Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engg.

Curriculum Scheme: Rev2012

Examination: BE Semester:VII

Course Code: ETC701 and Course Name: Image and Video Processing

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	Which of the following is the best sensor to acquire the digital image in optical			
	range?			
Option A:	Point sensor			
Option B:	Line sensor			
Option C:	Array Sensor			
Option D:	Multispectral sensor			
2.	If an image has 128 intensity levels, the number of bits per pixel in the image is			
Option A:	6			
Option B:	5			
Option C:	8			
Option D:	7			
3.	If two images A and B have a sampling rates of 400dpi and 600 dpi, then			
Option A:	A has better spatial resolution than B			
Option B:	B has more spatial resolution than A			
Option C:	Both A and B have same spatial resolution			
Option D:	Both A and B have no spatial resolution			
4.	Which of the following distance measures is the best?			
Option A:	City block distance			
Option B:	Chess board distance			
Option C:	Euclidean Distance			
Option D:	Pixel to boundary distance			
5.	Which statement is true with respect to High pass Filter?			
Option A:	High Pass filter removes high Frequencies in the image			
Option B:	High pass filter removes Gaussian noise from image			
Option C:	High Pass filter retains all low frequencies			
Option D:	High pass filter enhances the edges			
6.	The salt and pepper noise is eliminated by			

Option A:	Median filter
Option B:	Low pass filter
Option C:	High pass filter
Option D:	Gaussian filter
option 21	
7.	Log transformation is used in which of the following applications?
Option A:	To stretch the histogram
Option B:	To improve the contrast of the image
Option C:	To generate image negative
Option D:	To enhance the scale of visibility where the pixel values seem visually very near
-	to each other.
8.	Histogram equalization is not 100% uniform in digital images due to
Option A:	One to one mapping of pixels
Option B:	Due to sampling and quantization process
Option C:	Due to calculation of CDF
Option D:	Due to rounding off of gray levels
9.	The Maxican hat response of the filter is produced by
Option A:	LOG operation
Option B:	Morphological operation
Option C:	High pass filter
Option D:	Homomorphic filter
10.	The erosion by a structuring element [0 1 0; 0 1 0; 0 1 0] on a full bright square
	image with all the values equal to 250 of gray scale will result in
Option A:	A diagonal bright line
Option B:	A horizontal bright line
Option C:	A vertical bright line
Option D:	The image vanishes completely
11.	The Skeleton of an image is obtained by applying
Option A:	A series of segmentation operations
Option B:	A series of dilation operations
Option C:	A series of connectivity operations
Option D:	A series of erosion operations
12.	The correct equation for illumination Y is given by
Option A:	0.59G +0.3R + 0.11B
Option B:	0.59R + 0.3B+ 0.11G
Option C:	0.6G+ 0.3B+ 0.1R
Option D:	0.59B+ 0.11G+ 0.3R
13.	Which of the following has the best energy compaction?

Option A:	DFT
Option B:	DWT
Option C:	Hadamard Transform
Option D:	K L transform
14.	The following effect is observed in an image when the scaling property of DFT is
	applied on an image
Option A:	The linear phase changes to nonlinear phase
Option B:	The time period is shifted by some amount
Option C:	The size of the image increases or decreases
Option D:	The rotation of the image changes in diagonal direction
15.	The Hough transform is used to
Option A:	Convert the image from time domain to frequency domain
Option B:	Convert the image from frequency domain to time domain
Option C:	Coordinate space to parametric space
Option D:	Parametric space to spatial coordinate space
16.	The mask [-1 -1 -1; 2 2 2; 1 1 1] when applied to an image results in
Option A:	Detection of diagonal edge
Option B:	Detection of Horizontal edge
Option C:	Detection of vertical edge
Option D:	Does not detect any edge
17.	The MPEG is the standard used to represent
Option A:	An audio compression
Option B:	Image compression
Option C:	Video compression
Option D:	Is not a compression standard
18.	The motion vector is used to
Option A:	Calculate the distance between two pixels in different frames
Option B:	Calculate the distance between two pixels in same frame
Option C:	Calculate the path between two pixel values
Option D:	Calculate the distance between two pixels for face recognition
10	
19.	The coding most suitable for coding video is
Option A:	Delta modulation coding
Option B:	Pulse code modulation
Option C:	Huffman coding
Option D:	Predictive coding
20	
20.	The number of frames per second used in motion pictures are
Option A:	50 frames/ second

Option B:	30 frames / second
Option C:	24 frames/ second
Option D:	72 frames/ second

Q.2	Solve any Two Questions out of Three 10 marks each			
А	State and prove the following DFT properties			
	1. Linearity Property 2. Convolution property			
В	Derive the equation for histogram equalization and prove that the equalized histogram represents uniform distribution.			
С	Explain any one method of motion vector calculation.			

Q.3	Solve any Two Questions out of Three 10 ma	arks	each				
A	Apply median filter on the following image						
		29	31	0	10	25	0
			20	30	15	25	5
		10					
		5	10	15	10	25	30
		30	25	10	5	15	0
		0	5	0	10	5	15
		15	25	0	0	10	15
		30	20	10	15	0	5
В	Draw different masks used for edge detection a	and co	ompa	are th	eir		
	performance with justification.						
С	Compare the performance of Gradient opera	tor a	nd L	Lapla	cian	oper	ator?
	Which is the best for edge detection?						

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021 Program: Electronics and Telecommunication

Curriculum Scheme: Rev2016

Examination: BE SemesterVII

Course Code: ECC701and Course Name: Microwave Engineering

Time: 2 hour

Max. Marks: 80 _____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks. (2 marks each)			
1.	Which of the statements is not true for the microstrip line?			
Option A:	It is a planer transmission line.			
Option B:	Its power handling capacity is small.			
Option C:	Characteristic impedance(Z_0) of microstrip line can be controlled by controlling its width(W) only i.e. controlling dimensions in one plane.			
Option D:	It is only possible to control its characteristics impedance by controlling width and height of the substrate simultaneously.			
2.	The ferrite devices work on the principle of -			
Option A:	Faraday's Law of EM Induction			
Option B:	Hall effect			
Option C:	Faraday's Rotation Effect			
Option D:	Photoemission effect			
3.	Find S ₁₁ for a series element Z=200 Ω . Take characteristic impedance Z ₀ =75 Ω .			
Option A:	S ₁₁ =0.5			
Option B:	S ₁₁ =0.57			
Option C:	S ₁₁ =1.75			
Option D:	S ₁₁ =0			
4.	Find cutoff frequency for the dominant mode of a dielectric filled circular waveguide with ε_r =2.08. The radius of the waveguide is 0.5 centimeter.			
Option A:	15.92 GHz			
Option B:	11.32 GHz			
Option C:	12.18 GHz			
Option D:	14.45 GHz			
5.	For the same defect pattern, small chip size has yield as compared to			
	large chip size.			
Option A:	Large			
Option B:	Small			
Option C:	Cannot say anything			
Option D:	Very small			
6.	Which of the following devices is a two port non-reciprocal phase shifter with a phase difference of 180° between forward and backward direction of propagation?			

Option A:	Isolator
Option A: Option B:	
-	Gyrator Circulator
Option C: Option D:	
	Directional coupler
7.	The input newer in a two hale directional couplar is 10 mW. The couplar has a
7.	The input power in a two-hole directional coupler is 10 mW. The coupler has a coupling coefficient of 20 dB. Calculate power in coupled port
Option A:	0.1 nW
Option B:	0.1 mW
Option B: Option C:	9.9 mW
Option D:	0.2 mW
Option D.	0.2 III W
8.	The major advantage of a travelling wave tube (TWT) over a klystron lies in it -
	Simple construction
Option A: Option B:	Low cost
t	
Option C: Option D:	Higher gain and bandwidth
	Low gain
9.	Which of the following statements is true for Gyrotron?
9. Option A:	It uses resonant cavity
Option B:	It uses slow wave structure
Option C:	It is used for low frequency.
Option D:	The RF field interacts with the electron in a cyclotron motion in the presence of
Option D.	strong static magnetic field
10.	Which of the following statement is not true for Tunnel diode –
Option A:	It is heavily doped semiconductor p-n junction
Option B:	Its working is based on tunnel effect which is quantum mechanical effect
Option C:	Tunneling require empty states on one side of the barrier and filled states on other
- F	side of the barrier
Option D:	It is a lightly doped semiconductor p-n junction.
11.	Which of the following statements is true for a BARITT diode?
	č
Option A:	A BARITT diode is much less noisy as compared to an IMPATT diode.
Option B:	They have more bandwidth
Option C:	High power output possible
Option D:	A BARITT diode are much more noisy as compare to IMPATT diode
-	ž ž
12.	Which of the following possibilities for semiconductor devices is indication of
	negative resistance behavior?
Option A:	With increase in voltage, current increases.
Option B:	Voltage across device and current through it is 360 degree out of phase
Option C:	With increase in voltage, current remains constant.
Option D:	Negative differential mobility in bulk semiconductors by transferring electrons
	from high-mobility energy bands to low-mobility energy bands with increase in
	voltage
13.	If the required normalized susceptance of the single shunt stub is -j1 and if the
	characteristic impedance $Z_0 = 75$ Ohm, then the length of short-circuited shunt
	stub will be -

Option A:	L = 0.25λ
Option B:	$L = 0.125 \lambda$
Option C:	$L = 0.35 \lambda$
Option D:	$L = 0.5 \lambda$
Option D.	
14.	In single stub matching, the stub should be inserted at a point on the line where
17.	the normalized conductance is-
Option A:	0
Option B:	infinity
Option D:	1
Option D:	0.5
Option D.	
15.	Which of the following statements is not true for waveguide tee (three port junction)?
Option A:	They used to split the power
Option B:	A three port, lossless, reciprocal network can never be designed with all its ports matched
Option C:	A three port, lossless, reciprocal network can be designed with all its ports matched
Option D:	They used to combine the power
16.	What is the effect of increase in gap transit angle θ_g in Two Cavity Klystron?
Option A:	Velocity modulation decreases.
Option B:	Velocity modulation increases
Option C:	Velocity modulation remains constant
Option D:	Coupling between the electron beam and the buncher cavity increases
17.	Barratters are used for the measurement of -
Option A:	VSWR
Option B:	Power
Option C:	Impedance
Option D:	Frequency
10	
18.	In travelling wave tube amplifier helical structure is used to -
Option A:	Reduce noise
Option B:	Increase the efficiency
Option C:	Reduce the axial velocity of RF field
Option D:	Ensure broad band operation
10	A travelling wave tube energies under the following condition:
19.	A travelling wave tube operates under the following condition: Ream Voltage $-3kV$ Ream current $-30mA$ Characteristics impedance of the
	Beam Voltage =3kV, Beam current = 30mA, Characteristics impedance of the helix =10 Ω , Circuit length =55 and frequency = 9GHz. Calculate output power
	gain Ap in decibel.
Option A:	51.8 dB
Option B:	100 dB
Option C:	59.52 dB
Option D:	66.42 dB
Option D.	00. 1 2 uD
20.	Manley-Rowe power relations are useful for-
Option A:	Predicting nonlinear behavior of Gunn diode
Option A: Option B:	Explaining tunneling phenomenon of tunnel diode
Option D .	Explaining tunnening phenomenon of tunnel aloue

Option C:	Explaining power loss in Gunn diode
Option D:	Predicting power gain in parametric amplifiers

Q2.	Solve any Four out of Six.	5 marks each		
A	Explain method to measure VSWR.			
В	Derive expression for modulated velocity in case of Two cavity klystron amplifier.			
С	Explain how Gunn diodes can exhibit dynamic negative resistance?			
D	A air filled rectangular waveguide with waveguide dimensions $a = b = \sqrt{6}$ is extended in z direction. The signal frequency is 10 GHz. The magnetic field in z direction is given as $H_z = H_0 \cos \cos \left(\frac{\pi x}{\sqrt{6}}\right) \cos \cos \left(\frac{\pi y}{\sqrt{6}}\right) A/$ m. Identify mode of propagation and calculate cutoff frequency.			
E	Compare Hybrid MICs with monolithic MIC.			
F	List medical applications of Microwave engineering and explain any one in brief.			
Q3.	Solve any Two Questions out of Three.	10 marks each		
А	Describe various modes of operation in Gunn oscillator.			
В	 An X-band pulsed cylindrical magnetron has following p Anode Voltage =32KV, Anode current = 84A, Magne 0.01 Wb/m², Radius of cathode cylinder =6cm and Radii center =12cm. Calculate a) The cyclotron angular frequency b) The Hull cutoff voltage for a fixed B₀ c) The Hull cutoff magnetic flux density for a fixed 	etic flux density = ius of vane edge to		
С	A rectangular waveguide with cross-section dimensions a x direction. Derive expressions for field configuration in for TE mode.			

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: R2012

Examination: BE Semester VII

Course Code: ETC702 and Course Name: Mobile Communication

Time: 2 hour

Max. Marks: 80

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Choose the correct option for following questions.	
1.	occurs when the radio path between a TX and RX is obstructed by a surface	
	with sharp irregular edges	
Option A:	diffraction	
Option B:	scattering	
Option C:	Refraction	
Option D:	diversity	
2.	Walsh codes are used as channelization codes in	
Option A:	AMPS	
Option B:	GSM	
Option C:	WCDMA	
Option D:	cdma2000	
3.	GPRS is an overlay on the top of the physical layer and network entities	
Option A:	IS 95	
Option B:	GSM	
Option C:	AMPS	
Option D:	ETACS	
4.	What is the minimum amount of RF spectrum needed for an FDD LTE radio	
	channel?	
Option A:	2.8 MHz	
Option B:	1.4 MHz	
Option C:	3 MHz	
Option D:	2 MHz	
5.	Downlink modulation used in WCDMA is	
Option A:	QPSK	
Option B:	BPSK	
Option C:	8FSK	
Option D:	QAM	
6.	GSM has RF channel bandwidth of	
Option A:	250 KHz	
Option B:	200 KHz	
Option C:	100 KHz	
Option D:	1.25 MHz	

7.	antenna has the property of radiating waves more effectively in some direction
	than others.
Option A:	omnidirectional
Option B:	directional
Option C:	Smart
Option D:	Sectored
8.	If the cell size antenna height is doubled there will be
Option A:	increase in propagation path loss by 6 dB
Option B:	reduction in path loss by 6 dB
Option C:	reduction in path loss by 12 dB
Option D:	no change in path loss
1	
9.	The range of frequencies over which channel can be considered flat
Option A:	coherence bandwidth
Option B:	bandwidth
Option C:	spectrum
Option D:	guard band
10.	Cells which use same set of frequencies or channels are called
Option A:	adjacent cells
Option B:	cluster cells
Option C:	co channel cells
Option D:	Intercells
11.	Minimum frequency band required for 3X cdma technology is
Option A:	1.25 MHz
Option B:	7.5 MHz
Option C:	5 MHz
Option D:	10 MHZ
12.	Time slot period in GSM is
Option A:	570 ms
Option B:	577 microseconds
Option C:	577 ms
Option D:	570 seconds
13.	IMSI number used as GSM identifier is of digits
Option A:	9
Option B:	15
Option C:	12
Option D:	10
1.4	
14.	The early FM push-to-talk telephone systems were used in
Option A:	half duplex
Option B:	simplex
Option C:	full duplex
Option D:	modulation

15.	The access point in LTE is called as
Option A:	MS
Option B:	BTS
Option C:	eNodeB
Option D:	GPRS
16.	A cellular communication area is covered with 12 clusters having 7 cells in each
	cluster and 16 channels assigned in each cell. How many number of channels will
	be available per cluster
Option A:	212
Option B:	112
Option C:	100
Option D:	23
17.	X2 Interface is used for
Option A:	eNB and MME
Option B:	eNB and servicing
Option C:	Inter eNB
Option D:	EUTRAN
18.	Multiple modulation and coding schemes are observed in
Option A:	EDGE
Option B:	GSM
Option C:	GPRS
Option D:	HSCSD
10	Class 2000 1-DTT sustant stars to a targinal thread hast of
<u>19.</u>	Cdma2000-1xRTT system supports a typical throughput of
Option A:	154kbps
Option B:	144kbps
Option C:	200kbps
Option D:	200mbps
20.	Network planning in CDMA systems involves
Option A:	frequency planning
Option B:	PN code planning
Option C:	power planning
Option D:	bandwidth planning

Q2	Solve any Four out of Six.	5 marks each
А	Explain the microcell zone concept.	
В	Explain Space Division Multiple Access.	
С	List IS 95 air interface specifications.	
D	Compare WCDMA and cdma2000.	
E	What are the key features of EDGE?	
F	Write a short note on types of large scale fading.	

Q3	Solve any Two Questions out of Three	10 marks each
A	Explain GSM architecture with a suitable diagram in detai	l.
В	Explain adaptive multi antenna techniques for 4G systems.	
C	Explain methods to improve capacity of a cellular system in	n detail.

Examination June 2021

Examinations Commencing from 15th June 2021

Program: Electronics and Telecommunication Engineering (CBCGS)

Curriculum Scheme: Rev 2016

Examination: BE Semester VII

Course Code: ECC702 and Course Name: Mobile Communication System

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called	
Option A:	Footprint	
Option B:	frequency reuse	
Option C:	Cluster	
Option D:	Handoff	
2.	The propagation model that estimates radio coverage of a transmitter is called	
Option A:	Large scale propagation model	
Option B:	Small scale propagation model	
Option C:	Sector channel model	
Option D:	Ricean model	
3.	What does path loss exponent indicate?	
Option A:	Rate at which path loss decreases with distance	
Option B:	Rate at which path loss increases with distance	
Option C:	Rate at which path loss decreases with power density	
Option D:	Rate at which path loss increases with power density	
4.	How many users or voice channels are supported for each 200 <i>KHz</i> channel in GSM?	
Option A:	Eight	
Option B:	Three	
Option C:	Sixty four	
Option D:	Twelve	
5.	The fundamental time unit of LTE transmission is a	
Option A:	radio frame	
Option B:	Subframes	
Option C:	Slots	
Option D:	Symbols	
6.	What location management feature is supported by 4G?	
Option A:	Concatenated Location Registration	
Option B:	Concurrent Location Register	
Option C:	Concatenated Management	

Option D:	Collated Location Registration
7.	Which property of OFDMA system allows adjacent subcarriers to be used without interference?
Option A:	Orthogonality
Option B:	Orthodoxy
Option C:	Octagonality
Option D:	Originality
8.	The technique in which single omnidirectional antenna at the base station is replaced by several directional antennas is
Option A:	Cell Splitting
Option B:	Microcell zone concept
Option C:	Cell Sectoring
Option D:	Cell multiplication
_	
9.	The maximum radiated power available from a transmitter in the direction of
	maximum antenna gain, as compared to an isotropic radiator is
Option A:	Effective isotropic Radiated Power
Option B:	Effective isotropic Received Power
Option C:	Effective isotropic Radiated Pulse
Option D:	Effective isotropic Received Pulse
10.	Which is the main protocol that transfers packets in a GPRS Core network?
Option A:	GTP
Option B:	SSTP
Option C:	SCTP
Option D:	STTP
11.	The channelization codes used in W-CDMA are:
Option A:	Walsh codes
Option B:	Orthogonal variable spreading factor (OVSF) codes
Option C:	Quasi-orthogonal codes
Option D:	Kasami codes
12.	is a transmission method used in MIMO wireless communications to
	transmit encoded data signals independently.
Option A:	STTD
Option B:	Spatial Multiplexing
Option C:	Collaborative Uplink MIMO
Option D:	MU-MIMO
13.	Grade of service refers to
Option A:	Accommodating large number of users in limited spectrum
Option B:	Accommodating large number of users in inniced spectrum Ability of a user to access trunked system during busy hour
Option D:	Two calls in progress in nearby mobile stations
Option D:	high speed users with large coverage area
Option D.	
14.	Coherence time is .
Option A:	Directly proportional to Doppler spread
Option A.	Breed, proportional to Dopplet spread

Option B: I		
1	Directly proportional to square of Doppler spread	
	Inversely proportional to Doppler spread	
Option D: I	Directly proportional to twice of Doppler spread	
	EDGE is the new radio interface technology with enhance modulation and	
i	increase GPRS data rate by up to	
Option A:	Three times	
Option B: I	Four times	
Option C: S	Six times	
Option D: I	Eight times	
16. V	What is the name of a Base Transceiver Station in 2G system equivalent in a 4G	
J	LTE system?	
Option A: r	nodeB	
	eNodeB	
Option C: a	aNodeB	
	nodeBPro	
17. /	A spectrum of 30MHz is allocated to a cellular system which uses two 25KHz	
	simplex channels to provide full duplex voice channels. What is the number of	
	channels available per cell for 4 cell reuse factor?	
	150 channels	
	60 channels	
Option C: 5	50 channels	
Option D: 8	85 channels	
18.	The no. of cell in the cluster can be calculated by formula.	
Option A: 1	N= i+ij+j	
Option B: 1	$N = i^2 + j^2$	
Option C: 1	$N = i + ij - j^2$	
	$N = i^2 + ij + j^2$	
19.	is the core network architecture of LTE standard.	
Option A: S	SAE (System Architecture Evolution)	
-	SAP (System Architecture Pro)	
	CAS (Core System Architecture)	
	MAP (Message application part)	
20. V	Which are three basic propagation mechanisms?	
	path loss, free space and reflection	
	Multi path propagation, reflection, and scattering,	
	reflection, diffraction, and scattering,	
-	signal loss, attenuation, and scattering	

Q2.		(20 Marks)
Α	Solve any Two	5 marks each

i.	What is cell dragging and dwell time?	
ii.	Explain SDR in communication.	
iii.	Discuss IS-95 CDMA forward channels.	
В	Solve any One	10 marks each
B i.	Solve any OneExplain Handoff in 2G, 3G and 4G in detail.	10 marks each

Q3.	(20 Marks	s)
А	Solve any Two 5 marks eac	h
i.	List out methods to improve system capacity? Explain any one method.	
ii.	Explain power control in IS-95.	
iii.	Explain multiple antenna techniques.	
В	Solve any One10 marks each	
i.	For a given path loss exponent, n=4 and n=3. find the frequency reus factor and the cluster size that should be used for maximum capacity. The signal-to-interference ratio of 15dB is minimum required for satisfactor forward channel performance of a cellular system. There are six co-channel cells in the first tier and all of them are at the same distance from the mobile. Use suitable approximations.	ie y el
ii.	Draw and explain 3GPP LTE architecture.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev 2012

Examination: BE Semester VII

Course Code: ETC 703 and Course Name: Optical Communication and Networks Time: 2 Hour Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are	
Q1.	compulsory and carry equal marks	
1.	The maximum angle at which external light rays may strike the air/glass interface	
	and still propagate down the fiber.	
Option A:	Acceptance cone half-angle	
Option B:	Acceptance cone	
Option C:	Critical angle	
Option D:	Angle of incidence	
2.	It is a graphical representation of the magnitude of the refractive index across the	
	fiber.	
Option A:	Mode	
Option B:	index profile	
Option C:	numerical aperture	
Option D:	refractive index	
3.	Single-mode step-index cable has a core diameter in the range of.	
Option A:	100 to 1000 micrometer	
Option B:	50 to 100 micrometers	
Option C:	5 to 15 micrometers	
Option D:	8 to 10 micrometers	
4.	Attenuation in fiber in general	
Option A:	Decreases with increase in length of fiber	
Option B:	Increases with increase in length of fiber	
Option C:	Increases with decrease in length of fiber	
Option D:	Doesn't change with length of fiber	
5.	When the mean optical power launched into an 8 km length of fiber is 120 μ W,	
	the mean optical power at the fiber output is 3 μ W. The overall signal attenuation	
	is=	
Option A:	20 dB	
Option B:	10 dB	
Option C:	1.6 dB	
Option D:	16 dB	
6.	Mie Scattering occurs when the size of the scattering center becomes:	
Option A:	Very Smaller than wavelengths at which Rayleigh Scattering occurs	
Option B:	Larger than wavelengths at which Rayleigh Scattering occurs	

Option C.	Equal to wavelengths at which Develoigh Seattoning accurs	
Option C:	Equal to wavelengths at which Rayleigh Scattering occurs Doesn't depend on wavelength	
Option D:		
7.	Population inversion is obtained at a p-n junction by	
Option A:	Heavy doping of p-type material	
Option B:	Heavy doping of n-type material	
Option C:	Light doping of p-type material	
Option D:	Heavy doping of both p-type and n-type material	
8.	The absence of in LEDs limits the internal quantum efficiency.	
Option A:	Proper semiconductor	
Option B:	Adequate power supply	
Option C:	Optical amplification through stimulated emission	
Option D:	Optical amplification through spontaneous emission	
9.	The fraction of incident photons generated by photodiode of electrons generated	
	collected at detector is known as?	
Option A:	Quantum efficiency	
Option B:	Absorption coefficient	
Option C:	Responsivity	
Option D:	Angel recombination	
10.	Which are the two main sources of noise in photodiodes without internal gain?	
Option A:	Gaussian noise and dark current noise	
Option B:	Internal noise and external noise	
Option C:	Dark current noise & Quantum noise	
Option D:	Gaussian noise and Quantum noise	
opuon 21		
11.	Choose the correct statement	
Option A:	Rise time of LED is smaller than rise time of LASER	
Option B:	Rise time of LED is equal to rise time of LASER	
Option C:	Rise time of LED is 2 time smaller than rise time of LASER	
Option D:	Rise time of LED is greater than rise time of LASER	
option D.		
12.	In the topology, the data generally circulates bi-directionally.	
Option A:	Mesh	
Option B:	Bus	
Option D: Option C:	Star	
Option D:	Ring	
Option D.		
13.	A linear SONET network can be	
Option A:	point-to-point	
Option A: Option B:	multi-point	
Option B.	both point-to-point and multi-point	
-	single point	
Option D:		
1 /	Designly solitons any myless which proposed a discust the film id to	
14.	Basically, solitons are pulses which propagates through the fiber without	
Oration	showing any variation in	
Option A:	Amplitude	
Option B:	Frequency	

	01	
Option C:	Shape	
Option D:	Amplitude, Velocity and Shape	
1.5		
15.	SONET stands for	
Option A:	synchronous optical network	
Option B:	synchronous operational network	
Option C:	stream optical network	
Option D:	shell operational network	
16	Le OTDM method antical signals managemeting data stars and from multiple	
16.	In OTDM method, optical signals representing data streams from multiple	
Outing A.	sources arein time to produce a single data stream	
Option A:	Interleaved	
Option B:	Multiplexed	
Option C:	Added	
Option D:	Demultiplexed	
17	The Teneless formers a control bub to the network which may be	
17.	The Topology forms a central hub to the network which may be	
Outing A.	either active or passive.	
Option A:	Ring	
Option B:	Star	
Option C:	Mesh	
Option D:	Bus	
18.	In OTDR test echo occurs when there are:	
Option A:	Unwanted multiple reflections	
Option B:	No reflections	
1		
Option C:	Multiple refractions	
Option D:	No refractions	
19.	For measuring the shape of input pulse in time-domain intermodal dispersion	
17.	method, the test fiber is replaced by another fiber whose length is less than of	
	the test fiber.	
Option A:	1%	
Option B:	5%	
Option D:	10%	
Option D:	2%	
Option D.		
20.	Scattering losses in optical fiber arise from:	
Option A:	Variation of length of fiber	
Option B:	Impurities in material	
Option C:	Microscopic variations in the material density	
Option D:	Variation in dimensions of cladding	
option D.	· unual in unicherene of chudding	

Subjective/Descriptive Questions

Q2	Solve any Two Questions out of Three	10 marks each
А	A What are the desirable requirements of a good connector? What are the lensing schemes for coupling improvements?	
В	List different types of fiber fabrication techniques and explain any one of them.	

С	Explain OTDR working principle in detail. Mention its limitations.

Q3.		
Α	Solve any Two5 marks each	
i.	Define Spontaneous Emission, Stimulated Emission and Quantum	
	Efficiency.	
ii.	Compare Isolators and Circulator.	
iii.	Explain Macro-bending loss.	
В	Solve any One10 mark	
	each	
i.	Sketch the Refractive Index Profile of SIF and GIF. Derive an expression	
	for Numerical Aperture and Number of Modes in SIF.	
ii.	Derive an expression for Responsivity of PIN photodiode. Differentiate	
	PIN and RAPD photodiodes.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: **BE Electronics and Telecommunication Engineering**

Curriculum Scheme: Rev-2016

Examination: BE Semester VII

Course Code: ECC703 and Course Name: Optical Communication

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	What is the numerical aperture of the fiber if the angle of acceptance is 16	
	degree?	
Option A:	0.50	
Option B:	0.36	
Option C:	0.20	
Option D:	0.27	
2.	The normalized frequency V number of the single mode fiber is decided by:	
Option A:	Only the radius of the core of the fiber	
Option B:	The radius of the fiber, numerical aperture and the operating wavelength	
Option C:	The radius of the core and cladding both	
Option D:	Only on the operating wavelength and the numerical aperture	
3.	Which law gives the relationship between refractive index of the dielectric?	
Option A:	Law of reflection	
Option B:	Law of refraction (Snell's Law)	
Option C:	Millman's Law	
Option D:	Huygen's Law	
4.	Which among the following is regarded as an inelastic scattering of a photon?	
Option A:	Kerr effect	
Option B:	Raman effect	
Option C:	Hall effect	
Option D:	Miller effect	
5.	Which loss is related to the material composition and the fabrication process of	
	the fiber.	
Option A:	Scattering loss	
Option B:	Absorption loss	
Option C:	Dispersion loss	
Option D:	Radiative loss	
6.	Rayleigh scattering and Mie scattering are the types of	
Option A:	Splicing losses	

Option C: Fiber bends losses Option D: Linear scattering losses 7. Dispersion that results from the different group velocities of the various spectral components launched into the fiber from the optical source is known as Option A: Chromatic dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion 0ption A: Self-phase modulation Option B: Cross-phase modulation Option D: Self-phase modulation Option B: Cross-phase modulation Option A: Self-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option A: square of electric field Option B: cube root of electric field Option B: Optical source Option B: Optical coupler Option B: Optical solator Option B: Optical solator Option C: Optical solator	Option B:	Non-linear scattering losses	
Option D: Linear scattering losses 7. Dispersion that results from the different group velocities of the various spectral components launched into the fiber from the optical source is known as Option A: Chromatic dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion Option A: Self-phase modulation Option A: Self-phase modulation Option D: four-wave mixing Option D: Self-phase modulation Option D: Self-phase modulation Option D: Self-phase modulation Option D: Self-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option C: cube root of electric field Option A: Optical coupler Option B: Optical coupler Option B: Optical coupler Option D: Circulator 10. A device which converts electrical energy into optical energy is called as	-		
7. Dispersion that results from the different group velocities of the various spectral components launched into the fiber from the optical source is known as Option A: Chromatic dispersion Option B: Material dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-sphase modulation Option B: Cross-phase modulation Option C: four-wave mixing Option C: four-wave mixing Option A: square of electric field Option B: cube of electric field Option C: cube root of electric field Option D: one-fourth power of electric field Option A: optical source Option D: Optical coupler Option D: Cuber of the increase in photon output rate for a given increase in the number of injected electrons is Option B: External quantum efficiency Option D: Internal quantum efficiency Option B: Intarise Efficiency Option B: Intambertian output pattern of	_	Linear scattering losses	
components launched into the fiber from the optical source is known as Option A: Chromatic dispersion Option D: Polarization dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option C: four-wave mixing Option C: four-wave mixing Option A: square of electric field Option B: cube of electric field Option C: cube root of electric field Option A: square of electric field Option A: optical coupler Option A: optical coupler Option A: optical coupler Option A: Optical solator Option A: Optical coupler Option A: Optical coupler Option B: Optical coupler Option C: Optical coupler Option A: Internal quantum efficiency Option B: External quantum efficiency Option A: Internal qua			
components launched into the fiber from the optical source is known as Option A: Chromatic dispersion Option D: Material dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option B: Cross-phase modulation Option D: Stimulated Raman Scattering 0 In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric field Option D: Optical coupler Option A: Optical coupler Option D: Optical coupler Option D: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum	7.	Dispersion that results from the different group velocities of the various spectral	
Option A: Chromatic dispersion Option D: Material dispersion Option D: Intermodal dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option D: Four-wave mixing Option D: Stimulated Raman Scattering Option A: square of electric field Option B: cube of electric field Option B: cube of electric field Option B: cube of electric field Option D: one-fourth power of electric field Option B: cube of electric field Option A: optical source Option B: Optical source Option B: Optical coupler Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option B: External quantum efficiency Option B: External quantum efficiency Option B: Internal quantum efficiency Option B:			
Option B: Material dispersion Option C: Polarization dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option D: for-wave mixing Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option B: cross-phase modulation Option A: square of electric field Option B: cube of electric field Option C: cube root of electric field Option D: one-fourth power of electric lenergy into optical energy is called as Option B: Optical source Option B: Optical coupler Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option B: Internal quantum efficiency Optio			
Option C: Polarization dispersion Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option B: Cross-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electrical energy into optical energy is called as Option A: optical source Option B: Optical source Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option B: External quantum efficiency Option D: Internal quantum efficiency Option B: External quantum efficiency Option B: External quantum efficiency Option C: Internal quantum efficiency Option B: Internal cuber of LED, the source is	-		
Option D: Intermodal dispersion 8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option B: Cross-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option B: cube of electric field Option D: square of electric field Option D: one-fourth power of electric field Option A: optical source Option B: Optical source Option D: Optical coupler Option A: Internal quantum efficiency Option C: External quantum efficiency Option A: Internal quantu	-		
8. A non linearity that result in a different transmission phase for the peak of the pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option D: four-wave mixing Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option B: cube of electric field Option C: cube of electric field Option D: square of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electrical energy into optical energy is called as 0ption A: Optical source Option A: Optical isolator Option C: Optical isolator Option C: Optical coupler Option C: Optical source Option A: Internal quantum efficiency Option A: Internal quantum efficiency Option B: External quantum efficiency Option C: Internal quantum efficiency Option C: Internal quantum efficiency Option D: Internal quantum efficiency Option D: Intambertian output pattern o			
pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option B: Cross-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option D: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric al energy into optical energy is called as	1		
pulse compared with the leading and trailing pulse edges is known as: Option A: Self-phase modulation Option B: Cross-phase modulation Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric al energy into optical energy is called as Option A: Optical source Option B: Optical coupler Option C: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option D: Intrinsic Efficiency Option A: In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option C: More Option C: More Option B: Equally Option C: </td <td>8.</td> <td>A non linearity that result in a different transmission phase for the peak of the</td>	8.	A non linearity that result in a different transmission phase for the peak of the	
Option A: Self-phase modulation Option B: Cross-phase modulation Option D: four-wave mixing Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric al energy into optical energy is called as Option A: Optical source Option B: Optical coupler Option D: Optical loalor Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: Circulator In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option A: Less Option B: Equally Option C: More Option C: More Option C: More Option C: More			
Option B: Cross-phase modulation Option C: four-wave mixing Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option D: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electrical energy into optical energy is called as Option A: Optical source Option B: Optical coupler Option D: Optical solator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option D: Intrinsic Efficiency Internal output pattern of LED, the source is bright from all directions. Option A: Less Option B: Equally Option C: More Option C: More Option A: Less Option A: Less Option B: Eq	Option A:		
Option C: four-wave mixing Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option D: cube of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric al energy into optical energy is called as Option A: Optical source Option B: Optical source Option D: Circulator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Intrinsic Efficiency Option A: Less Option B: Equally Option A: Less Option B: Equally Option C: More Option A: Less Option B: Equally Option C: More O	-		
Option D: Stimulated Raman Scattering 9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option D: cube of of electric field Option D: one-fourth power of electric field Option D: one-fourth power of electric al energy into optical energy is called as Option A: Optical source Option D: Optical coupler Option D: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option C: External quantum efficiency Option D: Intrinsic Efficiency Option D: In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option B: Equally Option C: More Option A: Less Option B: Equally Option C: More Option A: Less Option B: Equally Option D:	-		
9. In Kerr effect, induced index change has its proportionality with respect to Option A: square of electric field Option D: cube of electric field Option D: one-fourth power of electric field Option A: Optical couper of electric field 10. A device which converts electrical energy into optical energy is called as Option A: Optical source Option D: Optical coupler Option D: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Intrinsic Efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E_2-E_1=hv. State what h stands for in the given equation?			
Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electric field 10. A device which converts electrical energy into optical energy is called as			
Option A: square of electric field Option B: cube of electric field Option D: one-fourth power of electric field 10. A device which converts electrical energy into optical energy is called as	9.	In Kerr effect, induced index change has its proportionality with respect to	
Option B: cube of electric field Option D: one-fourth power of electric field 10. A device which converts electrical energy into optical energy is called as Option A: Optical source Option D: Optical coupler Option C: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Intrinsic Efficiency Option D: Intrinsic Efficiency Option B: Equally Option A: Less Option B: Equally Option B: Equally Option B: Equally Option C: More Option B: Equally Option C: More Option B: Equally Option C: More Option B: In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option D: Unpredictably <td>Option A:</td> <td></td>	Option A:		
Option C: cube root of electric field Option D: one-fourth power of electric field 10. A device which converts electrical energy into optical energy is called as			
Option D: one-fourth power of electric field 10. A device which converts electrical energy into optical energy is called as			
10. A device which converts electrical energy into optical energy is called as Option A: Optical source Option B: Optical coupler Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Intrinsic Efficiency Option D: Intrinsic Efficiency Option A: In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?	-		
Option A: Optical source Option B: Optical coupler Option C: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Emitted power efficiency Option D: Intrinsic Efficiency Option D: Intrinsic Efficiency Option A: In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E_2-E_1=hv. State what h stands for in the given equation?	1		
Option B: Optical coupler Option C: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option D: Intrinsic Efficiency Option D: Intrinsic Efficiency Option A: In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?	10.	A device which converts electrical energy into optical energy is called as	
Option C: Optical isolator Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option D: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency Option A: Less Option B: Equally Option C: More Option D: Unpredictably	Option A:	Optical source	
Option D: Circulator 11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency Option A: In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option C: More Option C: More Option D: Unpredictably	Option B:	Optical coupler	
11. The ratio of the increase in photon output rate for a given increase in the number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option C: More Option B: Equally In Lambertian output pattern of LED, the source is bright from all directions. Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	Option C:	Optical isolator	
number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option D: Equally Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	Option D:	Circulator	
number of injected electrons is Option A: Internal quantum efficiency Option B: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option D: Equally Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?			
Option A:Internal quantum efficiencyOption B:External quantum efficiencyOption C:Emitted power efficiencyOption D:Intrinsic Efficiency12.In Lambertian output pattern of LED, the source is bright from all directions.Option A:LessOption B:EquallyOption C:MoreOption D:Unpredictably13.The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	11.	The ratio of the increase in photon output rate for a given increase in the	
Option B: External quantum efficiency Option C: Emitted power efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option D: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?		number of injected electrons is	
Option C: Emitted power efficiency Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?		Internal quantum efficiency	
Option D: Intrinsic Efficiency 12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?	Option B:		
12. In Lambertian output pattern of LED, the source is bright from all directions. Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	-	Emitted power efficiency	
directions. Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?	Option D:	Intrinsic Efficiency	
directions. Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?			
Option A: Less Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	12.	In Lambertian output pattern of LED, the source is bright from all	
Option B: Equally Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?		directions.	
Option C: More Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?		Less	
Option D: Unpredictably 13. The frequency of the emitted radiation is related to difference in energy level i.e.E=E2-E1=hv. State what h stands for in the given equation?	-		
13. The frequency of the emitted radiation is related to difference in energy level i.e. $E=E_2-E_1=hv$. State what h stands for in the given equation?		More	
i.e. $E=E_2-E_1=hv$. State what h stands for in the given equation?	Option D:	Unpredictably	
i.e. $E=E_2-E_1=hv$. State what h stands for in the given equation?			
	13.		
Option A: Gravitation constant		i.e.E=E ₂ -E ₁ =hv. State what h stands for in the given equation?	
Option A: Gravitation constant			
	Option A:	Gravitation constant	

Option B:	Planck's constant	
Option D: Option C:	Permittivity	
Option D:	Attenuation constant	
Option D.		
14.	A parameter that gives the transfer characteristic of the detector is:	
Option A:	Responsivity	
Option B:	Quantum efficiency	
Option C:	Internal optical power	
Option D:	Output power	
1		
15.	Optical detectors are square-law devices because they respond to rather	
	than amplitude.	
Option A:	Intensity	
Option B:	Light	
Option C:	Density	
Option D:	Photon	
16.	Optical Isolators are used to	
Option A:	Modulate the light	
Option B:	Block any light moving in backward direction	
Option C:	Optical to Electrical conversion	
Option D:	Amplify the light signal	
17.	The heating of the two prepared fiber ends to their fusing point with the	
	application of required axial pressure between the two optical fibers is called as	
Option A:	Mechanical splicing	
Option B:	Fusion splicing	
Option C:	Melting	
Option D:	Diffusion	
1		
18.	At which level of temperature does the oxidation process occur in MCVD?	
Option A:	Low	
Option B:	Moderate	
Option C:	High	
Option D:	Unpredictable	
19.	A key requirement needed in analyzing an optical link is	
Option A:	Desired transmission distance	
Option B:	SNR	
Option C:	Initial Power level	
Option D:	Optical bandwidth	
20.	To decide the system performance of optical cable system, which analysis is	
	used:	
Option A:	Link power budget	
Option B:	Rise time budget	
Option C:	Cross- phase modulation	

Option D:	Link gain

Q2 a)	Solve any Two Questions out of Three	05 marks each
А	Explain the various factors contributing to the attenua	ation in optical fibers.
В	A silica optical fiber has a core refractive index of 1.48 and cladding refractive index 1.46. Determine (a) The critical angle (b) Numerical Aperture (c) The acceptance angle	
С	Compare: Optical Isolator and Circulator.	
Q2 b)	Solve any One Questions out of Two	10 marks each
А	A Derive an expression for the responsivity of an intrinsic photo detector terms of quantum efficiency of the device and the wavelength of t incident radiation. What are the parameters on which photo detect response time depends ?	
B Compare Semiconductor optical amplifier with Erbium doped fiber ampli and Raman amplifier.		n doped fiber amplifier

Q3 a)	Solve any One Questions out of Two10 marks each	
А	Sketch and explain the construction of Vertical cavity surface emitting lasers and also state its applications.	
В	List different types of fiber fabrication techniques and explain any one of them.	
Q3 b)	Solve any One Questions out of Two10 marks each	
А	Explain with neat sketches the different types of fiber splicing techniques.	
В	Why link budget is important in optical fiber communication system? An analog optical fiber link of length 2 km employs an LED which launches mean optical power of -10 dBm into a multimode optical fiber. The fiber cable exhibits a loss of 3.5 dB/km with splice losses 1.4 dB .In addition there is a connector loss at the receiver of 1.6 dB. The pin photodiode receiver has a sensitivity of -25 dBm for an SNR of 50 dB and with a modulation index of 0.5. It is estimated that a safety margin of 4 dB is required. Ignoring the effects of dispersion on the link determine the optical power budget for the system operating under the above conditions and ascertain its viability.	