H.E-I LEXTO Se Sem-III CBGIS 12/05/2016

20

EXTC Sub:- AE-I QP Code: 30569

(3 Hours)

| Total Marks : 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions out of remaining five questions.
- (3) Assume suitable data if required and mention the same in answer sheet.
- 1. Attempt any five questions :-
 - (a) Find V_g and I_g for the circuit given below.

(b) For the circuit given below find Ip, Vps Voo

- (c) Write down current equation of diode and explain significance of each parameters.
- (d) Explain the concept of thermal runaway in BJT.

TURN OVER

FW-Con. 9416-16.

-2-

(e) Draw the output Waveform Vo for circuit shown.

- (f) State and explain Barkhausen's criteria for oscillations.
- 2. (a) Determine Q-Print and draw d.c. load line for the amplifier shown.

10

(b) Derive the expression for frequency of oscillation for a BJT RC phase shift to oscillator.

FW-Con. 9416-16.

[TURN OVER

- 3 -

 (a) Determine voltage gain, Input resistance and output resistance for the MOSFET amplifier shown.

- (b) Explain the working and characteristics of n-channel Junction Field Effect 10 Translators (JFET)
- (a) Draw the output waveform V₀ for ckt shown if (i) Vr = 0V (ii) Vr = 0.7v
 where Vr is cutin voltage of diode.

[TURN OVER

10

-4-

(b) For the common base circuit shown, the transistor has parameters $\beta=120$ and $V_A = \infty$

(i) Determine the quiescent V_{CEQ}

(ii) Determine the small signal voltage gain and output resistance.

5. (a) For the Amplifier shown determine (i) Q point (ii) Av, Zi, Zo

10002 E1MUZ 1055 = 10 mA ,

TURN OVER

FW-Con. 9416-16.

- (b) Derive expressions for voltage gain, input resistance and output resistance for source follower circuit using n-channel MOSFET.
- 6. Write short notes on any Four :-
 - (i) Construction and operation of varactor diode
 - (ii) MOS capacitor
 - (iii) Transistor as a switch
 - (iv) Crystal oscillator
 - (v) Hybrid-π model of BJT

18/05/201

Sub: EDCI

QP Code: 28715

(3 Hours)

| Total Marks : 100

- (2) Attempt any four questions out of the remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data whenever necessary but justify the same.

- (b) For the above designed amplifier determine; voltage gain, input impedance, 5 output impedance.
- 2. (a) Design single stage CS amplifier employing JFET type BFW11 for the 15 following specifications; $A_{\rm v} \ge 12$, $V_{\rm o} = 4.2 {\rm V}$, $I_{\rm oso} = 1.2 {\rm mA}$, $V_{\rm oc} = 21 {\rm V}$ and F. = 20Hz.
 - (b) For the designed amplifier, determine what will be the maximum output 5 voltage that can be obtained without distortion and corresponding input voltage that can be applied in the worst condition.
- 3. (a) Draw small signal hybrid parameter equivalent circuit for CE amplifier and 10 define the same. What are the advantages of h-parameters?
 - (b) Design voltage divider bias circuit for $I_g = 1.2 \text{mA V}_{cs} = 2.2 \text{V}$, $R_g = 1 \text{k}\Omega$ and 10 $\beta = 60 \cdot S_{aco} = 8$. Assume $V_{cc} = 9V$.
- 4. (a) For the amplifier shown in figure. I analyze and determine 10
 - (i) D C bias condition
 - (ii) Small-signal voltage gain
 - (iii) Input and output impedance.

The circuit parameters are:

 $R_1 = 56k\Omega$, $R_2 = 15.2k\Omega$, $R_E = 0.4k\Omega$, $R_C = 2k\Omega_1$, $R_E = 10k\Omega$, $R_3 = 0.5k$,

V = 10V

and BJT parameters are $\beta = 100$, $V_{ar} = 0.7V$

ITURN OVER

GE-Con. 10524-16.

2

- (b) Draw circuit diagram of IFET small signal CS amplifier with self-bias and derive the expression for, small signal mid-band voltage gain, input impedance and output impedance.
- 5. (a) Explain the biasing techniques for D- MOSFET and E-MOSFET 10
 - (b) A JFET amplifier with voltage divider biasing circuit shown in figure 2 below has the following pa ameters: I_{pst} = 4mA, V_p = -2V. The circuit parameters: RD = lkΩ, R_i = 12MΩ, I_{pq} = 3.4mA and V_{ps} = 16.7 v. V_{pp} = 24V. Determine the values of R_i and R_s.
- 6. (a) Design L section I C filter with full wave rectifier to meet following specifications: The DC output voltage V_{DC}= 220V, deliver I_L = 70mA ± 20mA to the resistive load, and required ripple factor is 0.04. Also find bleeder resistance if required.
 - (b) Design a simple Zener voltage regulator to meet the following specifications: 8

 Output voltage V₀ = 6.8V, Load current

 I_{1,max} = 60mA, I_{2,min} = 0mA, I_{2,min} = 100mA, I_{2,min} = 5mA,

 Pz = 440m W and Input voltage V₁ = 20Vto30V.
- 7. Write a short note on following (any two)
 - (a) SCR (Construction and Characteristics).
 - (b) Bias compensation techniques.
 - (e) E-MOSFET (Construction and Characteristics).

ITURN OVER

GE-Con. 10524-16.

SE DEWNII (CORS) AMIII EXTO

18/5/2016

Sub! - AM -III

QP Code: 30538

may-16

(Revised course)

Time: 3 hours

Total marks :80

N.B: (1) Question No.1 is compulsory.

- (2) Answer any three questions from remaining.
- (3) Assume suitable data if necessary.

Evaluate

1. (a)

$$\int_{0}^{\infty} e^{-2s} \left(\frac{\sinh t \sin t}{t} \right) dt$$

(b) Obtain the Fourier Series expression for $f(x) = 9 - x^3$ in (-3,3)

- (c) Find the value of p' such that the function f(z) expressed in polar co-ordinates as $f(z) = r^3 \cos p\theta + ir^2 \sin 3\theta$ is analytic.

- (d) If $=(y^2-z^3+3)z-2x)\hat{i}+(3zz+2xy)\hat{j}+(3xy-2zz+2z)\hat{k}$, Show that F is irrotational and solenoidal.
- 05
- 2. (a) Solve the differential equation using Laplace Transform
 - $\frac{d^2y}{dt^2} 4\frac{dy}{dt} + 8y = 1$, given y(0)=0 and y'(0)=1

(b) Prove that

Ve that
$$J_4(x) = \left(\frac{48}{x^2} - \frac{8}{x}\right) J_4(x) - \left(\frac{24}{x^2} - 1\right) J_4(x)$$

- (c) i) Find the directional derivative of $\vec{\phi} = 4xz^3 - 3x^2y^2z$ at (2,-1,2) in the direction of $2\vec{i} + 3\vec{j} + 6\hat{k}$.
 - ii) If r=xi+yj+xi Prove that $\nabla \log r = \frac{r}{r^2}$

2

QP Code: 30 38

- 3. (a) Show that {cos x, cos 2x, cos 3x.....} is a set of orthogonal functions over (-x,x). Hence construct an orthonormal set.
 - (b) Find an analytic function fiz) -u+iv where.

$$w = \frac{x}{2}\log(x^2 + y^2) - y\tan^{-1}\left(\frac{y}{x}\right) + \sin x \cosh y$$

- (c) Find Laplace transform of
 - i) jus-to cast Zude
 - ii) tol+sint
- 4. (a) Find the Fourier Series for

$$f(x) = \frac{3x^3 - 6\pi x + 2\pi^2}{12}$$
 in $(0, 2\pi)$

Hence deduce that $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^3} = \frac{\pi^4}{6}$

- (b) Prove that $\int_{a}^{b} u J_{a}(ax) dx = \frac{b}{a} J_{a}(ab)$
- c) Find

i)
$$E^{i} \left[log \left(\frac{x^{2}+1}{r(s+1)} \right) \right]$$

ii) $E^{i} \left[\left(\frac{s+2}{x^{2}-2s+17} \right) \right]$

FW-Con. 10552-16.

[TURN O\ :R

43

5. (a) Obtain the half range cosine series for

$$f(x) = x, 0 < x < \frac{\pi}{2}$$
$$= \pi - x, \frac{\pi}{2} < x - \pi$$

(b) Find the Bi-linear Transformation which maps the prints 1,i,-1 of z plane onto 1,0,-i of w-plane

(c) Verify Green's Theorem for F# where

F=(x²-xy)²+(x²-y²) and C is the curve bounded by x²-2y
and x-y

6.(a) Show that the transformation $w = \frac{t-3\pi}{1+\pi}$ maps the unit circle |x|=1 into real axis of w plane.

(b) Using Convolution theorem find

$$L^{1}\left[\frac{s}{(s^{2}+1)(s^{2}+4)}\right]$$

i) Use Gauss Divergence Theorem to evaluate

| First where F=zi+zj+zi and S is the sphere
| z + y + z = 0 and = is the outward normal to S

ii) Use Stoke's Toporem to evaluate F. where

F=x'i-xy' and C is the square in the plane z=0 and bounded by x=0,y=0,x=a and y=a.

SE Sem-III (CB45) may-16 may-16

SE ENTE/CBES/SEOT-1 /D-E/24/5/15

QP Code: 30666

Sub: - DE

1. Question No. 1 is compulsory.

(3 Hours)

2. Out of remaining questions, attempt any three questions.

EXTC

Max Marks: 80

		3. Assume suitable additional data if required. 4. Figures in brackets on the right hand side indicase full marks.	
1.	(A)	Compare Combinational circuits with Sequential circuits.	(05)
	(B)	Compare Synchronous with Asynchronous counter.	(05)
	(C)	Compare ITL with CMOS logic families.	(05)
	(D)	Compare PLA with PAL.	(05)
2.	(A)	Write the VHDL code for 2-bit up-down counter with positive edge triggered clock.	(10)
	(B)	State and prove the De Morgan's theorem.	(05)
	(C)	Draw the block diagram of internal architecture of XC4060 family FPGA.	(05)
3.	(A)	Design synchronous counter using T-type flip flops for getting the following sequence: $0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 0$. Take care of lockout condition.	(10)
	(B)	Convert T-type flip flop into D-type flip flop.	(05)
	(C)	Write (AB)16 into its BCD code and Octal code.	(0.5)
4.	(A)	Implement the following Boolean equation using single 4:1 MUX and few logic gates:	(10)
		$F(P,Q,R,S) = \prod M(0,2,5,6,7,9,12,15).$	
	(B)	Compare FPGAs with CPLDs.	(05)
	(C)	Implement $Y = A + BC$ using only NOR gates.	(05)
25		Draw a neat circuit of BCD adder using IC 7483 and explain.	(10)
5.	(A)	Using Quine McClusky method, minimize the following:	(10)
	(B)	$F(P,Q,R,S) = \sum_{i} m(0.1,3,7,8,9,15) + d(2,10,11).$	
6.	(A)	Design a Mealy type sequence detector circuit to detect a sequence 1101 using T-type thip flops.	(19)
	(B)	What is shift register? Explain any one type of shift register. Give its	(10)
		application.	

EXTC Sem III (CBGS)

QP Code: 30714

(3 Hours)

Total Marks: 80

- N. B.: (1) Question No.1 is compulsory.
 - (2) Out of remaining question, attempt any three questions.
 - (3) Assume suitable additional data if required.
 - (4) Figure to the right of question indicates full marks.
 - (5) Write your answers in ink only.
- 1. Attempt any four:
 - (a) Explain Alternate mode and Chop mode in a dual trace oscilloscope. 20
 - (b) What is cold junction compensation in thermocouples.
 - (c) Write a note on piezoelectric transducer. (d) Which is fastest ADC and why?
 - (e) Define accuracy, precision and sensitivity with suitable example.
 - (f) Compare Analog instrument with Digital Instrument.
- 2. (a) Explain the principle, working and construction of LVDT. What is meant 10
 - (b) Draw neat block diagram of Dual Beam Oscilloscope. Give the comparison between Dual Trace and Dual Beam Oscilloscope, 10
- (a) What are the various D/A Converting Techniques? Explain any one 10
 - (b) What is the basic principle of wave analyser? Explain heterodyne type wave analyser with application. 10
- (a) Explain Kelvin's double bridge and its application in very low resistance measurement. 10.
 - (b) Draw and discuss Hey Bridge and its application for measurement of 10
- 5. (a) Explain the principle and working of operation of dual slope DVM. 10
 - (b) Define Q factor and explain working of a Q meter for Q factor measurement. 10
- (a) Draw block diagram for generalised measurement system and explain its components. 5
 - (b) List various sensors for pressure and temperature along with their 3
 - (c) Brief out classification of errors in measurements
 - (d) Explain electrodynamometer type watt meter.

FW-Con. 11492-16.

EI EXTC Sen III (old) 30/5/16 Sul: EI May-16

Q.P. Code: 28796

	(3 Hours) Total M	arks :
	 (1) Question No. 1 is compulsory. (2) Attempt any four questions out of the remaining six questions. (3) Assume suitable data if necessary. 	
	Attempt any four of the following: (a) List the specification of DSO. (b) Explain bounded strain gauge in details. (c) Draw and explain wave analyzer n detail. (d) Draw and explain RTD in detail. (e) True RMS meter is always specified by crest factor justify.	
2. (a	Explain the significance of 3½ and 4½ digit displant. Explain modulation method used in R-F felimeter.	10
3. (a (b	Property of Materials	10 10
l. (a)	characteristics, measurement range, applications RTD, thermocouple &	ir 10
(b)	What is the role of a time base generator? What are the time base requirement	10
	Explain the principle of operation of Qual slope DVM. Explain the performance characteristics of D/A converter.	10 10
(a)	How is the displacement measured? State different transducers used for displacement measurement.	10
(b)	Explain pulse code most ation technique.	10
(a)	Explain different types of measurement error with frequency counter.	10
(b)	Explain FFT analyzer in Cetail.	10

May-16

QP Code: 30754

[Total Marks : 80

- N B : (1) Attempt questions No. 1 and any 3 from remaining questions. In all 4 questions are to be attempted.
 - (2) All sub-questions of the same question should be answered at one place only in their serial orders, and not scattered.
 - Assume suitable data with justification if missing.
- 1 (a) Determine Y parameters for the network shown in fig 1 (a)

€ 100VA

5

Fig 1 (a)

- (b) Test if F (s) = S⁴+S³+5S²+3S+4 is a Hurwitz polynomial.
- (c) Two coils connected in series have self inductance 80 mH & 20 mH respectively The total inductance of the circuit is found to 140 mH. Determine the
 - (i) mutual inductance between two coils and
 - (ii) The coefficient of coupling
- (d) Synthesize the following function into a network.

 $z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1} using cauer - 1 form.$

[TURN OVER]

In

2

 (a) Find the Thevenin's equivalent across the terminals XY for the circuit shown in fig 2 (a)

(b) Determine the node voltage at node (1) & (2) of the Network Shown in fig 2(b) by using nodal analysis.

(c) Test Whether

$$F(s) = \frac{s(s+3)(s+5)}{(s+1)(s+4)}$$
 is a positive real function.

FW-Con.12084-16.

[TURN OVER]

3 (a) Synthesize the driving point function using Foster-1 and Foster-II form.
$$Z(s) = \frac{2(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$$

- (b) State and prove Initial value theorem.
- (c) A Transmission line has distributed parameters R=6 Ohms / km, L=2.2 mH/km Determine characteristics impedance and propagation constant at JKHz frequency.
- 4 (a) Find ABCD parameters for the two port Networkshown in fig # (a). 10

(b) Find the Network functions $\frac{V_1}{I_1}$, $\frac{V_2}{I_1}$, $\frac{V_2}{V_1}$ for the network shown in fig.4 (b)

[TURN OVER]

5

19

5

(c) A Transmission line has a characteristics impedance of 50+j 100 Ω and is terminated in a load impedance of 73-j 42.5 Ω Calculate

- (a) The reflection coefficient.
- (b) The standing wave ratio
- 5. (a) The Network shown in fig 5 (a), switch K is closed at t=0, Assume all initial

conditions as zero. Find
$$i$$
, $\frac{di}{dt} & \frac{d^2i}{dt^2}$ at $t = 0^+$

(b) Write the KVL equations in standard form for the N/W shown in fig 5(b)

FW-Con.12084-16.

[TURN OVER]

(c) Find poles and zero of the Impedance Z(s) for the Network Shown in fig 5 (c)

- (a) Why is the Impedance matching required? Draw the following normalized quantities on the smith chart.
 - (i) (3+i3) Ω
- (ii) (1.0) Ω
- (iii) (2-j1) Ω
- (i) j1.0Ω
- (b) Write short note on:

Time domain analysis using Laplace Transform.

- (c) Define the following terms
 - (i) Phase Velocity
 - (ii) Characteristic impedance
 - (iii) Reflection coefficients

5

(10)

(10)

Q.2(b) In the given network switch is open at t=0, determine v(t), $\frac{dv(t)}{dt}$, $\frac{d^2v(t)}{dt}$ (10) at t=0.

Q.3(a) Find the Y parameters of the given network.

(b) Find the current through 3Ω using mesh analysis.

Q.4(a) Find the network function $\frac{V_i}{I_i}$, $\frac{V_i}{I_i}$ and $\frac{V_i}{V_i}$ for the given network. (10)

(b) Check the positive realness of the following function and give reason $Y(S) = \frac{S^3 + 5S}{S^4 + 2S^2 + 1}$ (05)

(c) Test whether the following polynomials are Hurwitz
$$S^{2} + 8S^{4} + 24S^{2} + 28S^{2} + 23S + 1$$
 (05)
$$S^{2} + 2S^{3} + S$$

Q.5(a) Realize the driving point impedance in Foster I and Foster II
$$Z(S) = \frac{3(S^2 + 1)(S^2 + 49)}{(S^2 + 9)}$$
(10)

GE-Con. 12486-16.

OTe.

(10)

(10)

(10)

(10)

(b) Determine Z parameters for the given network.

Q.6(a) Draw the Bode plot for the given Transfer Function.

$$G(S)H(S) = \frac{10(S+1)}{S(1+0.02S)(1+0.2S)}$$

(b) For the given network calculate is(t) when switch S closed at t=0. Consider (10) zero initial conditions

Q.7(a) Find the current in 10 ohm resistor using Theverar's theorem.

(b) For the given network write Tie-set matrix and obtain the network equ librium equation in matrix form using KVI.

GE-Con. 12486-16.