                                                                                                                                                                                                                                                                                                                                         | MOSFET, value of gate      |
| voltage has to be Option A: high positive                                                                                                                                                                                                                                                                                                                                                                                                                 | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive                                                                                                                                                                                                                                                                                                                                                                  | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive                                                                                                                                                                                                                                                                                                                                                                  | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive Option D: zero                                                                                                                                                                                                                                                                                                                                                   | MOSFET, value of gate      |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor                                                                                                                                                                                                                                                 | MOSFET, value of gate      |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor  Option B: 1 Inductor, 1 Capacitor                                                                                                                                                                                                              | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor Option B: 1 Inductor, 1 Capacitor                                                                                                                                                                                                                   | MOSFET, value of gate      |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor Option B: 1 Inductor, 2 Capacitor Option C: 1 Inductor, 2 Capacitor                                                                                                                                                                                 | MOSFET , value of gate     |
| voltage has to be Option A: high positive Option B: high negative Option C: low positive Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor Option B: 1 Inductor, 2 Capacitor Option C: 1 Inductor, 2 Capacitor                                                                                                                                                                                 |                            |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor  Option B: 1 Inductor, 1 Capacitor  Option C: 1 Inductor, 2 Capacitor  Option D: 2 Capacitor, 2 Inductor                                                                                                                                        |                            |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor  Option B: 1 Inductor, 1 Capacitor  Option C: 1 Inductor, 2 Capacitor  Option D: 2 Capacitor, 2 Inductor  20. On which parameters, the calculation of Q point                                                                                   |                            |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor  Option B: 1 Inductor, 1 Capacitor  Option C: 1 Inductor, 2 Capacitor  Option D: 2 Capacitor, 2 Inductor  20. On which parameters, the calculation of Q point multistage amplifiers is dependent?  Option A: I <sub>DQ</sub> , V <sub>GSQ</sub> |                            |
| voltage has to be  Option A: high positive  Option B: high negative  Option C: low positive  Option D: zero  19. The feedback network of Colpitts oscillator consist of Option A: 2 Inductor, 1 Capacitor  Option B: 1 Inductor, 1 Capacitor  Option C: 1 Inductor, 2 Capacitor  Option D: 2 Capacitor, 2 Inductor  20. On which parameters, the calculation of Q point multistage amplifiers is dependent?  Option A: I <sub>DQ</sub> , V <sub>GSQ</sub> |                            |

| Q2 | Solve any Two Questions out of Three                                                                                                                                        |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A  | With the help of circuit diagram and ac equivalent model, derive the                                                                                                        | 10 |
|    | expression for input impedance, output impedance, voltage gain for a                                                                                                        |    |
|    | two stage CS-CS cascaded amplifier with bypassed source resistance.                                                                                                         |    |
| В  | Draw RC phase shift oscillator using BJT and derive the frequency of                                                                                                        | 10 |
|    | oscillation for the same.                                                                                                                                                   |    |
| С  | For the n channel depletion type MOSFET , $I_{DSS}$ = 6 mA, $V_P$ = -3 V , $R_1$ = 110 M $\Omega$ , $R_2$ = 10 M $\Omega$ , $R_D$ = 1.8 k $\Omega$ and $R_S$ = 750 $\Omega$ | 10 |
|    | Find a) Ipq                                                                                                                                                                 |    |
|    | b) V <sub>DSQ</sub>                                                                                                                                                         |    |
|    | -7 - 200                                                                                                                                                                    |    |
| Q3 | Solve any Two questions out of three                                                                                                                                        |    |
| A  | Design the resistors of a 2 stage RC coupled CE-CE amplifier for the                                                                                                        | 10 |
|    | following parameters                                                                                                                                                        |    |
|    | $A_V \ge 2500$ , $f_L \ge 30$ , $S \le 8$ , $V_O = 2.5$ V.                                                                                                                  |    |
|    | Consider the following data for transistor BC147A, $V_{CE(sat)} = 0.25 \text{ V}$ ,                                                                                         |    |
|    | hie = $2.7 \text{ k}\Omega$ , h <sub>FE</sub> = $180$ , h <sub>fe</sub> = $220$                                                                                             |    |
| В  | With the help of neat block diagram, derive the expression for $R_{IF}$ , $R_{OF}$ , $G_{mF}$ for current series negative feedback amplifier.                               | 10 |
| С  | Explain transformer coupled class A power amplifier with the help of a                                                                                                      |    |
|    | neat circuit diagram. Also draw ac and dc loadlines for the same. Derive                                                                                                    |    |
|    | expression for the power conversion efficiency.                                                                                                                             |    |

# Examination 2020 under cluster 5\_(Lead College: \_\_APSIT\_\_\_) Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021

Program: SEM IV CBCS Curriculum Scheme: Rev 2016 Examination: SE Semester IV

Course Code: ECC403 and Course Name: LIC


Time: 2 hour Max. Marks: 80

| Q1.                 | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1.                  | The input stage of operational amplifier is                                                                                       |
|                     | 1 0 1                                                                                                                             |
| Option A:           | Single input balanced output                                                                                                      |
| Option B:           | Dual Input Balanced output  Dual input unbalanced output                                                                          |
| Option C: Option D: | Single input unbalanced output                                                                                                    |
| Option D.           | Single input unbalanced output                                                                                                    |
| 2.                  | In a particular op-amp the input offset current is 20 nA while input bias current is 60nA. Calculate values of two bias currents. |
| Option A:           | 70nA, 50nA                                                                                                                        |
| Option B:           | 50nA, 50nA                                                                                                                        |
| Option C:           | 0, 20 nA                                                                                                                          |
| Option D:           | 50nA, 0nA                                                                                                                         |
| •                   |                                                                                                                                   |
| 3.                  | Slew rate is defined as                                                                                                           |
| Option A:           | Rate of change of output voltage with time                                                                                        |
| Option B:           | Rate of change of output current with time                                                                                        |
| Option C:           | Rate of change of output voltage with current                                                                                     |
| Option D:           | Rate of change of output current with voltage                                                                                     |
|                     |                                                                                                                                   |
| 4.                  | The output of a particular opamp increases 10 V in 12 µs. The slew rate is                                                        |
| Option A:           | 0.83 V/μs                                                                                                                         |
| Option B:           | 0.67 V/μs                                                                                                                         |
| Option C:           | 0 V/μs                                                                                                                            |
| Option D:           | 0.53 V/μs                                                                                                                         |
|                     |                                                                                                                                   |
| 5.                  | The input impedance of differentiator                                                                                             |
| Option A:           | decreases when frequency increases                                                                                                |
| Option B:           | decreases when frequency decreases                                                                                                |
| Option C:           | is independent of frequency                                                                                                       |
| Option D:           | increases when frequency increases                                                                                                |
| 6.                  | In an inverting ideal integrator, which component exhibits the feedback path connection?                                          |
| Option A:           | R                                                                                                                                 |
| Option B:           | C                                                                                                                                 |
| Option C:           | L                                                                                                                                 |
| Option D:           | Diode                                                                                                                             |

| 7.        | A Non inverting Schmitt trigger employs                                                       |
|-----------|-----------------------------------------------------------------------------------------------|
| Option A: | Only Negative feedback                                                                        |
| Option B: | Only Positive feedback                                                                        |
| Option C: | Both Negative and Positive feedback                                                           |
| Option D: | No feedback                                                                                   |
| Option B. | Two recubility                                                                                |
| 8.        | The filter having equal amplitude in all frequency                                            |
| Option A: | Low pass filter                                                                               |
| Option B: | High Pass filter                                                                              |
| Option C: | Band pass filter                                                                              |
| Option D: | All pass filter                                                                               |
| option B. | 711 pass filter                                                                               |
| 9.        | The gain of second order low pass filter decreases at the rate of                             |
| Option A: | 20 dB/decade                                                                                  |
| Option B: | 40 dB/decade                                                                                  |
| Option C: | 60 dB/decade                                                                                  |
| Option D: | 80 dB/decade                                                                                  |
| option 2. | 00 dB/deedde                                                                                  |
| 10.       | A square waveform having ON time equal to its OFF time is fed as input to an                  |
|           | integrator. The resulting output of the integrator is called                                  |
| Option A: | Inverted Square waveform                                                                      |
| Option B: | Sawtooth waveform                                                                             |
| Option C: | Triangular waveform                                                                           |
| Option D: | Sine waveform                                                                                 |
| 1         |                                                                                               |
| 11.       | An 8 bit successive approximation ADC is driven by a 1 MHz clock. Find its                    |
|           | conversion time.                                                                              |
| Option A: | 9 μsec                                                                                        |
| Option B: | 10 μsec                                                                                       |
| Option C: | 11 µsec                                                                                       |
| Option D: | 20 μsec                                                                                       |
|           |                                                                                               |
| 12.       | Find the resolution of a 10-bit AD converter for an input range of 10 V?                      |
| Option A: | 97.7 mV                                                                                       |
| Option B: | 9.77 mV                                                                                       |
| Option C: | 0.977 mV                                                                                      |
| Option D: | 977 mV                                                                                        |
|           |                                                                                               |
| 13.       | Calculate the output voltage of 8 bit R-2R ladder DAC for given input 11011101                |
|           | & given resolution is 0.0392                                                                  |
| Option A: | 8.66 V                                                                                        |
| Option B: | 10 V                                                                                          |
| Option C: | 1 V                                                                                           |
| Option D: | 221 V                                                                                         |
|           |                                                                                               |
| 14.       | A 555 timer is configured to run in a<br>stable mode with RA=RB=4k $\Omega$ , C=0.01 $\mu$ F, |
|           | Determine its duty cycle                                                                      |
| Option A: | 67%                                                                                           |
| Option B: | 50%                                                                                           |

| Option C:           | 25%                                                     |
|---------------------|---------------------------------------------------------|
| Option D:           | 10%                                                     |
|                     |                                                         |
| 15.                 | In 555 timer pin 1 is connected to                      |
| Option A:           | VCC                                                     |
| Option B:           | ground                                                  |
| Option C:           | reset                                                   |
| Option D:           | trigger                                                 |
|                     |                                                         |
| 16.                 | For a Phase Locked Loop which of the following is true? |
| Option A:           | Lock in range > Capture range                           |
| Option B:           | Lock in range < Capture range                           |
| Option C:           | Lock in range = Capture range                           |
| Option D:           | Lock in range = half of Capture range                   |
|                     |                                                         |
| 17.                 | What is IC 723                                          |
| Option A:           | Voltage regulator                                       |
| Option B:           | clipper                                                 |
| Option C:           | clamper                                                 |
| Option D:           | Precision rectifier                                     |
|                     |                                                         |
| 18.                 | In IC7805 the output voltage is                         |
| Option A:           | 5 V                                                     |
| Option B:           | 0 V                                                     |
| Option C:           | 8 V                                                     |
| Option D:           | 7 V                                                     |
|                     |                                                         |
| 19.                 | If output voltage is 5V & output current is 50 mA it is |
| Option A:           | Low Voltage Low Current Regulator                       |
| Option B:           | Low Voltage High Current Regulator                      |
| Option C:           | High Voltage Low Current Regulator                      |
| Option D:           | High Voltage High Current Regulator                     |
| 20                  | The 7012 magulaton IC musuides                          |
| 20.                 | The 7812 regulator IC provides                          |
| Option A:           |                                                         |
| Option B: Option C: | 12 V<br>5 V                                             |
|                     | 0 V                                                     |
| Option D:           | U Y                                                     |

| Q2 | Solve any Two Questions out of Three 10 marks each                                                                                                                                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | Design an Inverting Schmitt Trigger for UTP=4 V, LTP=-4 V.Assume VCC = ± 12 V.  Design an astable multivibrator having an output frequency of 10 kHz with a duty cycle of 25% using IC 555.                                                         |
| В  | a duty cycle of 25% using IC 555.                                                                                                                                                                                                                   |
| С  | Determine output voltage for given circuit $ \begin{array}{c} 10 \text{ k}\Omega \\ \hline V_{in} \end{array} $ $ \begin{array}{c} 1 \text{ k}\Omega \\ \hline B \\ \end{array} $ $ \begin{array}{c} 1 \text{ k}\Omega \\ \hline B \\ \end{array} $ |



Examination 2020 under cluster 5 (Lead College: APSIT)

Examinations Commencing from 23<sup>rd</sup> December 2020 to 6<sup>th</sup> January 2021 and from 7<sup>th</sup> January 2021 to 20<sup>th</sup> January 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016 **Examination: SE Semester IV** 

Course Code: ECC 404 and Course Name: Signals and Systems

Time: 2 hour Max. Marks: 80

| Q1.                 | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
|---------------------|-----------------------------------------------------------------------------------------------------------|
|                     |                                                                                                           |
| 1.                  | Unilateral Laplace Transform is applicable for the determination of linear                                |
|                     | constant coefficient differential equations with                                                          |
| Option A:           | Zero initial condition                                                                                    |
| Option B:           | Non-zero initial condition                                                                                |
| Option C:           | Zero final condition                                                                                      |
| Option D:           | Non-zero final condition                                                                                  |
| 2.                  | The complex exponential Fourier coefficient of a real valued time signal has                              |
| Option A:           | Odd symmetry                                                                                              |
| Option B:           | Even symmetry                                                                                             |
| Option C:           | Conjugate symmetry                                                                                        |
| Option D:           | No symmetry                                                                                               |
| -                   |                                                                                                           |
| 3.                  | The Fourier transform of a function is equal to its two-sided Laplace transform evaluated                 |
| Option A:           | On the real axis of the s-plane                                                                           |
| Option B:           | On the line parallel to the real axis of the s-plane                                                      |
| Option C:           | On the imaginary axis of the s-plane                                                                      |
| Option D:           | On the line parallel to the imaginary axis of the s-plane                                                 |
|                     |                                                                                                           |
| 4.                  | The Fourier transform of a unit step function is given as:                                                |
| Option A:           | $F(j\omega) = 1/j\omega$                                                                                  |
| Option B:           | $F(j\omega) = j\omega$                                                                                    |
| Option C:           | $F(j\omega) = j/\omega$                                                                                   |
| Option D:           | $F(j\omega) = \omega/j$                                                                                   |
| 5.                  | Find the 7 transforms of S(n+2)                                                                           |
|                     | Find the Z-transform of $\delta(n+3)$ .                                                                   |
| Option A:           | 1                                                                                                         |
| Option B: Option C: | $\begin{bmatrix} z \\ z^2 \end{bmatrix}$                                                                  |
| Option C:           | $\frac{z}{z^3}$                                                                                           |
| Орион D:            |                                                                                                           |
| 6.                  | Find the Z-transform of u(-n).                                                                            |
| Option A:           | 1/(1-z)                                                                                                   |
| Option B:           | 1/(1+z)                                                                                                   |
| Option C:           | z/(1-z)                                                                                                   |

| Option D:           | z/(1+z)                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                |
| 7.                  | For what kind of signals one sided z-transform is unique?                                                      |
| Option A:           | All signals                                                                                                    |
| Option B:           | Anti-causal signal                                                                                             |
| Option C:           | Causal signal                                                                                                  |
| Option D:           | Non-causal Non-causal                                                                                          |
|                     |                                                                                                                |
| 8.                  | What is the one sided z-transform of $x(n)=\delta(n-k)$ ?                                                      |
| Option A:           | 0                                                                                                              |
| Option B:           | 1                                                                                                              |
| Option C:           | Z <sup>-k</sup>                                                                                                |
| Option D:           | z <sup>k</sup>                                                                                                 |
|                     |                                                                                                                |
| 9.                  | Circular convolution between two sequences $x_1(n) = \{1,2,1,2\}$ and $x_2(n) = \{1,2,1,2\}$                   |
|                     | 2,1,2,1} is                                                                                                    |
| Option A:           | {8,8,8,8}                                                                                                      |
| Option B:           | {10,10,10,10}                                                                                                  |
| Option C: Option D: | {10,8,10,8}                                                                                                    |
| Option D:           | {8,10,8,10}                                                                                                    |
| 10.                 | According to Parseval's theorem the energy spectral density curve is equal to?                                 |
| Option A:           | Area under magnitude of the signal                                                                             |
| Option B:           | Area under square of magnitude of the signal x(t)                                                              |
| Option C:           | Area under square root of magnitude of the signal x(t)  Area under square root of magnitude of the signal x(t) |
| Option D:           | Area under cube root of magnitude of the signal x(t)                                                           |
| option B.           | The dider edge root of magnitude of the signal A(t)                                                            |
| 11.                 | A linear system is described by the following state equation.                                                  |
|                     | x(t)=AX(t)+BU(t),                                                                                              |
|                     | $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$                                                            |
|                     |                                                                                                                |
|                     | The state-transition matrix of the system is                                                                   |
| Option A:           | [ cost sint ]                                                                                                  |
| Option B:           | [-cost sint]                                                                                                   |
| Option B.           | $\begin{bmatrix} -sint & -cost \end{bmatrix}$                                                                  |
| Option C:           | [-cost - sint]                                                                                                 |
| O 4: D              | L-sint cost                                                                                                    |
| Option D:           | $\begin{bmatrix} cost & sint \\ cost & -sint \end{bmatrix}$                                                    |
|                     | reast —stitus                                                                                                  |
| 12.                 | The samples of a cosine wave at zero frequency are equivalent to samples of                                    |
| Option A:           | Sine wave                                                                                                      |
| Option B:           | A DC signal                                                                                                    |
| Option C:           | A cosine wave                                                                                                  |
| Option D:           | An unknown signal                                                                                              |
|                     |                                                                                                                |
| 13.                 | What is the name given to lowest frequency in Fourier series                                                   |
| Option A:           | Fundamental                                                                                                    |
| Option B:           | Series harmonic                                                                                                |
| Option C:           | Second harmonic                                                                                                |
| Option D:           | 1 hertz signal                                                                                                 |

| 14.       | If input to a system is not bounded, then system is                                              |
|-----------|--------------------------------------------------------------------------------------------------|
| Option A: | stable                                                                                           |
| Option B: | Unstable                                                                                         |
| Option C: | Cannot be tested                                                                                 |
| Option D: | ideal                                                                                            |
| Option B. | Tideat Tideat                                                                                    |
| 15.       | Which one of the following systems is causal?                                                    |
| Option A: | $y(t)=x(t)+x(t-3)+x(t^2)$                                                                        |
| Option B: | y(n)=x(n+2)                                                                                      |
| Option C: | y(t)=x(t-1)+x(t-2)                                                                               |
| Option D: | $y(n)=x(2n^2)$                                                                                   |
|           |                                                                                                  |
| 16.       | Find the Nyquist rate and Nyquist interval for the signal $f(t)=\sin 500\pi t / \pi t$ .         |
| Option A: | 500 Hz, 2 sec                                                                                    |
| Option B: | 500 Hz, 2 msec                                                                                   |
| Option C: | 2 Hz, 500 sec                                                                                    |
| Option D: | 2 Hz, 500 msec                                                                                   |
| •         |                                                                                                  |
| 17.       | The impulse response h (t) of an LTI system is given by e <sup>-2t</sup> .u(t). What is the step |
|           | response?                                                                                        |
| Option A: | $y(t) = \frac{1}{2} (1 - e^{-2t}) u(t)$                                                          |
| Option B: | $y(t) = \frac{1}{2}(1 - e^{-2t})$                                                                |
| Option C: | $y(t) = (1 - e^{-2t}) u(t)$                                                                      |
| Option D: | $y(t) = (1 - e^{-2t}) u (t)$<br>$y(t) = \frac{1}{2} (e^{-2t}) u (t)$                             |
|           |                                                                                                  |
| 18.       | Which among the following is a disadvantage of modern control theory?                            |
| Option A: | Implementation of optimal design                                                                 |
| Option B: | Transfer function can also be defined for different initial conditions                           |
| Option C: | Analysis of all systems take place                                                               |
| Option D: | Necessity of computational work                                                                  |
|           |                                                                                                  |
| 19.       | Which among the following constitute the state model of a system in addition to                  |
|           | state equations?                                                                                 |
| Option A: | Input equations                                                                                  |
| Option B: | State trajectory                                                                                 |
| Option C: | Output equations                                                                                 |
| Option D: | State vector                                                                                     |
|           |                                                                                                  |
| 20.       | What is Fourier series?                                                                          |
| Option A: | The representation of periodic signals in a mathematical manner is called a                      |
|           | Fourier series                                                                                   |
| Option B: | The representation of non-periodic signals in a mathematical manner is called a                  |
|           | Fourier series                                                                                   |
| Option C: | The representation of non-periodic signals in terms of complex exponentials or                   |
|           | sinusoids is called a Fourier series                                                             |
| Option D: | The representation of periodic signals in terms of complex exponentials or                       |
|           | sinusoids is called a Fourier series                                                             |

| Q2 | Solve any Four out of Six 5 marks each                                                                                                                                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | State and prove time reversal property of Fourier series.                                                                                                                                                                                                                                         |
| В  | Determine the following systems are memory less, causal, linear or Time invariant $y(t)=x^2(t-to)+2$                                                                                                                                                                                              |
| С  | Consider two LTI system connected in series, Their impulse resonse are $h_1[n]$ and $h_2[n]$ respectively, Find the output of the system if $x[n]$ is the input being applied to one of the systems. $x[n] = \{1 \uparrow, 2\}$ $h_1[n] = \{1, 0, -1 \uparrow\}$ $h_2[n] = \{2 \uparrow, 1, -1\}$ |
| D  | Explain in Brief The ROC condition in Laplace Transform.                                                                                                                                                                                                                                          |
| Е  | Determine the autocorrelation of the CT signal given by $x(t)=A \ rect \ (t/2)$ .                                                                                                                                                                                                                 |
| F  | The Impulse response of DT system is given by $h[n]=\{1,2,3\}$ and the output response is given by $y[n]=\{1,1,2,-1,3\}$ , Using Z-Transform, determine $x[n]$ by long division method.                                                                                                           |

| Q3.             | Solve any Two Questions out of Three 10 marks each                                                                                                                                                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (20 Marks Each) |                                                                                                                                                                                                     |
| A               | Consider a causal LTI system with $H(j\omega)=(j\omega+2)-1$ . For a particular input $x(t)$ , this system produce output $y(t)=e-2t$ $u(t)-e-3t$ $u(t)$ . Find out $x(t)$ using Fourier Transform. |
| В               | A LTI system has the following transfer function                                                                                                                                                    |
|                 | $H(z) = \frac{z}{(z - \frac{1}{4})(z + \frac{1}{4})(z - \frac{1}{2})}$                                                                                                                              |
|                 | Give all possible ROC condition                                                                                                                                                                     |
|                 | a) Show pole-zero diagrams                                                                                                                                                                          |
|                 | b) Find impulse response of system                                                                                                                                                                  |
|                 | c) Comment on the system stability and causality for all possible ROC's                                                                                                                             |
| С               | Obtain Inverse Laplace Transform of the function $X(s)=(3s+7)/(s2-s-12)$ for following ROCs, Also comment on the stability and causality of the systems for each of the ROC conditions.             |
|                 | Support your answer with appropriate sketches of ROCs.                                                                                                                                              |
|                 | i. $Rs(s)>4$<br>ii. $Re(s)<-3$                                                                                                                                                                      |