Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016

Examination: TE Semester V

Course Code: ECC501 and Course Name: Microprocessor and Peripherals Interfacing Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
	compulsory and carry equal marks
1.	A computer program that translates high level programming language code to
1.	machine level code is
Option A:	Assembler
Option B:	Compiler
Option C:	Interpreter
Option D:	Converter
2.	8086 microprocessors can access IO ports.
Option A:	16K
Option B:	8K
Option C:	32K
Option D:	64K
3.	8086 microprocessor has byte prefetch queue in bus interface unit.
Option A:	6
Option B:	4
Option C:	3
Option D:	2
4.	Memory Segmentation permits the programmer to access 1MB memory using
	only bit address.
Option A:	8
Option B:	16
Option C:	32
Option D:	20
5.	Which flag is set/reset for auto incrementing/decrementing modes of SI and DI
	during string operations in an 8086 microprocessor?
Option A:	DF
Option B:	OF
Option C:	IF
Option D:	TF
6.	The result of MOV AL, 58
Option A:	store 0101 1000 in AL
Option B:	store 58 H in AL
Option C:	store data from memory 58 to AL

Option D:	store 0011 1010 in AL
7.	The instruction that loads an effective address formed by destination operand into
7.	the specified source register is
Option A:	LEA
Option B:	LDS
Option C:	LES
Option D:	LAHF
- 1	
8.	Which of the following instructions gives 2's complement of the number?
Option A:	DAA
Option B:	NEG
Option C:	DAS
Option D:	СМР
9.	How many channels are present in one DMA Controller IC 8257?
Option A:	2
Option B:	4
Option C:	6
Option D:	8
10.	In control word format of 8254, if RL1=1, RL0=1 then the operation performed is
Option A:	read/load least significant byte only
Option B:	read/load most significant byte only
Option C:	read/load LSB first and then MSB
Option D:	read/load MSB first and then LSB
11.	How many ICW (Initialization Command Word) are present in 8259?
Option A:	2
Option B:	4
Option D:	6
Option D:	8
Option D.	
12.	Which of the following is a bidirectional I/O mode in 8255?
Option A:	Mode 0
Option B:	Mode 1
Option C:	Mode 2
Option D:	BSR
· ·	
13.	Exit Condition for LOOP instruction is
Option A:	AX = 0000H
Option B:	BX=0000H
Option C:	СХ=0000Н
Option D:	DX=00000H
14.	Instruction Queue is used for
Option A:	Pipelining
Option B:	Memory Segmentation
Option C:	Memory Banking
Option D:	Memory Interfacing

15.	The function of S5 pin is to
Option A:	Give status of Interrupt Enable Flag
Option B:	Give status of Trap Flag
Option C:	Give status of Direction Flag
Option D:	Give status of Sign Flag
16.	The time taken by the ADC from the active edge of SOC pulse till the active edge of EOC signal is referred as
Option A:	Conversion delay
Option B:	Settling time
Option D:	Take off time
Option D:	output time
option D.	
17.	In ADC, the ALE is used to
Option A:	start conversion
Option B:	stop conversion
Option C:	provide clock
Option D:	Latch Channel number
1	
18.	Which of the following signals is used to select the ODD memory bank in 8086?
Option A:	ALE
Option B:	Active low BHE
Option C:	A0
Option D:	MEMR
19.	How many address lines a memory chip of 1K capacity will have?
Option A:	8
Option B:	10
Option C:	11
Option D:	12
20.	The BUSY signal of 8087 is connected with pin of 8086.
Option A:	TEST
Option B:	HOLD
Option C:	INTR
Option D:	QS0

Q2	Solve any Two Questions out of Three	10 marks each
А	Write a Program to find strength of Positive and Negative the series of 10 signed numbers.	e numbers among
В	Explain the Interrupt structure of 8086 Microprocessor.	
С	Explain Various operating modes of 8255 PPI.	

Q3.	
А	Solve any Two 5 marks each
i.	Explain the instruction pipelining features of 8086. Give its advantages and
	its disadvantages.
ii.	Explain the need of assembly language and compare with high level
	languages.
iii.	If 16k RAM (2 chips of 8k each) are interfaced with 8086. Assuming that
	physical address of RAM is 00000H, what will be the starting and ending
	address of each chip?
В	Solve any One 10 marks each
i.	Explain Maximum Modes of 8086 Microprocessor. Draw timing diagram
	for Read operation in maximum Mode.
ii.	Draw and explain the interfacing of DAC 0809 with 8086 microprocessor
	using 8255. Also write an assembly language program to generate square
	wave.

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: Third Year Semester V

Course Code: ECC502 and Course Name: Digital Communication

Time: 1 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks40
1.	Let X be a real-valued random variable with $E[X]$ and $E[X^2]$ denoting the mean values of X and X ² , respectively. The relation which always holds
Option A:	$(E[X])^2 > E[X^2]$
Option B:	$E[X^2] \ge (E[X])^2$
Option C:	$E[X^2] = (E[X])^2$
Option D:	$E[X]^2 > (E[X])^2$
2.	What does the central limit theorem state?
Option A:	if the sample size increases sampling distribution must approach normal distribution
Option B:	if the sample size decreases then the sample distribution must approach normal distribution
Option C:	if the sample size increases then the sampling distribution much approach an exponential distribution
Option D:	if the sample size decreases then the sampling distribution much approach an exponential distribution
3.	The value of the probability density function of random variable is
Option A:	Positive function
Option B:	Negative function
Option C:	Zero
Option D:	One
4.	The source encoder has H=1.75 bits/Message and N=2 bits/Message. Then coding
	efficiency is,
Option A:	87.5 %
Option B:	90 %
Option C:	50 %
Option D:	20 %
5.	When Information increases then
Option A:	Probability also increases
Option B:	Probability has no relation with information
Option C:	Probability remains constant
Option D:	Probability decreases
- <u>r</u> · · · · - · ·	
6.	Huffman and Shannon Fano coding are types of
Option A:	Channel coding
Option B:	Source coding
L	

Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

Option C.	Error control codes
Option C:	
Option D:	Error correction code
7.	The generator polynomial for cyclic codes with dimension (6,3) is,
Option A:	x+1
Option B:	x ² +2x+1
Option C:	x ³ +x+1
Option D:	2x+1
8.	The no of errors detected s and no. of errors corrected t for dmin=3
Option A:	s=2, t=1
Option B:	s=2, t=2
Option C:	s=1, t=1
Option D:	s=3, t=1
I · · · ·	
9.	If the sum of any two code vectors produces another code vector the code is
	called as .
Option A:	Linear
Option B:	Non linear
Option D:	Summative
Option D:	Cyclic
Option D.	
10.	Which of the following techniques is used for generation of convolutional codes?
	Which of the following techniques is used for generation of convolutional codes?
Option A:	Tree Diagram
Option B:	Huffman coding
Option C:	Generator matrix
Option D:	Shannon Fano coding
11.	For convolutional encoder, the no. of message bits K considered for encoding at a
	time are
Option A:	K=2
Option B:	K=4
Option C:	K= 1
Option D:	K=5
12.	The binary modulation format which has better error performance is
Option A:	ASK
Option B:	FSK
Option C:	PSK
Option D:	FSK and ASK
•	
13.	The bandwidth of BFSK is than BPSK.
Option A:	Lower
Option B:	Same
Option D:	Higher
Option D:	Not predictable
Option D.	

	University of Mumbai
	Examination June 2021
	Examinations Commencing from 15 th June 2021 to 26 th June 2021
14.	The M- Ary modulation is preferred over binary modulation due to
Option A:	Improved noise performance
Option B:	Improved bandwidth efficiency
Option C:	Improved sensitivity
Option D:	Decreased BER
- 1	
15.	Constellation diagram is used to find,
Option A:	Bandwidth
Option B:	Spectral efficiency
Option C:	Noise performance
Option D:	Power
1	
16.	The process of converting digital symbols into suitable waveform is known as,
Option A:	Source coding
Option B:	Channel coding
Option C:	Line coding
Option D:	Correlative coding
•	<u> </u>
17.	Raised cosine filter with roll off factor $\rho = 1$ gives the transmission band width B _T
	equal to
Option A:	2 W
Option B:	0.5W
Option C:	1W
Option D:	1.5W
18.	Eye diagram is used to find,
Option A:	Data rate of source
Option B:	Entropy
Option C:	Mutual Information
Option D:	ISI introduced by channel
19.	Matched filters may be optimally used only for
Option A:	Gaussian noise
Option B:	Transit time noise
Option C:	Flicker
Option D:	Shot Noise
20.	The optimum filter which gives maximum SNR in presence of white noise is,
Option A:	Nyquist filter
Option B:	Duobinary filter
Option C:	Integrator
Option D:	Matched filter
i	

University of Mumbai Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

Q2	Solve any Two Questions out of Three10 marks each
А	Explain the following terms and give their significance (i) Mean (ii) Central moment (iii) Variance (iv) Standard deviation
В	Consider source alphabet of DMS having source symbols with their respective probabilities 0.40, 0.20,0.12,0.08,0.08 and 0.04i)Find Entropy of sourceii)Find average codeword lengthiii)Determine coding efficiencyiv)Comment on the result
С	Over a long transmission line draw the following data format for the binary sequence 10011101011. i) Unipolar NRZ ii) Polar RZ iii) Manchester iv) AMI Select the best and justify the answer.

Q3	Solve any Two Questions out of Three10 marks each
А	Consider a convolution encoder with the constraint length K=3 and $g^1 = \{1,0,1\}$ and $g^2 = \{0,1,1\}$. Find the code vector for the message stream 11010 using time domain approach. Verify the code vector using transform approach.
В	 Explain 16-ary PSK with respect to the following terms i) Modulator and demodulator ii) Power spectral density and bandwidth
С	Derive an expression for probability of matched filter.

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: Third Year Semester V

Course Code: **ECC503** and Course Name: **Electromagnetic Engineering**

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
X -1	compulsory and carry equal marks
1.	If a negative charge is absent, then where do the flux lines terminate?
Option A:	At zero
Option B:	At unity
Option C:	At infinity
Option D:	At radial field
2.	Divergence theorem is applicable for
Option A:	Static fields only
Option B:	Time varying fields only
Option C:	Both static and time varying fields
Option D:	Not applicable to any field
3.	The capacitance of a material refers to
Option A:	Ability of the material to store magnetic field
Option B:	Ability of the material to store electromagnetic field
Option C:	Ability of the material to store electric field
Option D:	Potential between two charged plates
4.	Find the characteristic impedance expression in terms of the inductance and
	capacitance parameters.
Option A:	Zo = sqrt(LC)
Option B:	Zo = LC
Option C:	Zo = sqrt(L/C)
Option D:	Zo = L/C
5.	Copper behaves as a
Option A:	Conductor always
Option B:	Conductor or dielectric depending on the applied electric field strength
Option C:	Conductor or dielectric depending on the frequency
Option D:	Conductor or dielectric depending on the electric current density
6.	Curl (E) = $-\partial B/\partial t$ is called
Option A:	Maxwell's equation for static fields
Option B:	Maxwell's equation for time varying fields
Option C:	Gauss Law of electrostatics

Option D:	Biot Savart's law
7.	A boundary of separation between two magnetic materials is identified by which factor?
Option A:	Change in the permeability
Option B:	Change in permittivity
Option C:	Change in magnetization
Option D:	Conduction
-	
8.	Given that the reflection coefficient is 0.6. Find the VSWR.
Option A:	2
Option B:	4
Option C:	6
Option D:	8
9.	The ratio of conduction to displacement current density is referred to as
Option A:	Attenuation constant
Option B:	Propagation constant
Option C:	Loss tangent
Option D:	Dielectric constant
10.	The SI unit of magnetic field intensity is
Option A:	A/m
Option B:	V/m
Option C:	C/m
Option D:	F/m
•	
11.	Which component of the electric field intensity is always continuous at the
	boundary?
Option A:	Tangential
Option B:	Normal
Option C:	Horizontal
Option D:	Vertical
12.	Which of the following cannot be computed using the Biot-Savart's law?
Option A:	Magnetic field intensity
Option B:	Magnetic flux density
Option C:	Electric field intensity
Option D:	Permeability
13.	Consider a transmission line of characteristic impedance 50 ohm. Let it be terminated at one end by +j50 ohm. The VSWR produced by it in the transmission line will be
Option A:	1
Option B:	0
Option C:	Infinity
Option D:	+j

provides a method whereby the potential function can be obtained	
subject to the conditions on the boundary.	
Poisson's Equation	
Faraday's Law	
Laplace's Equation	
Poynting Theorem	
If divergence of a field is positive, then field acts as a	
Reducing field	
Increasing field	
Converging field	
Diverging field	
Total magnetic flux crossing a closed surface is	
Total flux enclosed by the surface	
Total current enclosed by the surface	
Total charge enclosed by the surface	
Zero	
The open wire transmission line consists of	
Conductor	
Dielectric	
Both conductor and dielectric	
Either conductor or dielectric	
The magnitude of the Ex and Ey components are the same in which type of polarization?	
Linear	
Circular	
Elliptical	
Perpendicular	
A bar magnet is divided in two pieces. Which of the following statements is true?	
The bar magnet is demagnetized.	
The magnetic field of each separated piece becomes stronger.	
The magnetic poles are separated.	
Two new bar magnets are created.	
One Tesla is equal to	
1 Wb/m^2	
1 C/m^2	
1 Wb/C	
1 N/C	

Q2	Solve any Two Questions out of Three10 marks each	
	If $\underline{E} = 2r^2 \cos \cos \varphi a_{\varphi} \dots \frac{V}{m}$ found in chemical ($\varepsilon = 2\varepsilon_0$) filled cylindrical	
A	chamber having radius $r = 0.2m$ and height $z = 1m$, find total charge lying on the chemical.	
В	Two isolated cone having same radius suspended on two angles $\theta =$ 30° & $\theta = 60^\circ$ excited by voltage $V(\theta = 30^\circ) = 100 V \& V(\theta = 60^\circ) =$ 200 V, then find out Electric field generated between two series and prove	
С	Derive magnetic field due infinite straight current carrying conductor.	

Q3	Solve any Two Questions out of Three10 marks each	
A	Oscillating EM wave used to check properties of non-magnetic dielectric paraffin wax ($\sigma = 0, \mu = \mu_0$) at $f = 100 \text{ MHz}$. By experimentation we get ($\varepsilon = 4\varepsilon_0$) for paraffin wax. Find out following properties of EM wave generated in given paraffin wax material: i) Attenuation constant ii) Phase constant iii) Phase velocity iv) Intrinsic impedance v) Magnetic field induced in material if $ \underline{E} = 10 \frac{KV}{m}$	
В	Strip of transmission line is designed on Fibre glass substrate having relative permittivity of $\varepsilon_r = 4$ operating at $f = 2 GHz$ and terminated with load impedance of $Z_L = 120 + 150j \Omega$ with $Z_0 = 100 \Omega$; find out input impedance of transmission line if strip length is $l = 0.2\lambda$ at a given frequency. Solve by Analytical methods.	
С	Explain electrostatic breakdown in lightning and its conditions.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester VI

Course Code: ECC-504 and Course Name: Discrete Time Signal Processing

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions ar compulsory and carry equal marks	
1.	If the normalized transition width of a FIR filter using Hamming window is 0.1, the order N of the FIR filter is given as	
Option A:	33	
Option B:	31	
Option C:	9	
Option D:	10	
2.	If an N-point sequence, If N=16, the total number of complex additions and multiplications using Radix-2 FFT are,	
Option A:	64,80	
Option B:	80,64	
Option C:	64,32	
Option D:	18,24	
1		
3.	Range of Round off error for sign magnitude binary number representation with B number of bits is given as	
Option A:	$-\left(\frac{2^{-B}}{2}\right) \le \epsilon_R \le \left(\frac{2^{-B}}{2}\right)$	
Option B:	$-(2^{-B}) \le \epsilon_R \le 0$	
Option C:	$-(2^{-B}) \le \epsilon_R \le (2^{-B})$	
Option D:	$-(2^{+B}) \le \epsilon_R \le 0$	
4.	The difference between butterworth and chebyshev filter pole location is	
Option A:	Poles of butterworth filter lie on circle while poles of chebyshev filter lie on ellipse	
Option B:	Poles of butterworth filter lie on ellipse while poles of chebyshev filter lie on circle	
Option C:	Poles of butterworth filter lie on unit circle while poles of chebyshev filter lie on	
	circle	
Option D:	Poles of butterworth filter lie on ellipse and poles of chebyshev filter also lie on	
	ellipse	
5	Compute the DET of the Sequence $y(n) = \{0, 1, 2, 1\}$ of V_{-1}	
5.	Compute the DFT of the Sequence, $x(n) = \{0,1,2,1\}$ at K=1	
Option A:	$\begin{array}{c} X(1) = 2 \\ Y(1) = 2 \end{array}$	
Option B:	X(1) = -2	
Option C:	X(1) = 1	
Option D:	X(1) = -1	

6.	An antisymmetric FIR filter with length N as even does not pass the frequency at	
	$\omega = \frac{\pi}{2} rad/sec$ Give the location of the zeros of this filter	
Option A:	$\frac{1}{3} \frac{\pi}{3}, 1 \leq -\frac{\pi}{3} \text{ and } 1$ $\frac{1}{3} \frac{\pi}{3}, 1 \leq -\frac{\pi}{3} \text{ and } -1$	
	$12_3, 12_3$ and 1_3	
Option B:	12-, 12 and -1	
Option C:	$\frac{1 \angle \frac{\pi}{3}, 1 \angle -\frac{\pi}{3}, 1 \text{ and } -1}{1 \angle \frac{\pi}{3}, 1 \angle -\frac{\pi}{3}}$	
Option D:	$1 \leq \frac{\pi}{2}, 1 \leq -\frac{\pi}{2}$	
7.	In the DTMF detection the algorithm is used	
Option A:	DIT-FFT	
Option B:	DIF-FFT	
Option C:	Geortzel's	
Option D:	Chirpz	
8.	The process of reducing the number of bits of a binary number is called	
Option A:	Rounding	
Option B:	Truncation	
Option C:	Finite word	
Option D:	Subtraction	
2		
9.	In DSP processors the convolution and correlation operations are performed in	
	faster manner due to hardware	
Option A:	Multiple and accumulate unit (MAC)	
Option B:	VLIW Multiple register structure	
Option C:	Multiple register structure	
Option D:	Multiple processors	
10.	Which filter has equi-ripple characteristics in the passband and varies	
10.	monotonically in the stopband	
Option A:	Type-I Chebyshev	
Option B:	Type-II Chebyshev	
Option C:	Butterworth	
Option D:	Elliptical	
11.	Design a Chebyshev filter with a maximum pass band attenuation of 2.5 dB at 20	
	rad/sec and a minimum stop band attenuation of 30 dB at 50 rad/sec	
Option A:	2	
Option B:	3	
Option C:	1	
Option D:	4	
12.	The effect of coefficient quantization is less in realization	
Option A:	Direct Form I	
Option B:	Direct Form II	
Option C:	Cascade	
Option D:	Parallel	
10		
13.	The convolution of two signals in time domain is equivalent to of	
	their spectra in frequency domain.	

Option A:	Addition	
Option B:	Multiplication	
Option D:	Division	
Option D:	Convolution	
Option D.		
14.	The Complex valued phase factor/Twiddle factor W can be expressed as	
Option A:	The Complex valued phase factor/ Twiddle factor, W_N can be expressed as, $W_N = e^{-j2\pi N}$	
	$W_N = e^{-j2\pi}$	
Option B:	$W_N = e^{\frac{-j2\pi}{N}}$	
Option C:	$W_N = e^{-j2\pi}$	
Option D:	$W_N = e^{-j2\pi kN}$	
15.	If a signal sequence $x(n)$ with frequency components between f1 and f2 is passed	
	through a filter with a linear frequency response then its output is a	
Option A:	Expanded version of input $x(n)$	
Option B:	Compressed version of input x (n)	
Option C:	Phase shifted version of input x(n)	
Option D:	Delayed version of input x(n)	
opuonizi		
16.	Determine the order of the butterworth filter for the specifications	
	Pass band gain = 1 dB	
	Stop band gain = 30 dB	
	$\Omega p = 200 \text{ rad/s and W}$	
	$\Omega s = 600 \text{ rad/s}.$	
Option A:	1	
Option B:	2	
Option C:	3	
Option D:	4	
1		
17.	Consider a first order IIR filter $y(n) = x(n) + 0.5y(n-1)$. Find the dead band,	
	if the length of the register is 4 bits	
Option A:	0.125	
Option B:	32	
Option C:	0.417	
Option D:	0.25	
18.	In TMS320C67XX DSP processor how many functional units exists	
Option A:	8	
Option B:	6	
Option C:	2	
Option D:	4	
,		
19.	The Order N of Type I Linear phase FIR filters is and it has	
	impulse response	
Option A:	Odd, Symmetric	
Option B:	Odd, Asymmetric	
Option C:	Even, Symmetric	
Option D:	Even, Asymmetric	
- Phone D.		
20.	If a continuous time system has poles only in the left half of the S plane then the	
	corresponding digital filter must have poles	

Option A:	Only outside the unit circle
Option B:	Only inside the unit circle
Option C:	Anywhere on the z plane
Option D:	$2 \le z \le 3$

Q2	
А	Solve any Two 5 marks each
i.	Draw the pole zero diagram of an antisymmetric FIR filter with number of coefficients (length) odd and passes the frequency $=\pi/2$. Also find its transfer function and identify the type of the linear phase filter
ii.	Obtain the expression for the variance of the output noise of a LTI digital system H(z) which is fed with a quantized input signal
iii.	Derive the Parsevals Energy theorem of DFT and also find the Energy of signal $x(n)=\{1,2,3,4\}$
В	Solve any One 10 marks each
i.	Design a digital Butterworth filter that satisfies following constraints using impulse invariant method. Assume Ts=1s. $\begin{array}{c c} 0.8 \leq H(e^{jw}) \leq 1 & 0 \leq w \leq 0.2\pi \\ H(e^{jw}) \leq 0.2 & 0.6\pi \leq w \leq \pi \end{array}$
ii.	Explain the architecture of TMS320C67XX DSP processor

Q3.		
А	Solve any Two	5 marks each
i.	Derive an expression for Frequency response of Type 1 Linear phase FIR filter having a length $N = 5$.	
ii.	Explain the application of DSP in Radar processing	
iii.	What is meant by limit cycles in recursive system filter?	n? What is dead band of a
В	Solve any One	10 marks each
i.	Derive the flow graph for N=2.3 composite FFT	
ii.	Design type I Chebyshev filter for given specificat $\alpha_p=2dB, \alpha_s=12dB, Fp=1kHz$ & Fs=2KHz. Use BL	

Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2016

Examination: Third Year Semester : V

Course Code: ECCDLO5014 and Course Name: Data Compression and Encryption

Time: 1 hour

Max. Marks: 50

_____ _____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	What is the characteristic of Network based IDS?	
Option A:	They look for attack signatures in network traffic	
Option B:	Filter decides which traffic will not be discarded or passed	
Option C:	It is programmed to interpret a certain series of packet	
Option D:	It models the normal usage of network as a noise characterization	
2.	The full form of SSL is	
Option A:	Serial Session Layer	
Option B:	Secure Socket Layer	
Option C:	Session Secure Layer	
Option D:	Series Socket Layer	
3.	Which protocol consists of only 1 bit in SSL?	
Option A:	Alert	
Option B:	Handshake	
Option C:	Alarm	
Option D:	Cipher change spec	
4.	Computation of the discrete logarithm is the basis of the cryptographic system in	
Option A:	Symmetric cryptography	
Option B:	Asymmetric cryptography	
Option C:	Diffie-Hellman key exchange	
Option D:	Secret key cryptography	
1		
5.	In RSA, $\Phi(n) =$ in terms of p and q.	
Option A:	(p)/(q)	
Option B:	(p)(q)	
Option C:	(p-1)(q-1)	
Option D:	(p+1)(q+1)	
6.	When a hash function is used to provide message authentication, the hash	
	function value is referred to as	
Option A:	Message Field	
Option B:	Message Digest	
Option C:	Message Score	

Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

Ontion D:	Massage Loop	
Option D:	Message Leap	
7.	SHA-1 produces a hash value of	
Option A:	256	
Option B:	160	
Option C:	180	
Option D:	224	
8.	Which of the following is a type of traditional cipher?	
Option A:	transportation cipher	
Option B:	transposition cipher	
Option C:	transforming cipher	
Option D:	vigenere cipher	
Option D.		
9.	The DES Algorithm Cipher System consists ofrounds (iterations)	
	each with a round key	
Option A:	12	
Option A:		
Option B:	18	
Option C:	14	
Option D:	16	
10		
10.	Moving picture expert group 2 is used to compress	
Option A:	video	
Option B:	audio	
Option C:	Image	
Option D:	frames	
11.	Moving picture expert group 1 is designed for a	
Option A:	PC	
Option B:	CD	
Option C:	DVD	
Option D:	Floppy	
12.	In audio and Video Compression, each frame is divided into small grids, called	
	as	
Option A:	Frame	
Option B:	Packet	
Option C:	Pixel	
Option D:	Byte	
13.	Which method is also known as a substitution coder in a data compression	
	algorithm?	
Option A:	Transposition Cipher	
Option B:	Substitution Cipher	
Option C:	Book based Encoding	
Option D:	Dictionary-based encoding	

1 /	Examinations Commencing from 15 June 2021 to 26 June 2021	
14.	is used to compress images.	
Option A:	MPEG	
Option B:	JPEG	
Option C:	AVI	
Option D:	CPEG	
15.	Quantization noise can be reduced by the number of levels.	
Option A:	Increasing	
Option B:	Decreasing	
Option C:	Doubling	
Option D:	Multiplying	
16.	Which of the following algorithms is the best approach for solving Huffman codes?	
Option A:	exhaustive search	
Option B:	greedy algorithm	
Option C:	brute force algorithm	
Option D:	divide and conquer algorithm	
1		
17.	Which is the compression method where data is the same as it was before compression	
	when decompressed?	
Option A:	Lossy	
Option B:	Lossless	
Option C:	Keyless	
Option D:	Compress	
18.	is one of the best-known Dictionary-based encoding algorithms.	
Option A:	Lempel-Ziv	
Option B:	CRZ	
Option C:	BMW	
Option D:	CBW	
19.	What is compression?	
Option A:	To compress something by pressing it very hardly	
Option B:	To minimize the time taken for a file to be downloaded	
Option C:	To reduce the size of data to save space	
Option D:	To convert one file to another.	
20.	In Huffman coding, data in a tree always occur in	
Option A:	Roots	
Option B:	Leaves	
Option D:	Fruit	
Option D:	Flower	
Option D.		

Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

University of Mumbai Examination June 2021 Examinations Commencing from 15th June 2021 to 26th June 2021

Q2. (20 Marks)		
А	Solve any Two	5 marks each
i.	Explain Fermat's theorem.	
ii.	Explain Digital Signature.	
iii.	Encode the sequence " BABAABAAA" using LZW.	
В	Solve any One	10 marks each
i.	Explain RSA algorithm.	
ii.	Explain DPCM used in audio compression in detail.	

Q3. (20 Marks)		
Α	Solve any Two5 marks each	
i.	Write a short note on Cryptographic Attacks.	
ii.	Explain the features of MPEG-1	
iii.	Write a short note on H.261.	
В	Solve any One10 marks each	
i.	Explain the working of DES algorithm with Block diagram.	
ii.	State the difference between JPEG and JPEG 2000. State the applications, advantages and limitations of JPEG 2000.	