## University of Mumbai

Examination 2021 under cluster __ (Lead College: _)
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to 24 ${ }^{\text {th }}$ June 2021
Program: BE (Mechanical Engineering)
Curriculum Scheme: Rev 2016 (CBSGS)
Examination: SE Semester III
Course Code: MEC301 and Course Name: APPLIED MATHEMATICS - III
Time: 2 hours Max. Marks: 80
Note: All Questions are compulsory

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | $L\left\{t^{2}+e^{2 t}\right\}$ equals |
| Option A: | $\frac{2}{s^{3}}+\frac{1}{s-2}$ |
| Option B: | $\frac{2}{s^{3}}+\frac{1}{s+2}$ |
| Option C: | $\frac{1}{s^{3}}+\frac{1}{s-2}$ |
| Option D: | $\frac{3}{s^{3}}+\frac{2}{s+2}$ |
| 2. | $L\left\{e^{-3 t} \sin 4 t\right\}$ equals |
| Option A: | $\frac{s+3}{(s+3)^{2}+16}$ |
| Option B: | $\frac{4}{(s-3)^{2}+16}$ |
| Option C: | $\frac{4}{(s+3)^{2}+16}$ |
| Option D: | $\frac{s-3}{(s-3)^{2}+16}$ |
| 3. | If $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})$, then $L\left\{\int_{0}^{t} f(u) d u\right\} \quad$ equals |
| Option A: | $s F(s)$ |
| Option B: | $-F^{\prime}(s)$ |
| Option C: | $\frac{1}{s} F(s)$ |
| Option D: | $-s F^{\prime}(s)$ |
| 4. | $L^{-1}\left\{\frac{s+2}{s^{2}+4 s+8}\right\}$ equals |
| Option A: | $e^{2 t} \cos 2 t$ |
| Option B: | $e^{-2 t} \cos 2 t$ |
| Option C: | $e^{-2 t} \sin 2 t$ |
| Option D: | $e^{2 t} \sin 2 t$ |


| 5. | $L^{-1}\left\{\frac{1}{(s+2)(s+3)}\right\}$ equals |
| :---: | :---: |
| Option A: | $e^{2 t}-e^{3 t}$ |
| Option B: | $e^{-2 t}+e^{-3 t}$ |
| Option C: | $e^{2 t}+e^{3 t}$ |
| Option D: | $e^{-2 t}-e^{-3 t}$ |
| 6. | If $L^{-1}\{F(s)\}=f(t)$ and $L^{-1}\{G(s)\}=g(t)$ then $L^{-1}\{F(s) G(s)\}$ equals |
| Option A: | $\int_{0}^{\infty} f(u) g(u) d u$ |
| Option B: | $\int_{-\infty}^{\infty} f(t) g(t-u) d u$ |
| Option C: | $\int_{0}^{t} f(u) g(u) d u$ |
| Option D: | $\int_{0}^{t} f(u) g(t-u) d u$ |
| 7. | If $f(z)=u+i v=\sinh x \cos y+i \cosh x \sin y$ then |
| Option A: | $u_{x}=-v_{x}$ |
| Option B: | $u_{y}=-v_{y}$ |
| Option C: | $u_{y}=-v_{x}$ |
| Option D: | $u_{x}=u_{y}$ |
| 8. | If $u=e^{2 x} \cos 2 y$ then |
| Option A: | $u_{x}=-u_{y}$ |
| Option B: | $u_{x x}=u_{y y}$ |
| Option C: | $u_{x y}=-u_{y y}$ |
| Option D: | $u_{x x}=-u_{y y}$ |
| 9. | The image of the circle $x^{2}+y^{2}=4$ under the transformation $w=\frac{1}{z}$ is |
| Option A: | The circle with center origin and radius $\frac{1}{2}$ |
| Option B: | The circle with center origin and radius 2 |
| Option C: | A straight line passing through the origin |
| Option D: | A straight line parallel to the imaginary axis |
| 10. | The poles of $f(z)=\frac{5 z^{2}}{(z-1)^{2}(z+7)}$ are |
| Option A: | 1,7 |
| Option B: | -1,-7 |
| Option C: | -1,7 |
| Option D: | 1,-7 |
| 11. | The residue at the pole $\mathrm{z}=-3$ of $f(z)=\frac{2}{(z-5)(z+3)}$ is |
| Option A: | -1/4 |
| Option B: | 1/4 |


| Option C: | -1 |
| :---: | :---: |
| Option D: | 0 |
| 12. | $\oint_{C} \frac{5}{z-2} d z$ where C is the circle $\|z\|=4$ is |
| Option A: | 0 |
| Option B: | $10 \pi i$ |
| Option C: | $2 \pi i$ |
| Option D: | $-\pi i$ |
|  |  |
| 13. | The functions $f(x)=1$ and $g(x)=x$ are defined in the interval ( $-1,1$ ). Then |
| Option A: | $f(x)$ and $g(x)$ are orthonormal in (-1,1) |
| Option B: | $f(x)$ and $g(x)$ are orthogonal, but not orthonormal in (-1,1) |
| Option C: | $f(x)$ and $g(x)$ are not orthogonal in (-1,1) |
| Option D: | $f(x)$ and $g(x)$ are orthonormal, but not orthogonal in (-1,1) |
| 14. | Suppose $f(x)=\sqrt{1-\cos x}$ in $(0,2 \pi)$. Then the Fourier coefficient $a_{0}$ where $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$ is the Fourier Series of $f(x)$ is equal to |
| Option A: | 0 |
| Option B: | $4 \sqrt{2}$ |
|  | $\pi$ |
| Option C: | $\frac{2 \sqrt{2}}{\pi}$ |
| Option D: | $\pi$ |
| 15. | Suppose $f(z)=\frac{1}{z-1}+1+\frac{z-1}{2!}+\frac{(z-1)^{2}}{3!}+\cdots$. Then $\mathrm{z}=1$ is |
| Option A: | A pole of order 2 |
| Option B: | A pole of order 1 |
| Option C: | A pole of order 3 |
| Option D: | Not a pole |
| 16. | Suppose $f(x)=x$ in $(-\pi, \pi)$. Then the Fourier coefficient $a_{n}$ where $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$ is |
| Option A: | $\frac{1}{n}$ |
| Option B: | $\frac{-1}{n}$ |
| Option C: | 0 |
| Option D: | $\frac{1}{\pi}$ |
| 17. | The coefficient $C_{n}$ in the expansion of $f(x)$ in $(0,2 \pi)$ as a complex form of the Fourier Series is |
| Option A: | $\frac{1}{\pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x$ |
| Option B: | $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x$ |


| Option C: | $\frac{1}{\pi} \int_{0}^{2 \pi} f(x) e^{i n x} d x$ |
| :---: | :---: |
| Option D: | $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{i n x} d x$ |
| 18. | By the Bilinear Transformation $w=\frac{z+2}{-z+1}$ the images of the points $\mathrm{z}=1,0,-1$ are respectively |
| Option A: | $(\infty, 0,1)$ |
| Option B: | $\left(\infty,-2, \frac{-1}{2}\right)$ |
| Option C: | $\left(\infty, 2, \frac{1}{2}\right)$ |
| Option D: | ( $\infty, 0,-1$ ) |
| 19. | Suppose the two regression coefficients are $b_{y x}=\frac{-1}{2}, b_{x y}=\frac{-3}{8}$ then the correlation coefficient $r$ is |
| Option A: | $-\frac{\sqrt{3}}{4}$ |
| Option B: | $\pm \frac{\sqrt{3}}{4}$ |
| Option C: | $-\frac{3}{4}$ |
| Option D: | $\pm \frac{3}{4}$ |
| 20. | The rank correlation coefficient of the following marks in Subjects X and Y is |
| Option A: | 0.8 |
| Option B: | -0.6 |
| Option C: | -0.8 |
| Option D: | 0.6 |

## Subjective/Descriptive questions

| Q2 <br> (20 Marks) | Solve any Four out of Six (5 marks each) |
| :---: | :--- |
| A | Evaluate using Laplace Transforms: $\int_{0}^{\infty} e^{-2 t} \cos 3 t \cos 5 t d t$ |
| B | Find $L^{-1}\left\{\frac{s-2}{\left(\left(s^{2}+4 s+8\right)\right.}\right\}$ |
| C | Suppose the regression lines are given by $3 x+2 y=7$ and $2 x+y=5$ <br> Find the correlation coefficient and the means of X and Y. |
| D | Suppose $f(a)=\int_{C} \frac{3 z^{2}+2 z-7}{z-a} d z$ where C is the circle $\|z+2\|=2$. Obtain <br> $f(3)$ and $f^{\prime}(-3)$ |
| E | Obtain the Fourier series of $f(x)=\sin x, \quad-\pi \leq x \leq \pi$ |
| F | Solve using Bender-Schmidt method: $: \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}=0 ;$ subject to the <br> conditions: $u(0, t)=0 ; u(2, t)=0 ; u(x, 0)=x^{2}\left(4-x^{2}\right)$ taking $h=1$ <br> upto 2 seconds |


| Q3 <br> (20 Marks) | Solve any Four out of Six (5 marks each) |
| :---: | :--- |
| A | Obtain $L\left\{\int_{0}^{t} u \cos 2 u d u\right\}$ |
| B | Find: $L^{-1}\left\{\frac{s}{\left(s^{2}+4\right)\left(s^{2}+1\right)}\right\}$ using convolution theorem |
| C | Obtain the analytic function whose imaginary part is $e^{-x} \sin y$. |
| D | Evaluate $\int_{C} \frac{z}{(z+4)(z+1)} d z$ where C is the circle $\|z\|=3$ |
| E | Obtain the Bilinear transformation that transforms the points $z=2,-1,1$ <br> respectively to the points $w=\infty, 0,-2$ |
| F | Solve using Crank-Nicolson formula: $\frac{\partial^{2} u}{\partial x^{2}}-16 \frac{\partial u}{\partial t}=0,0 \leq x \leq 1 ;$ subject <br> to the conditions: $u(0, t)=0 ; u(1, t)=0 ; u(x, 0)=100 x(1-x)$ taking <br> $h=0.25$ for one step |
|  |  |

## University of Mumbai

 Examination 2020 under cluster 09(FAMT)Examinations from $15^{\text {th }}$ June 2021 to $26{ }^{\text {th }}$ June 2021
Program: Mechanical Engineering
Curriculum Scheme:R 2016
Examination: SE Semester: III
Course Code: MEC302 and Course Name: Thermodynamics
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | Which of the following is not true for a closed system? |
| Option A: | Mass does not enter or leave the system |
| Option B: | Energy does not enter or leave the system |
| Option C: | Energy transfer may be more or less |
| Option D: | Mass does not enter or leave the system but energy can |
|  |  |
| 2. | 30 kg water heater is heated for 35 minutes by using 3000 J/s power <br> source.Specific heat for water cp for water is 4.8 kJ/kgK .Considerall the <br> electrical energy has gone into heating the water, increase of water temperature in <br> degree is |
| Option A: | 41.3 |
| Option B: | 14.5 |
| Option C: | 43.75 |
| Option D: | 16.8 |
| 3. | Which among these is an Intensive property. |
| Option A: | Specific heat capacity |
| Option B: | Specific volume |
| Option C: | Surface tension |
| Option D: | pressure |
|  |  |
| 4. | The first law of thermodynamics, for steady flow |
| Option A: | Accounts for all energy entering and leaving a control volume |
| Option B: | Is an energy balance for the specified mass of fluid |
| Option C: | Is an expression of the conservation of linear momentum |
| Option D: | Is primarily concerned with heat transfer |
|  |  |
| 5. | An increase in enthalpy leads to an increase in |
| Option A: | Increase in pressure |
| Option B: | Increase in volume |
| Option C: | Increase in internal energy |
| Option D: | Increase in mass |
|  |  |
| 6. | In the polytropic process equation pv Constant, if $\mathrm{n}=0$ the process is termed as |
| Option A: | Constant volume |
| Option B: | Constant pressure |
|  |  |
|  |  |
|  |  |


| Option C: | Constant temperature |
| :---: | :---: |
| Option D: | Isothermal |
| 7. | The entropy may be expressed as a function of |
| Option A: | Pressure and temperature |
| Option B: | Temperature and volume |
| Option C: | Heat and work |
| Option D: | velocity |
| 8. | Which of the following is the correct sentence? |
| Option A: | All the reversible engines have the same efficiency |
| Option B: | All the reversible and irreversible engines have the same efficiency |
| Option C: | Irreversible engines have maximum efficiency |
| Option D: | All engines are designed as reversible in order to obtain maximum efficiency |
| 9. | Kelvin plank law deals with |
| Option A: | Conservation of energy |
| Option B: | Conservation of heat |
| Option C: | Conservation of mass |
| Option D: | Conversion of heat into work |
|  |  |
| 10. | Which among the following represents high grade energy |
| Option A: | Electrical energy |
| Option B: | Thermal energy |
| Option C: | Both thermal energy and Electrical energy |
| Option D: | Neither of the thermal energy nor of Electrical energy |
|  |  |
| 11. | Clausius-Clapeyron equation pertains to the relationship between |
| Option A: | Pressure and temperature |
| Option B: | Volume and temperature |
| Option C: | Volume and pressure |
| Option D: | Volume and Velocity |
|  |  |
| 12. | The slopes of sublimation and vaporization curves for all substances are |
| Option A: | negative |
| Option B: | positive |
| Option C: | zero |
| Option D: | infinity |
|  |  |
| 13. | Moiler diagram is plot of |
| Option A: | temperature and entropy |
| Option B: | enthalpy and entropy |
| Option C: | pressure and enthalpy |
| Option D: | pressure and volume |
|  |  |
| 14. | The work input to air compressor is minimum if the compression law followed |
| Option A: | $\mathrm{PV}^{1.35}=\mathrm{C}$ |
| Option B: | Isothermal PV=C |
| Option C: | Isentropic $\mathrm{PV}^{\prime}=\mathrm{C}$ |
| Option D: | $\mathrm{PV}^{1.2}=\mathrm{C}$ |


| 15. | The clearance volume in reciprocating air compressor is provided |
| :---: | :---: |
| Option A: | To reduce the work done per kg of air delivered |
| Option B: | To increase the volumetric efficiency of the compressor |
| Option C: | To accommodate valves in the head of the compressor |
| Option D: | To create turbulence in the air to be delivered |
|  |  |
| 16. | In isentropic process |
| Option A: | $\mathrm{W}=2\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)$ |
| Option B: | $\mathrm{W}=\mathrm{u}_{2}+\mathrm{u}_{1}$ |
| Option C: | $\mathrm{W}=2\left(\mathrm{u}_{2}+\mathrm{u}_{1}\right)$ |
| Option D: | $\mathrm{W}=\mathrm{u}_{2}-\mathrm{u}_{1}$ |
|  |  |
| 17. | The air standard Otto cycle comprises |
| Option A: | Two constant pressure processes and two constant volume processes. |
| Option B: | Two constant pressure processes and two constant entropy processes |
| Option C: | Two constant volume processes and two constant entropy processes. |
| Option D: | One constant volume processes and three constant entropy processes. |
|  |  |
| 18. | For the same compression ratio |
| Option A: | Thermal efficiency of Otto cycle is greater than that of Diesel cycle |
| Option B: | Thermal efficiency of the Otto cycle is less than that of Diesel cycle |
| Option C: | Thermal efficiency of Otto cycle is same as that for Diesel cycle. |
| Option D: | Thermal efficiency of Otto cycle cannot be predicted |
|  |  |
| 19. | Carnot engine working between $377^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ produces 120 kJ of work. The heat added in kJ will be |
| Option A: | 209.5 kJ |
| Option B: | 320.4 kJ |
| Option C: | 420.5 kJ |
| Option D: | 229.5 kJ |
|  |  |
| 20. | Thermal efficiency of a Carnot engine whose hot and cold bodies have temperatures of $154^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ respectively, will be |
| Option A: | 25.7\% |
| Option B: | 32.55\% |
| Option C: | 23.4\% |
| Option D: | 29.6\% |


| Q2. <br> (20 Marks ) | Solve any FourQuestions out of six. (05 marks each) |
| :---: | :--- |
| A | Define intensive and extensive properties with example. |
| B | Explain p-T diagram for pure substance |
| C | Explain throttling process and Joule-Thompson porous plug experiment |
| D | Derive Steady Flow Energy Equation |
| E | Explain modified Rankine cycle |
| F | Derive the expression of efficiency of Otto cycle. |


| $\begin{gathered} \text { Q3 } \\ \text { (20 Marks) } \end{gathered}$ | Solve any Two Questions out of Three. (10 marks each) |
| :---: | :---: |
| A | A single stage single acting air compressor delivers 0.6 kg of air per minute at 6 bar. The temperature and pressure at the end of suction stroke are $30^{\circ} \mathrm{C}$ and 1 bar. The bore and stroke of the compressor are 100 m and 150 mm respectively. The clearance is $3 \%$ of the swept volume. Assuming the index of compression and expansion to be 1.3 find: <br> i) Volumetric efficiency <br> ii) Power required if the mechanical efficiency is $85 \%$ and <br> iii) Speed of the compressor (r.p.m) |
| B | Steam enters a turbine operating at steady state with a mass flow rate of $4600 \mathrm{~kg} / \mathrm{h}$. The turbine develops a power output of 1000 kW . At the inlet, the pressure is 60 bar , the temperature is 4000 C , and the velocity is $10 \mathrm{~m} / \mathrm{s}$. At the exit, the pressure is 0.1 bar, the quality is 0.9 , and the velocity is 30 $\mathrm{m} / \mathrm{s}$. Calculate the rate of heat transfer between the turbine and surroundings, in kW . |
| C | In a steam power cycle, the steam supply is at 15 bar and dry and saturated. The condenser pressure is 0.4 bar, Calculate the Carnot and Rankine efficiencies of the cycle. Neglect pump work.(Use steam table for required data) |

## University of Mumbai

Examination 2020 under cluster 09 (FAMT)
Examinations Commencing from $15^{\text {th }}$ June 2021 to 26 ${ }^{\text {th }}$ June 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester: III
Course Code: MEC303 and Course Name: Strength of Materials
Time: 2 hoursMax. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | The dimension of strain is? |
| Option A: | LT-2 |
| Option B: | N/m2 |
| Option C: | N |
| Option D: | Dimensionless |
| 2. | The law which states that within elastic limits strain produced is proportional to the stress producing it is known as |
| Option A: | Bernoulli's law |
| Option B: | Hooke's law |
| Option C: | Stress law |
| Option D: | Poisson's law |
| 3. | The phenomenon of slow extension of materials having a constant load, I.e. increasing with the time is called |
| Option A: | Creeping |
| Option B: | Yielding |
| Option C: | Breaking |
| Option D: | Hogging |
| 4. | The ability of a material to absorb energy when elastically deformed and to return it when unloaded is called |
| Option A: | Elasticity |
| Option B: | Resilience |
| Option C: | Plasticity |
| Option D: | Strain resistance |
| 5. | The mathematical expression for resilience ' $U$ ' is |
| Option A: | $\mathrm{U}=\sigma^{2} / \mathrm{Ex}$ volume |
| Option B: | $\mathrm{U}=\sigma^{2} / 3 \mathrm{Ex}$ volume |
| Option C: | $\mathrm{U}=\sigma^{2} / 2 \mathrm{Ex}$ volume |
| Option D: | $\mathrm{U}=\sigma / 2 \mathrm{Ex}$ volume |
| 6. | At __ the shearing stress in a beam are maximum. |
| Option A: | Extreme fibres |
| Option B: | Modulus of section |
| Option C: | Neutral axis |
| Option D: | Along the cross-sectional area |


|  |  |
| :---: | :--- |
| 7. | Shear stress in a beam is zero at |
| Option A: | Neutral axis |
| Option B: | Extreme fibres |
| Option C: | Cross section |
| Option D: | Junctions |
|  |  |
| 8. | Shear stress distribution over rectangular section will be |
| Option A: | parabolic |
| Option B: | elliptical |
| Option C: | triangular |
| Option D: | trapezoidal |
|  |  |
| 9. | Circumferential stress is same as of |
| Option A: | Hoop stress |
| Option B: | Longitudinal stress |
| Option C: | Transverse stress |
| Option D: | Phreatic stress |
|  |  |
| 10. | Twisting moment is a product of |
| Option A: | Direction |
| Option B: | Velocity |
| Option C: | Force |
| Option D: | Acceleration |
|  |  |
| 11. | The angle of twist can be written as |
| Option A: | TL/J |
| Option B: | GJ/TL |
| Option C: | TL/GJ |
| Option D: | T/J |
|  |  |
| 12. | Hogging is |
| Option A: | Negative bending moment |
| Option B: | Positive shear force |
| Option C: | Positive bending moment |
| Option D: | Negative shear force |
| Option B: $:$ | Zero |
| Option D: | Meximum |
| Remains same |  |
| Option A: | Zero point of contraflexure, the value of bending moment is |
| Option B: | Maximum |
| Option C: | Can't be determined |
| Option D: | Minimum |
| 14. |  |
|  |  |
|  | its sign. |


|  | What is the other name for a positive bending moment? |
| :---: | :--- |
| Option A: | Hogging |
| Option B: | Sagging |
| Option C: | Inflation |
| Option D: | Contraflexure |
|  |  |
| 16. | In cantilever beams, the slope is |
| Option A: | Maximum |
| Option B: | Zero |
| Option C: | Minimum |
| Option D: | Uniform |
|  |  |
| 17. | Slope is maximum at |
| Option A: | Mid span |
| Option B: | Through out |
| Option C: | Supports |
| Option D: | At point of loading |
|  |  |
| 18. | What is the expression of the bending equation? beams. |
| Option A: | a) M/I $=\sigma / \mathrm{y}=\mathrm{E} / \mathrm{R}$ |
| Option B: | b) M/R $=\sigma / \mathrm{y}=\mathrm{E} / \mathrm{I}$ |
| Option C: | c) M/y $=\sigma / \mathrm{R}=\mathrm{E} / \mathrm{I}$ |
| Option D: | d) M/I $=\sigma / \mathrm{R}=\mathrm{E} / \mathrm{y}$ |
|  |  |
| 19. | The maximum strain energy stored at elastic limit is |
| Option A: | Resilience |
| Option B: | Proof resilience |
| Option C: | Elasticity |
| Option D: | Malleability |
|  |  |
| Option A: | Whear of the following is also known as axial stress? |
| Option B: | Longitudinal stress |
| Option C: | Bending stress |
| Option D: | Hoop stress |


| Q2 | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | A bar of 20mm diameter is subjected to a pull of 50 KN . The measured extension <br> over a gauge length of 20 cm is 0.1 mm and the change in diameter is 0.0035 mm. <br> calculate the Poisson's ratio and modulus of Elasticity. |
| B | A Circular solid shaft transmits 300 KW at 250 rpm. A permissible shear stress is <br> $30 \mathrm{~N} / \mathrm{mm} 2$ and allowable twist 10 in a length of 2 m. Determine the diameter of <br> shaft take G=1 x $105 \mathrm{~N} / \mathrm{mm} 2$. |
| C | A seamless spherical shell is of 8 m internal diameter and 4 mm thickness. It is <br> filled with fluid under pressure until its volume increases by $50 \mathrm{~cm}^{3}$. Determine the <br> fluid pressure, taking $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$ |
| D | Derive the relation between the rate of loading, shear force and bending moment at <br> a section of a beam |
| E | What are the assumptions made in theory of bending? Derive Flexure Formula for <br> pure Bending |
| F | Assumptions made in theory of torsion ? Derive Torsional Formula. |


| Q3. | Solve any Two Questions out of Three. (10 marks each) |
| :---: | :--- |
| A | A hollow shaft of diameter ratio $3 / 5$ is to transmit 250 KW at 70 rpm . The <br> maximum torque $=20 \%$ greater than mean torque. The shear stress is not to <br> exceed 60 MPa and twist in length of 4 m is not to exceed $3^{0}$. Calculate the external <br> and internal diameters which would satisfy both the above conditions. Take <br> modulus of rigidity $\mathrm{G}=80 \mathrm{GPa}$. <br> A beam 8.5 m long rest on a 5 m apart beam carries the load as shown in the fig <br> .Draw the $\mathrm{S} . \mathrm{F}$ and $\mathrm{B} . \mathrm{M}$ diagram and state all the important point including point of <br> contraflexure. |
| B |  |

## University of Mumbai

Examination 2020 under cluster 09 (FAMT)
Examinations Commencing from $15^{\text {th }}$ June 2021 to 26 ${ }^{\text {th }}$ June 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev2016

Examination: SE
Course Code: MEC304 and Course Name: Production Process-I
Time: 2 hours

SemesterIII

Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | The ability of the moulding sand to withstand the heat of melt without showing <br> any sign of softening is called as |
| Option A: | Strength or Cohesiveness |
| Option B: | Refractiveness |
| Option C: | Collapsibility |
| Option D: | Adhesiveness |
|  |  |
| 2. | Which of the following is not included in weldability? |
| Option A: | Ability of mechanical soundness |
| Option B: | Serviceability of joint |
| Option C: | Strain relieving brittleness |
| Option D: | Metallurgical compatibility of metal |
|  |  |
| 3. | Which of the following manufacturing processes is mainly considered for <br> producing the components of very high strength? |
| Option A: | Casting |
| Option B: | Forging |
| Option C: | Extrusion |
| Option D: | Rolling |
|  |  |
| 4. | Which of the following material is not used in extrusion? |
| Option A: | Wax |
| Option B: | Granules |
| Option C: | Powder |
| Option D: | Pellets |
|  |  |
| 5. | Which type of surface is produced by turning operation in lathe machine? |
| Option A: | Flat |
| Option B: | Cylindrical |
| Option C: | Taper |
| Option D: | Zig-Zag |
|  |  |
| 6. | CNC machining centers do not include operations like |
| Option A: | Milling |
| Option B: | Boring |
| Option C: | Welding |
| Option D: | Tapping |
|  |  |
|  |  |


| 7. | A model of casting, constructed to use for forming a mould in damp sand, is <br> called as |
| :---: | :--- |
| Option A: | Sand Construction |
| Option B: | Pattern |
| Option C: | Cover |
| Option D: | Core |
|  |  |
| 8. | On which of the following factor, does weldability does not depend? |
| Option A: | Boiling point |
| Option B: | Melting point |
| Option C: | Thermal expansion |
| Option D: | Thermal conductivity |
|  |  |
| 9. | Which of the following metal forming processes is best suitable for making the <br> wires? |
| Option A: | Forging |
| Option B: | Extrusion |
| Option C: | Drawing |
| Option D: | Rolling |
|  |  |
| 10. | Which of the following is not an application of polymer extrusion? |
| Option A: | Door insulation seals |
| Option B: | Chewing gums |
| Option C: | Cables |
| Option D: | Circuit boards |
|  |  |
| 11. | Which of the following machine is superior to other machines as regards accuracy <br> and better surface finish? |
| Option A: | Lathe |
| Option B: | Drill |
| Option C: | Shaper |
| Option D: | Milling |
|  |  |
| Option A: | Plasma |
| Option B: | Electro-slag |
| Option C: | Submerged |
| Option D: | Air-acetylene |
| Option B: | Which of the following is not the advantage of CNC machines? |
| Improved Quality |  |
| Option C: | Reduced Scrap Rate |
|  | Improved Strength of the Components |
| Option A: | The sand in its natural or moist state is called as |
| Option B: | Green sand |
| Option C: | Dry sand |
| Option D: | Face sand |
| 14. | Which of the following is not a type of arc welding? |
|  |  |


|  |  |
| :---: | :--- |
| 15. | Which of the following method is used for making wheel discs? |
| Option A: | Drop forging |
| Option B: | Press forging |
| Option C: | Open die forging |
| Option D: | Closed die forging |
|  |  |
| 16. | Injection molding is the ideal method of processing |
| Option A: | Plastics |
| Option B: | Thermo-setting plastics |
| Option C: | Thermoplastics |
| Option D: | Non-ferrous materials |
|  |  |
| 17. | Hobbing process is also used for which of the following application? |
| Option A: | Punching |
| Option B: | Metal bending |
| Option C: | Rust removal |
| Option D: | Sprocket cutting |
|  | The machine tool, in which calculation and setting of the operating conditions |
| 18. | The |
| like depth of cut, feed, speed are done during the machining by the control system |  |
| itself, is called |  |, | Option A: | Computer Numerical Control System |
| :---: | :--- |
| Option B: | Direct Numerical Control System |
| Option C: | Machining Center System |
| Option D: | Adaptive Control System |
|  |  |
| 19. | Which of the following cannot be regarded as an internal structure defect? |
| Option A: | Edge crack |
| Option B: | Zipper cracks |
| Option C: | Alligatoring |
| Option D: | Quivering |
|  |  |
| 20. | The process of combining two or more distinct polymer molecules to form a new <br> product with different characteristics is called as |
| Option A: | Binding |
| Option B: | Stabilizing |
| Option C: | Filling |
| Option D: | Blending |


| Q2 | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | Explain casting defects with causes and remedies. |
| B | Discuss types of flames in gas welding. |
| C | Describe in detail various rolling defects. |
| D | Explain the process of blow moulding. |
| E | Write note on types of shaping machines. |
| F | Write short note on machining centre. |


| Q3 | Solve any Two Questions out of Three. (10 marks each) |
| :---: | :--- |
| A | With the help of a neat sketch explain the complete gating system in casting <br> process. |
| B | What is meant by solid state welding process? List various solid state <br> welding processes. draw neat, labeled sketch of any one solid state welding <br> process |
| C | What is mean by forging? Explain open die forging and closed die forging <br> with neat sketch. |

University of Mumbai<br>Examination 2021 under cluster 09 (FAMT)<br>Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to 26 ${ }^{\text {th }}$ June 2021<br>Program: Mechanical Engineering<br>Curriculum Scheme: Rev2016<br>Examination: SE<br>Semester III<br>Course Code: MEC305 and Course Name: Material Technology<br>Max. Marks: 80<br>

Time: 2 hours

| Q.1 | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
| 1. | Which of the following is a point defect in crystals? |
| Option A: | Edge dislocation |
| Option B: | Vacancy |
| Option C: | Grain boundaries |
| Option D: | Tilt boundary |
|  |  |
| 2. | How many slip systems are there inHexagonal Closed Packed structure? |
| Option A: | 3 |
| Option B: | 5 |
| Option C: | 9 |
| Option D: | 18 |
|  |  |
| 3. | The hot working of metal is accomplished at |
| Option A: | below re-crystallization temperature |
| Option B: | Above re-crystallization temperature |
| Option C: | At melting temperature |
| Option D: | Above melting temperature |
|  |  |
| 4. | Strain Hardening occurs when |
| Option A: | The material is cold worked |
| Option B: | The material is hot worked |
| Option C: | The material undergo heavy machining |
| Option D: | The material undergo drilling operation |
|  |  |
| 5. | Endurance limit is defined for |
| Option A: | Non ferrous metals |
| Option B: | Ferrous metals |
| Option C: | Plastic materials |
| Option D: | Ceramic materials |
|  |  |
| 6. | Cup cone fracture is an example of |
| Option A: | brittle failure |
| Option B: | fatigue failure |
| Option C: | ductile failure |
| Option D: | creep failure |
|  |  |


| 7. | Ductile to Brittle transition occur due to |
| :---: | :---: |
| Option A: | Increase in temperature |
| Option B: | Decrease in temperature |
| Option C: | At constant temperature |
| Option D: | At variable temperature |
| 8. | In the Creep there are |
| Option A: | Only one stage |
| Option B: | Two stages |
| Option C: | Three stages |
| Option D: | Four Stages |
| 9. | Eutectoid Transformation is |
| Option A: | Solid to Solid1 and Solid 2 |
| Option B: | Liquid to Liquid1 and Solid 2 |
| Option C: | Liquid to Liquid1 and Liquid 2 |
| Option D: | Solid to Solid1 and Liquid 2 |
| 10. | Range of Cast Iron is |
| Option A: | 0.008\% to 0.2\% |
| Option B: | $0.3 \%$ to $0.6 \%$ |
| Option C: | 0.8\% to $1.0 \%$ |
| Option D: | 2.0\% to $6.67 \%$ |
| 11. | For 0.4\% carbon steel the approximate percentage of two phases would |
| Option A: | Pearlite 60\% and $\alpha$-Ferrite 40\% |
| Option B: | Pearlite 40\% and $\alpha$-Ferrite 60\% |
| Option C: | Pearlite 45\% and $\alpha$-Ferrite 55\% |
| Option D: | Pearlite 50\% and $\alpha$-Ferrite 50\% |
| 12. | Which method is used to determine hardenability of a material |
| Option A: | Jominy end-quench |
| Option B: | Charpy |
| Option C: | Rockwell |
| Option D: | Izod |
|  |  |
| 13. | Which Statement is correct in case of heat treatment of steel? |
| Option A: | Faster cooling results in low hardness |
| Option B: | Slow cooling results in high hardness |
| Option C: | Fast cooling results in high hardness |
| Option D: | No effect of cooling |
|  |  |
| 14. | Flame hardening is used to |
| Option A: | Make core harder |
| Option B: | Make core and surface harder |
| Option C: | Make surface harder |
| Option D: | Clean the surface |
|  |  |
| 15. | How mild steel can be converted to high carbon steel |


| Option A: | Annealing |
| :---: | :--- |
| Option B: | Normalizing |
| Option C: | Through hardening |
| Option D: | Nitriding |
|  |  |
| 16. | Ausforming is used to |
| Option A: | Increase ductility of metal |
| Option B: | Increase toughness of metal |
| Option C: | Decrease strength of metal |
| Option D: | Increase machinability of metal |
|  |  |
|  |  |
| 17. | Stainless steel is classified as |
| Option A: | Maraging steel and austempering steel |
| Option B: | High, medium and low speed steel |
| Option C: | Austenitic, ferritic and martensitic steel |
| Option D: | High, medium and low carbon steel |
|  |  |
| 18. | If we add more chromium to steel then |
| Option A: | Ductility increases |
| Option B: | Red hardness increases |
| Option C: | Corrosion resistance decreases |
| Option D: | Corrosion resistance increase |
|  |  |
| 19. | Which of the following is a property of ceramics? |
| Option A: | High Thermal Expansion |
| Option B: | Bad insulation |
| Option C: | Resistant to corrosion |
| Option D: | Low melting point |
|  |  |
| 20. | The size of nano particles is between |
| Option A: | 100 to 1000 nm |
| Option B: | 1 to 100 nm |
| Option C: | 0.01 to 1nm |
| Option D: | 0.1 to 10nm |


| Q2 |  |
| :---: | :--- |
| A | Solve any Two. ( 5 marks each) |
| i. | Classify engineering Materials with suitable example. |
| ii. | Write a short note on Smart Materials. |
| iii. | Write a short note on Induction hardening. |
| B | Solve any One . |
| i. | Draw a neat Iron-Iron carbide diagram and explain three phase <br> transformations on it. |
| ii. | Explain in detail Fatigue testing. |
| Q.3 |  |
| A | Solve any Two. ( 5 marks each) |
| i. | What are Composite materials? |
| ii. | Explain the Allotropic form of iron. |
| iii. | Explain Martempering process. |
| B | Solve any One. |
| i. | What is creep?Explain in detail the experiment to determine Creep. |
| ii. | What is recrystallization Annealing?Discuss the stages in detail. |



| Option B: | $\frac{1}{2}\left[\frac{s}{s^{2}+4}-\frac{s}{s^{2}+64}\right]$ |
| :---: | :---: |
| Option C: | $\frac{1}{2}\left[\frac{1}{s^{2}+4}-\frac{1}{s^{2}+64}\right]$ |
| Option D: | $\frac{1}{2}\left[\frac{1}{s^{2}+4}+\frac{1}{s^{2}+64}\right]$ |
| 4. | Value of $\int_{0}^{\infty} e^{-3 t} t^{5} \mathrm{dt}$ is |
| Option A: | $\frac{240}{243}$ |
| Option B: | $\frac{40}{81}$ |
| Option C: | $\frac{80}{243}$ |
| Option D: | $\frac{40}{243}$ |
| 5. | Inverse L.T. of $\frac{3}{9 s^{2}-16}$ is |
| Option A: | $\frac{1}{4} \sinh \left(\frac{4 t}{3}\right)$ |
| Option B: | $\frac{4}{9} \sinh \left(\frac{4 t}{3}\right)$ |
| Option C: | $\frac{1}{3} \sinh \left(\frac{4 t}{3}\right)$ |
| Option D: | $\frac{1}{9} \sinh \left(\frac{4 t}{3}\right)$ |
| 6. | Inverse L.T. of $\frac{1}{s\left(s^{2}+1\right)}$ is |
| Option A: | cost - 1 |
| Option B: | $\sin t$ |
| Option C: | cost |
| Option D: | 1 - cost |
| 7. | Inverse L.T. of $\frac{1}{s^{2}-2 s+2}$ is |


| Option A: | $e^{2 t} \sin t$ |
| :---: | :---: |
| Option B: | $e^{t}$ sint |
| Option C: | $e^{-t} \sin t$ |
| Option D: | $e^{-2 t} \sin t$ |
| 8. | Inverse L.T. of $\log \left[\frac{s-1}{s+1}\right]$ is |
| Option A: | $\frac{1}{t}\left(e^{t}-e^{-t}\right)$ |
| Option B: | $\frac{1}{t}\left(e^{t}+e^{-t}\right)$ |
| Option C: | $\frac{1}{t}\left(e^{-t}-e^{t}\right)$ |
| Option D: | $\frac{-1}{t}\left(e^{t}+e^{-t}\right)$ |
| 9. | In the Fourier series of $f(x)=\left\{\begin{array}{cl}\sin x, & 0 \leq x \leq \pi \\ 0, & \pi \leq x \leq 2 \pi\end{array}\right.$ Value of the Fourier Coefficient $a_{1}$ is |
| Option A: | $\frac{1}{2}$ |
| Option B: | $\frac{1}{2 \pi}$ |
| Option C: | $\frac{1}{\pi}$ |
| Option D: | 0 |
| 10. | Fourier series expansion for $\mathrm{f}(\mathrm{x})=-\mathrm{x} ; \frac{-1}{2}<\mathrm{x}<\frac{1}{2}$ is |
| Option A: | $\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)$ |
| Option B: | $\sum_{n=1}^{\infty} b_{n} \sin (2 n \pi x)$ |
| Option C: | $\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right)$ |


| Option D: | $\sum_{n=1}^{\infty} b_{n} \sin (2 n x)$ |
| :---: | :---: |
| 11. | If $v(x, y)=2 x y$ is the imaginary part of an analytic function $f(z)=u(x, y)+i v(x, y)$, then its corresponding harmonic conjugate is |
| Option A: | $x^{2}-y^{2}$ |
| Option B: | $2\left(x^{2}-y^{2}\right)$ |
| Option C: | $x^{2}+y^{2}$ |
| Option D: | $2\left(x^{2}+y^{2}\right)$ |
| 12. | If $f(z)=u+i v$ is analytic, then $\mathrm{f}^{\prime}(z)$ is given by |
| Option A: | $u_{x}+i v_{y}$ |
| Option B: | $u_{y}+i v_{x}$ |
| Option C: | $u_{x}-i v_{x}$ |
| Option D: | $u_{x}+i v_{x}$ |
| 13. | If $u(x, y)=(\sin x)(\sinh y)$ is the real part of an analytic function $\mathrm{f}(\mathrm{z})=$ u+iv, then $\mathrm{f}(\mathrm{z})$ is equal to |
| Option A: | $i \sin z+c$ |
| Option B: | $\sin z+c$ |
| Option C: | $i \cos z+c$ |
| Option D: | $-i \cos z+c$ |
|  |  |
| 14. | $u=e^{b x} \cos (5 y)$ is harmonic, then value of b is |
| Option A: | 25 |
| Option B: | $\pm 5$ |
| Option C: | $\pm 1$ |
| Option D: | $\pm \sqrt{5}$ |
|  |  |


| 15. | Eigen vector corresponding to the eigen value $\lambda=-3$ of the matrix $\mathrm{A}=\left[\begin{array}{ccc} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{array}\right]$ |
| :---: | :---: |
| Option A: | [1 111$]^{1}{ }^{\prime}$ |
| Option B: | $\left[\begin{array}{ccc}1 & 0 & 1\end{array}\right]^{\prime}$ |
| Option C: |  |
| Option D: | $\left[\begin{array}{ccc}1 & -1 & 1\end{array}\right]^{\prime}$ |
| 16. | If 1 and 2 are the eigenvalues of A , then $A^{4}$ is |
| Option A: | A - 16I |
| Option B: | $15 A+14 I$ |
| Option C: | 15A-14I |
| Option D: | $14 A-15 I$ |
| 17. | $\lambda^{3}-2 \lambda^{2}-4 \lambda+8=0$ is the characteristic equation of a square matrix of order 3 , then the sum and product of the eigen values of $A$ are respectively |
| Option A: | $\{2,-8\}$ |
| Option B: | $\{-2,-8\}$ |
| Option C: | \{2,8\} |
| Option D: | $\{-2,8\}$ |
| Q18 | The algebraic and geometric multiplicity of the eigen value $\lambda=2$ of the matrix $\left[\begin{array}{ccc}2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]$ are respectively |
| Option A: | \{2,2\} |
| Option B: | \{2,3\} |
| Option C: | \{1,2\} |
| Option D: | \{2,1\} |


| Q19 | Given: $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$, the eigen values of $\operatorname{adj}(\mathrm{A})$ are |
| :---: | :---: |
| Option A: | \{3,2,5\} |
| Option B: | $\left\{\frac{1}{10}, \frac{1}{15}, \frac{1}{6}\right\}$ |
| Option C: | \{10,15,6\} |
| Option D: | $\left\{\frac{1}{3}, \frac{1}{2}, \frac{1}{5}\right\}$ |
| Q20 | $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0$ is the one dimensional heat equation with the conditions $\mathrm{u}(0, \mathrm{t})=0 ; \mathrm{u}(4, \mathrm{t})=0 ; \mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x}) ;$ <br> and $h=1$, the value of $u(x, t)$ for ( $x=2 ; t=1$ ), using Bender -Schmidt method is |
| Option A: | 2 |
| Option B: | 3 |
| Option C: | 4 |
| Option D: | 0 |
| Q2 | Solve any Four out of Six 5 marks each |
| A) | Find L.T. of the following functions:- <br> (i) $t e^{-4 t} \sin 3 t$ <br> (ii) $\frac{1}{t}[\cos (2 t)-\cos (3 t)]$ |
| B) | Find the inverse Laplace Transform of the following functions <br> (i) $\cot ^{-1}(s+1)$ <br> (ii) $\frac{s+29}{(s+4)\left(s^{2}+9\right)}$ |
| C) | Find the Fourier series of $f(x)=\left\{\begin{array}{cc}-1, & -\pi<x<0 \\ 1, & 0<x<\pi\end{array}\right.$ . Hence deduce : $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \ldots=\frac{\pi}{4}$ |
| D) | Given:The imaginary part $v(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$, construct the analytic function $f(z)=u+i v$ in terms of $z$. |
| E) | Given: $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$, determine the matrix |


|  | $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ using Cayley Hamilton theorem |
| :---: | :---: |
| F) | Solve $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}=0$, under the conditions $\mathrm{u}(0, \mathrm{t})=0 ; \mathrm{u}(1, \mathrm{t})=$ $\mathrm{t}, \mathrm{u}(\mathrm{x}, 0)=0$ <br> $\mathrm{h}=\frac{1}{4} \quad$ (one -time step) using Crank Nicholson's method |
| Q3 | Solve any Four out of Six 5 marks each |
| A) | Evaluate $\int_{0}^{\infty} e^{-2 t}\left[\int_{0}^{t} \frac{1-e^{-t}}{t} \mathrm{dt}\right] \mathrm{dt}$ using L.T |
| B) | Using convolution theorem find inverse Laplace transform of $\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$ |
| C) | Find Half Range Cosine Series for $f(x)=x ; \quad 0<x<2$ |
| D) | Find the Modal matrix that diagonalizes $A=\left[\begin{array}{ccc}8 & -12 & 5 \\ 15 & -25 & 11 \\ 24 & -48 & 19\end{array}\right]$ |
| E) | Find the orthogonal trajectory of the family of curves $(x-1)^{3}-3 x y^{2}+3 y^{2}=\text { constant }$ |
| F) | An elastic string stretched between the fixed points $(0,0)$ and $(1,0)$ initially in the position $\mathrm{y}=\mathrm{A} \sin (\pi x)$ and released from rest. Find the displacement $y(x, t)$ |

# University of Mumbai <br> Examination 2020 under cluster 09 (FAMT) <br> Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021 

# Program: Mechanical Engineering <br> Curriculum Scheme: Rev 2019 C Scheme <br> Examination: SE Semester III <br> Course Code: MEC302 and Course Name: Strength of Materials 

Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | The modulus of rigidity and poissons ratio of a material are $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and 0.22 , then what are the value of Young's modulus and bulk modulus |
| Option A: | $\mathrm{E}=1.753 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{K}=1.958 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option B: | $\mathrm{E}=1.825 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{K}=1.625 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option C: | $\mathrm{E}=1.952 \times 10^{5} \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{K}=1.162 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option D: | $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{K}=1.825 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ |
| 2. | A cantilever beam of 6 m span carries a UVL varying from 0 at free end and 12 $\mathrm{KN} / \mathrm{m}$ at the support. Find the maximum shear force and bending moment. |
| Option A: | $30 \mathrm{KN} \& 60 \mathrm{KN}-\mathrm{m}$ |
| Option B: | $6 \mathrm{KN} \& 12 \mathrm{KN}-\mathrm{m}$ |
| Option C: | $60 \mathrm{KN} \& 60 \mathrm{KN}-\mathrm{m}$ |
| Option D: | $36 \mathrm{KN} \& 72 \mathrm{KN}-\mathrm{m}$ |
| 3. | A rectangular cross section beam having dimensions 100 mm width and 200 mm depth is subjected to a bending moment of $100 \mathrm{KN}-\mathrm{m}$. What is the bending stress at the top of the section. |
| Option A: | $300 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option B: | $75 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option C: | $100.85 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option D: | $150 \mathrm{~N} / \mathrm{mm}^{2}$ |
| 4. | The maximum shear stress is $\qquad$ times the average shear stress For rectangular cross section of beams. |
| Option A: | 2.5 |
| Option B: | 3 |
| Option C: | 1.2 |
| Option D: | 1.5 |
| 5. | A simply supported beam of length 6 m carries a UDL of $12 \mathrm{KN} / \mathrm{m}$ over the entire span. If $E=2 \times 10^{5}$ and $I=6 \times 10^{10} \mathrm{~mm}^{4}$ what is the deflection at the centre of the beam. |
| Option A: | 1.6875 mm |
| Option B: | 16.875 mm |
| Option C: | 168.75 mm |
| Option D: | 0.16875 mm |
|  |  |
| 6. | A M.S. rod of 15 mm diameter, 2000 mm long is heated from room temperature 30 |


|  | degree to 120 degree C. If the coefficient of linear expansion and Young's modulus of material are $13 \times 10^{-6} /$ degree $C \& 2 \times 10^{5} \quad \mathrm{~N} / \mathrm{mm}^{2}$. Then the thermal stress developed in the material if expansion is prevented |
| :---: | :---: |
| Option A: | $203 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option B: | $110 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option C: | $234 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option D: | $345 \mathrm{~N} / \mathrm{mm}^{2}$ |
|  |  |
| 7. | The strain energy in a member is proportional to |
| Option A: | Product of stress and the strain |
| Option B: | Total strain multiplied by the volume of the member |
| Option C: | The maximum strain multiplied by the length of the member |
| Option D: | Product of strain and Young's modulus of the material |
|  |  |
| 8. | If diameter of a shaft is doubled the power transmitted capacity will be |
| Option A: | Either twice or half |
| Option B: | Four times |
| Option C: | Eight times |
| Option D: | Same |
|  |  |
| 9. | The columns whose slenderness ratio is less than 80, are known as |
| Option A: | Short columns |
| Option B: | Long columns |
| Option C: | Weak columns |
| Option D: | Medium columns |
|  |  |
| 10. | Assumptions to derive bending flexural formula are mentioned below. Select the wrong statement from following, |
| Option A: | The transverse sections of the beam remain plane before and after bending. |
| Option B: | Material of beam is isobaric, homogeneous and follows hooks law. |
| Option C: | Beam is initially straight and of constant cross section. |
| Option D: | Modulus of elasticity is same in tension and compression. |
|  |  |
| 11. | In an experiment, the bulk modulus of elasticity of a material is twice its modulus of rigidity. The Poissons ratio of the material is |
| Option A: | 1/7 |
| Option B: | $2 / 7$ |
| Option C: | 3/7 |
| Option D: | 4/7 |
|  |  |
| 12. | A simply supported beam of span 8 m carries a UDL of $10 \mathrm{KN} / \mathrm{m}$ for a span of 3 m starting from right hand support. What is the bending moment at the Centre. |
| Option A: | $22.5 \mathrm{KN}-\mathrm{m}$ |
| Option B: | $24.375 \mathrm{KN}-\mathrm{m}$ |
| Option C: | 5.625 KN-m |
| Option D: | $45 \mathrm{KN}-\mathrm{m}$ |
|  |  |
| 13. | Using Euler's equation, the crippling load for a hollow cylindrical column, 100 mm outer and 80 mm inner diameter and 3000 mm (both ends hinged) having $\mathrm{E}=2 \times 10$ ${ }^{5} \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option A: | 63.56 KN |


| Option B: | 6671 KN |
| :---: | :---: |
| Option C: | 6.35 KN |
| Option D: | 635.63 KN |
| 14. | Gas pipes is examples of |
| Option A: | Thick shells |
| Option B: | Thin cylinders |
| Option C: | Hoop cylinders |
| Option D: | Longitudinal cylinders |
|  |  |
| 15. | Poisson's ratio is the ratio of, |
| Option A: | Lateral strain to longitudinal strain |
| Option B: | Longitudinal strain to volumetric strain |
| Option C: | Lateral strain to Shear Strain |
| Option D: | Shear Strain to longitudinal strain |
|  |  |
| 16. | A solid shaft 40 mm diameter transmitting 60 KW at 660 rpm . The maximum shear stress induced in shaft material is |
| Option A: | $79.08 \mathrm{~N} / \mathrm{mm}$ |
| Option B: | $69.08 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option C: | $120 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Option D: | $77.82 \mathrm{~N} / \mathrm{mm}^{2}$ |
|  |  |
| 17. | At the extreme fibre of a beam cross-section, bending stress is |
| Option A: | Minimum |
| Option B: | Zero |
| Option C: | Constant |
| Option D: | Maximum |
|  |  |
| 18. | What is the maximum shear force, when a cantilever beam is loaded with udl of 10 $\mathrm{kN} / \mathrm{m}$ throughout and length of beam is 5 m ? |
| Option A: | 50 kN |
| Option B: | 5 kN |
| Option C: | 20 kN |
| Option D: | 15 kN |
|  |  |
| 19. | What is the formula of theorem of perpendicular axis? |
| Option A: | $\mathrm{I}_{z z}=\mathrm{I}_{\mathrm{xx}}-\mathrm{I}_{\mathrm{yy}}$ |
| Option B: | $\mathrm{I}_{\mathrm{zz}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{Ah}^{2}$ |
| Option C: | $\mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{y}}$ |
| Option D: | $\mathrm{I}_{z z}+\mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{y}}$ |
|  |  |
| 20. | Point of contra-flexure in beam is a |
| Option A: | Point where Shear force is maximum |
| Option B: | Point where Bending moment is maximum |
| Option C: | Point where Bending moment is zero |
| Option D: | Point where Bending moment zero but also changes sign from positive to negative |


| Q2 | Solve any Four out of Six 5 marks each |
| :---: | :---: |
| A | A rectangular beam of 200 mm deep and 300 mm wide is simply supported over span of 8 m . what UDL $\mathrm{W} \mathrm{kN} / \mathrm{m}$ the beam can carry. If the bending stress is not to exceed 120 Mpa |
| B | A 5 m long simply supported beam AB , loaded with shear force of 120 KN . The T section of the web is of 80 X 20 mm and Flange 100X20mm. Compute and draw shear stress distribution diagram. If $\mathrm{I}=15.478 \times 10^{6} \mathrm{~mm}^{4}, \quad \bar{Y}=$ 146.28 mm from bottom . |
| C | Compute the value of "P" and Change in length if E=200Gpa, take Diameters for portion $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ as $40 \mathrm{~mm}, 20 \mathrm{~mm}$, and 30 mm respectively |
| D | Calculate the safe compressive load on hollow Column (OD-200, ID-130mm). The column 9 m long and both ends are fixed. If FOS 4, E= 105Gpa. Use Euler's Equation. |
| E | Determine instantaneous stress and deformation of a rod of diameter 8mm, length 1.2 m , if mass of 100 kg falls through a height of 120 mm and strikes the bottom of the rod. The rod is freely suspended and fixed at the top, Take E=210Gpa |
| F | A closed cylindrical vessel made of steel plates 4 mm thick with plane ends carries fluid under a pressure of $3 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$. The diameter of cylinder is 250 mm and the length is 750 mnm . Calculate longitudinal and hoop stresses in cylinder wall and determine changes in diameter and length. Take $\mathrm{E}=2.1 \times 10^{\wedge} 5 \mathrm{~N} / \mathrm{mm}^{\wedge} 2,1 / \mathrm{m}=$ 0.286 |

Q3 $\quad$ Solve any Two out of Three

# University of Mumbai <br> Examination JUNE 2021 under cluster 09 (FAMT) <br> Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021 <br> Program: Mechanical Engineering <br> Curriculum Scheme: Rev 2019 C Scheme <br> Examination: SE <br> Semester: III (DSE) <br> Course Code: MEC303 and Course Name: PRODUCTION PROCESSES 

Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | In a gating system of sand mould, which of the following passage is used to carry molten metal from runner to mould cavity? |
| Option A: | sprue |
| Option B: | riser |
| Option C: | gate |
| Option D: | pouring basin |
| 2. | In Jolt-Squeeze moulding machine, the principles of which two moulding machines are combined? |
| Option A: | squeeze moulding machine and jolt moulding machine |
| Option B: | sand slinger and straight draw moulding machine |
| Option C: | straight draw and stripping plate moulding machine |
| Option D: | sand slinger and turn over moulding machine |
| 3. | Which of the following castings is the art of rapidly producing accurately dimensioned parts by forcing molten metal under pressure into split metal dies which resemble a common type of permanent mould? |
| Option A: | sand casting |
| Option B: | investment casting |
| Option C: | slush casting |
| Option D: | die casting |
| 4. | In which of the following moulding processes the mould is formed from a mixture of fine sand and thermosetting resin binder that is placed against heated metal pattern? |
| Option A: | machine moulding |
| Option B: | sweep moulding |
| Option C: | shell moulding |
| Option D: | plate moulding |
| 5. | Which of the following welding technique is not using heat as a source for welding |
| Option A: | MIG welding |
| Option B: | explosive welding |
| Option C: | friction welding |
| Option D: | gas welding |
|  |  |
| 6. | Which of the following welding process uses high frequency vibratory energy |


|  | into overlapping area of metal plates to be joined? |
| :---: | :---: |
| Option A: | explosive welding |
| Option B: | ultrasonic welding |
| Option C: | resistance welding |
| Option D: | arc welding |
|  |  |
| 7. | Which of the following welding defects results from the presence of non-metallic substance? |
| Option A: | porosity |
| Option B: | crack |
| Option C: | undercut |
| Option D: | slag inclusion |
|  |  |
| 8. | Which of the following fusible alloy or metal is used for uniting two metals in brazing process? |
| Option A: | solder |
| Option B: | spelter |
| Option C: | tungsten |
| Option D: | thermit |
|  |  |
| 9. | Which of the following components is mainly manufactured by performing metal forging? |
| Option A: | Piston |
| Option B: | Engine block |
| Option C: | Connecting rod |
| Option D: | Crankcase |
|  |  |
| 10. | Which of the following can help in determining the behavior of the material in metal forming? |
| Option A: | Stress-strain curve |
| Option B: | Size of material |
| Option C: | Shape of material |
| Option D: | Color of material |
|  |  |
| 11. | In drawing operation, the metal flows due to |
| Option A: | Ductility |
| Option B: | Work hardening |
| Option C: | Yielding |
| Option D: | Plasticity |
|  |  |
| 12. | The cutting process of sheet metal at 45 or 90 degrees is called as |
| Option A: | Perforating |
| Option B: | Drilling |
| Option C: | Bending |
| Option D: | Notching |
|  |  |
| 13. | In blanking operation, the clearance is provided on |
| Option A: | Die |
| Option B: | Half and half on both Die and Punch |
| Option C: | Punch |


| Option D: | Depends on the choice of the designer |
| :---: | :--- |
| 14. | The grinding operation is a |
| Option A: | Shaping operation |
| Option B: | Forming operation |
| Option C: | Surface finishing operation |
| Option D: | Dressing operation |
|  |  |
| 15. | The type of tool used on broaching machine is |
| Option A: | single-point cutting tool |
| Option B: | two-point cutting tool |
| Option C: | three-point cutting tool |
| Option D: | multi-point cutting tool |
|  |  |
| 16. | In a planer |
| Option A: | both workpiece and tool rotates |
| Option B: | both tool and workpiece reciprocates |
| Option C: | tool reciprocates and workpiece is stationary |
| Option D: | workpiece reciprocates and tool is stationary |
|  |  |
| 17. | Injection moulding is the ideal method of processing....... |
| Option A: | Plastics |
| Option B: | Thermo-setting plastics |
| Option C: | Thermoplastics |
| Option D: | Non-ferrous materials |
|  |  |
| 18. | Which of the following process is used to manufacture plastic pipes? |
| Option A: | Injection moulding |
| Option B: | Blow moulding |
| Option C: | Extrusion moulding |
| Option D: | Vacuum moulding |
|  |  |
| 19. | Specific gravity of the plastics is usually |
| Option A: | less than the specific gravity of metals |
| Option B: | more than the specific gravity of metals |
| Option C: | similar to the specific gravity of metals |
| Option D: | Unpredictable |
|  |  |
| 20. | Porous product can be effectively produced using. |
| Option A: | Machining process |
| Option B: | Forging process |
| Option C: | Powder metallurgy |
| Option D: | Shell moulding process |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Q2. <br> (20 Marks Each) | Solve any Four out of Six. |
| :---: | :--- |
| A | Write short note on 'Investment casting process' |
| B | Write short note on types of risers in gating system of sand moulding. |
| C | Write short note on 'Casting defects' |
| D | Write a short note on friction welding. |
| E | Write short note on metal inert gas welding. |
| F | Write a short note on ultrasonic welding. |


| Q3. <br> (20 Marks Each) | Solve any Four out of Six . |
| :---: | :--- |
| A | Draw labeled diagram of broaching tool. |
| B | Differentiate between shaping and planning machines. |
| C | Explain honing operation |
| D | What you understand by grinding wheel balancing. |
| E | Explain plastic injection moulding process. |
| F | Write a note on finishing operation in powder metallurgy. |

# University of Mumbai <br> Examination 2020 under cluster 09(FAMT) <br> Examinations Commencing from $15^{\text {th }}$ June 2021 to $26^{\text {th }}$ June 2021 

Program: MECHANICAL ENGINEERING
Curriculum Scheme: Rev2019 C Scheme
Examination: SE Semester: III
Course Code: MEC303 and Course Name: PRODUCTION PROCESSES
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry two marks each. |
| :---: | :---: |
| 1 | Which of the following types of sand is clean clay free silica sand which serves the same purpose of parting dust in molding process? |
| Option A: | core sand |
| Option B: | parting sand |
| Option C: | loam sand |
| Option D: | facing sand |
| 2 | Which of the following casting defects is caused due to core misplacement or mismatching of top and bottom parts of the casting usually at the parting line? |
| Option A: | swell |
| Option B: | shift |
| Option C: | poured short |
| Option D: | misrun |
| 3 | In which of the following processes the final product is formed by pouring molten metal in the mould and allowing it to solidify? |
| Option A: | machining |
| Option B: | turning |
| Option C: | casting |
| Option D: | welding |
| 4 | Which of the following defects in casting is due to dirt or sand embedded in the casting surface? |
| Option A: | swell |
| Option B: | shrinkage cavity |
| Option C: | fin |
| Option D: | dirt |
| 5 | What is weldability? |
| Option A: | capacity of getting machined easily |
| Option B: | reliability |
| Option C: | capacity of being welded into an inseparable joint having specified properties such as definite weld strength, proper structure etc. |
| Option D: | capacity of getting soldered together into an inseparable joint |
| 6 | In oxy-acetylene welding when there is excess of oxygen, which of the following flame is produced? |


| Option A: | natural flame |
| :---: | :---: |
| Option B: | carburizing flame |
| Option C: | oxidizing flame |
| Option D: | neutral flame |
|  |  |
| 7 | Which of the following welding process uses high frequency vibratory energy into overlapping area of metal plates to be joined? |
| Option A: | explosive welding |
| Option B: | ultrasonic welding |
| Option C: | resistance welding |
| Option D: | arc welding |
|  |  |
| 8 | Hot press forging |
| Option A: | Is used to force the end of a heated bar into a desired shape |
| Option B: | Is a forging method for reducing the diameter of a bar and in the process making it longer |
| Option C: | Is a forging operation in which two halves of rotating die open and close rapidly while impacting the end of the heated tube or shell |
| Option D: | Causes a steadily applied pressure instead of impact force |
|  |  |
| 9 | The important mechanical property for a material to be successfully rolled or forged is |
| Option A: | Brittleness |
| Option B: | Ductility |
| Option C: | Malleability |
| Option D: | Elasticity |
|  |  |
| 10. | Metal flows in same direction of Ram movement in |
| Option A: | Direct Extrusion |
| Option B: | Forging |
| Option C: | Bending |
| Option D: | Indirect Extrusion |
|  |  |
| 11 | The unit of sheet metal thickness is? |
| Option A: | S.W.G. |
| Option B: | M.F.G. |
| Option C: | A.W.G. |
| Option D: | U.G. |
|  |  |
| 12 | Traditional machining usually takes place by ___ process. |
| Option A: | Erosion |
| Option B: | Abrasion |
| Option C: | Vaporization |
| Option D: | Corrosion |
|  |  |
| 13 | Which one of the following process conditions leads to better material removal in ECM process? |
| Option A: | Higher current, higher atomic weight |
| Option B: | Higher valency, lower atomic weight |
| Option C: | Higher current, higher valency |


| Option D: | Lower atomic weight, lower valency |
| :---: | :---: |
| 14 | The spark gap in Electrical Discharge Machining (EDM) process is maintained such that |
| Option A: | the gap voltage is around $15 \%$ of supply voltage |
| Option B: | the gap voltage is around $40 \%$ of supply voltage |
| Option C: | the gap voltage is around $70 \%$ of supply voltage |
| Option D: | the gap voltage is around $90 \%$ of supply voltage |
| 15 | The workpiece motion and tool motion respectively in a horizontal boring machine are....... |
| Option A: | Stationary and rotational |
| Option B: | Rotational and translational |
| Option C: | Translational and rotational |
| Option D: | Stationary and rotational with translation |
|  |  |
| 16 | In which type of operation, motion of cutting tool is rotating and translating? |
| Option A: | drilling and milling |
| Option B: | milling and turning |
| Option C: | turning and drilling |
| Option D: | turning and planning |
|  |  |
| 17 | The process of beveling sharp ends of a workpiece is called as |
| Option A: | knurling |
| Option B: | grooving |
| Option C: | facing |
| Option D: | chamfering |
|  |  |
| 18 | In lapping operation, the amount of metal removed is |
| Option A: | 0.005 TO 0.01 mm |
| Option B: | 0.01 TO 0.1 mm |
| Option C: | 0.05 TO 0.1 mm |
| Option D: | 0.5 TO 1 mm |
|  |  |
| 19 | In American Standard Association (ASA) system, if the tool nomenclature is 8-6-5-$5-10-15-2 \mathrm{~mm}$, then the side rake angle will be |
| Option A: | 50 |
| Option B: | 60 |
| Option C: | 70 |
| Option D: | 80 |
|  |  |
| 20 | Which of the following moulding methods is generally not used for thermoplastic materials |
| Option A: | Extrusion |
| Option B: | Injection |
| Option C: | Casting |
| Option D: | Calendaring |
|  |  |


| Q2. <br> 20 Marks | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | Write short note on types of risers in gating system of sand moulding. |
| B | Write short note on defects in welded joints. |
| C | Compare Hot working vs Cold working. |
| D | Write short note on: Laser Beam Machining. |
| E | Describe any one method of generation of a small taper in a center lathe. |
| F | What do you understand by Internet of Things (IoT) |


| Q3. <br> 20 Marks | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | Any five casting Explain defects and state their remedies. |
| B | Write short note on tungsten inert gas welding. |
| C | What is the function of a Riser? |
| D | Write a short note on: Electro-chemical machining. |
| E | How is a milling machine specified? |
| F | Write a note on Cloud Manufacturing |

## University of Mumbai

## Examination June 2021 under cluster 09 (FAMT)

Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to 26 $^{\text {th }}$ June 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev 2019 C Scheme
Examination: SE Semester: III_(DSE)
Course Code: MEC 304 and Course Name: Materials and Metallurgy
Time: 2 hoursMax. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| Q1. | In Eutectic Transformation following reaction occurs |
| Option A: | Liquid to Solid1 and Solid 2 |
| Option B: | Liquid to Liquid1 and Solid 2 |
| Option C: | Liquid to Liquid1 and Liquid 2 |
| Option D: | Liquid to Solid1 and Liquid 2 |
|  |  |
| Q2. | For 0.4\% carbon steel the two phases are |
| Option A: | Pearlite 60\% and $\alpha$-Ferrite $40 \%$ |
| Option B: | Pearlite 40\% and $\alpha$-Ferrite $60 \%$ |
| Option C: | Pearlite $50 \%$ and $\alpha$-Ferrite $50 \%$ |
| Option D: | Pearlite $45 \%$ and $\alpha$-Ferrite $55 \%$ |
|  |  |
| Q3. | Range of Medium carbon steel is |
| Option A: | $0.008 \%$ to $0.2 \%$ |
| Option B: | $0.3 \%$ to 0.6\% |
| Option C: | $0.8 \%$ to 1.0\% |
| Option D: | $2.0 \%$ to 2.6\% |
|  |  |
| Q4. | Ledeburite is a combination of which two phases |
| Option A: | Austenite and Cementite |
| Option B: | Pearlite and Cementite |
| Option C: | Austenite and $\alpha$-Ferrite |
| Option D: | $\alpha$-Ferrite and Cementite |
|  |  |
| Q5. | Austenite on very slow cooling transfers into |
| Option A: | Pearlite |
| Option B: | Martensite |
| Option C: | Bainite |
| Option D: | Ferrite |
|  |  |
| Q6. | Which heat treatment can convert mild steel to high carbon steel |
| Option A: | Annealing |
| Option B: | Normalizing |
| Option C: | Case hardening |
| Option D: | Nitriding |


|  |  |
| :---: | :--- |
| Q7. | Sub-zero treatment of steel |
| Option A: | Is used to reduce the retained austenite in hardened steel |
| Option B: | Increases the ability of steel to work in sub-zero atmospheres |
| Option C: | Is used to suppress martensite transformation |
| Option D: | Is performed after hardening operation to induce temper brittleness is never used |
|  |  |
| Q8. | Typical composition for solid carburising is |
| Option A: | 53 to 55\% charcoal, 30 to 32\% coke \& remaining carbonates of Ba, Na, and Ca |
| Option B: | 35 to 55\% charcoal, 30 to 32\% coke \& remaining carbonates of Ba, Na, and Ca |
| Option C: | $50 \%$ charcoal,50\% coke |
| Option D: | 90\% charcoal remaining carbonates of Ba, Na, and Ca |
|  |  |
| Q9. | During normalizing process of steel, the specimen is heated |
| Option A: | between the upper and lower critical temperature and cooled in still air |
| Option B: | above the upper critical temperature and cooled in furnace. |
| Option C: | above the upper critical temperature and cooled in still air. |
| Option D: | between the upper and lower critical temperature and cooled in furnace. |
|  |  |
| Q10. | Figure out odd one in the following |
| Option A: | Frenkel defect |
| Option B: | Tilt boundary |
| Option C: | Twin boundary |
| Option D: | stacking fault |
|  |  |
| Q11. |  |
| Option A: | Vacancy occurs when a foreign substance replaces an atom in a crystal. |
| Option B: | Substitutional impurity |
| Option C: | Frankel defect |
| Option D: | Interstitial impurity |
|  |  |
| Q12. | Which of the following statement is false? |
| Option A: | Annealing twins occur during annealing heat treatment |
| Option B: | Mechanical twins generate due to plastic deformation |
| Option C: | Annealing twins form in high stacking fault energy metals |
| Option D: | Annealing twins are mostly observed in FCC metals |
|  |  |
| Q13. | Generation of dislocations can be explained using |
| Option A: | Schottky mechanism |
| Option B: | Burger's vector |
| Option B: | Boundary defect |
| Option C: | Point defect |
| Option D: | Volume defect |
| Option D: | Twist |
|  | Frank-Read mechanism |
|  |  |
| Q14. | What are onedimension defects? |


|  |  |
| :---: | :--- |
| Q15. | The cermets are example of |
| Option A: | Ceramic-metal composites |
| Option B: | Carbon-carbon composites |
| Option C: | Metal-polymer matrix composites |
| Option D: | Polymer ceramic composite |
|  |  |
| Q16. | Wood is a natural composite consisting of |
| Option A: | Lignin fibers in Collagen matrix |
| Option B: | Lignin fibers in apatite matrix |
| Option C: | Cellulose fibers in apatite matrix |
| Option D: | Cellulose fibers in lignin matrix |
|  |  |
| Q17. | Usually softer constituent of a composite is |
| Option A: | Matrix |
| Option B: | Reinforcement |
| Option C: | Both are of equal strength |
| Option D: | Can't define |
| Q18. | Creep is |
| Option A: | Deformation that occurs under fluctuacting load/stress and low temperatures which <br> is time-dependent is known as creep. |
| Option B: | Deformation that occurs under constant load/stress and elevated temperatures <br> which is time-dependent is known as creep. |
| Option C: | Deformation that occurs under zero load/stress and elevated temperatures which is <br> time-dependent is known as creep. |
| Option D: | Deformation that occurs under constant load/stress and very low temperatures <br> which is time-dependent is known as creep |
| Q19. | Higher the melting point of materials |
| Option A: | Lower is the creep resistance |
| Option B: | Higher is fatigue strength |
| Option C: | Lower is fatigue strength |
| Option D: | Higher is the creep resistance |
|  |  |
| Option A: | Fatigue limit is defined for |
| Option B: | Ferrous metals |
| Option C: | Plastic materials |
| Option D: | Ceramic materials |
|  |  |


| Q2 | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | What is crystal structure? write important crystallographic planes and directions for <br> FCC, BCC and CPH crystal system. |
| B | Explain nucleation and growth process in solidification of metals. |
| C | Classify stainless steels and write composition, properties and applications of it. |
| D | State and explain factors affecting fatigue. |
| E | What are smart materials? write properties and applications of shape memory alloys. |
| F | What is nondestructive testing of materials? Explain principle of ultrasonic testing <br> of materials. |


| Q3 | Solve any Two out of Three. (10 marks each) |
| :---: | :--- |
| A | What is fatigue? What are the factors affecting fatigue life? How fatigue life of <br> component is increased? Explain S-N curve for ferrous and non-ferrous metals. |
| B | Draw TTT diagram and explain annealing, normalizing and hardening with the help <br> of it. |
| C | What is cold working? explain the recovery, recrystallization and growth in <br> annealing process. |

## University of Mumbai

## Examination 2020 under cluster 09 (FAMT)

## Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to $\mathbf{2 6}^{\text {th }}$ June 2021

Program:Mechanical Engineering
Curriculum Scheme: Rev 2019 C Scheme
Examination: Second year Semester: III
Course Code: MEC304and Course Name: Materials \& Metallurgy
Time: 2 hours Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
| Q1. | Pearlite is a combination of |
| Option A: | Ferrite\& austenite |
| Option B: | Ferrite\& cementite |
| Option C: | Ferrite\& martensite |
| Option D: | Bainite\& martensite |
|  |  |
| Q2. | The line differentiating between liquid and (liquid +solid) is called |
| Option A: | Solvus |
| Option B: | Solidus |
| Option C: | Tieline |
| Option D: | Liquidus |
|  |  |
| Q3. | The maximum concentration of solute that can be added is defined as |
| Option A: | Solution limit |
| Option B: | Solubilty limit |
| Option C: | Insolubilty limit |
| Option D: | No solution limit |
|  |  |
| Q4. | Two liquidus line meet at which point |
| Option A: | Eutectoid |
| Option B: | Eutectic |
| Option C: | Peritectic |
| Option D: | Isomorphous |
|  |  |
| Q5. | Which reaction is obtained by mixing of solid 1+ solid 2 = solid 3 |
| Option A: | Peritectic |
| Option B: | Eutectic |
| Option C: | Peritectoid |
| Option D: | Eutectoid |
|  |  |
| Q6. | Case depth obtained by Nitriding is |
| Option A: | less than 0.5mm |
| Option B: | More than 5 mm |
| Option C: | Equal to 5mm |
| Option D: | less than 5 mm and more than 10 mm |
|  |  |
| Q7. | In Carbo-nitriding process |
| Option A: | atomic nitrogen diffuses in the ferrite phase and carbon diffuses in the austenite |

## University of Mumbai

Examination 2020 under cluster 09 (FAMT)

| Option B: | atomic nitrogen diffuses in the austenite phase and carbon diffuses in the ferrite |
| :---: | :--- |
| Option C: | atomic nitrogen diffuses in the austenite phase and carbon diffuses in cementite |
| Option D: | atomic nitrogen diffuses in the cementite phase and carbon diffuses in the ferrite |
|  |  |
| Q8. | In induction hardening higher is the frequency used |
| Option A: | thinner is the depth achieved |
| Option B: | thicker is the depth achieved |
| Option C: | medium is the depth achieved |
| Option D: | none depth is achieved |
|  |  |
| Q9. | Special alloy steels are required in |
| Option A: | induction hardening |
| Option B: | Nitriding |
| Option C: | flame hardening |
| Option D: | Carburizing |
|  |  |
| Q10. | Materials that undergo plastic deformation before breaking are called |
| Option A: | Brittle |
| Option B: | Ductile |
| Option C: | Amorphous |
| Option D: | Polymers |
|  |  |
| Q11. | Which material is a better conductor of electricity? |
| Option A: | ceramics |
| Option B: | polymers |
| Option C: | metals |
| Option D: | bakelite |
|  |  |
| Q12. | Which material is more brittle? |
| Option A: | Ceramics |
| Option B: | Metals |
| Option C: | Polymers |
| Option D: | steel |
|  |  |
| Q13. | In case of edge dislocation |
| Option A: | Burgers vector is parallel to dislocation line |
| Option B: | Burgers vector is perpandicular to dislocation line |
| Option C: | There is no relation between burgers vector and dislocation line |
| Option D: | Burgers vector is at 60 degree to dislocation line |
| Option D: | distortion of grains takes place in most of the cold working processes in |
| Q14. | Which of the following is not true for cold working of metals? |
| Option A: | residual stresses are set up in the metal |
| Option B: | stress required to cause deformation is less than hot working of metals |
| Option : | it reduces the corrosion resistance of the metal |
|  |  |
| Opt |  |

## University of Mumbai

Examination 2020 under cluster 09 (FAMT)

| Option B: | Optoelectronics |
| :---: | :--- |
| Option C: | Mechanics |
| Option D: | Quantum physics |
|  |  |
| Q16. | What's the procedure in Top-down fabrication method? |
| Option A: | Nano-particles -> Powder -> Bulk |
| Option B: | Powder -> Bulk - > Nano-particles |
| Option C: | Bulk -> Powder - > Nano-particles |
| Option D: | Nano-particle - > Bulk -> Powder |
|  |  |
| Q17. | The extensively used nano particles as catalyst is _ |
| Option A: | Silver |
| Option B: | Copper |
| Option C: | Gold |
| Option D: | Cerium |
|  |  |
| Q18. | Brittle fracture occurs by |
| Option A: | Rapid crack propagation |
| Option B: | Slow crack propagation |
| Option C: | Excessive Plastic deformation |
| Option D: | Slow and steady crack growth |
|  |  |
| Q19. | As per Griffith criterion Crack propagates if |
| Option A: | Applied stress is below critical stress |
| Option B: | Applied stress is above critical stress |
| Option C: | Applied stress is equal to critical stress |
| Option D: | Not depends on applied stress |
|  |  |
| Q20. | To avoid brittle failure at low temperature design should be |
| Option A: | Below DBTT |
| Option B: | Above DBTT |
| Option C: | Not affected by DBTT |
| Option D: | Below low DBTT and should have high corrosive atmosphere |
|  |  |

## University of Mumbai

## Examination 2020 under cluster 09 (FAMT)

| Q2 | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | Derive equation for critical resolved shear stress. |
| B | Explain Isomorphous system of phase diagram with neat sketch. |
| C | Differentiate Carburizing \& Nitriding. |
| D | What is DBTT? explain the factors affecting it. |
| E | What are nano materials? write applications of it. |
| F | What is nondestructive testing of materials? Explain principle of radiographic testing of <br> materials. |


| Q3 | Solve any Two out of Six. (10 marks each) |
| :---: | :--- |
| A | Draw a neat sketch of Fe-Fe3C diagram \& explain reactions, phases and critical <br> temperatures and curves on it. |
| B | What is crystal imperfection? Classify crystal imperfections. Discuss with neat sketches <br> point defects \& their significance |
| C | What is tempering? Classify and explain the purpose of it. |

## University of Mumbai

Examination 2021 under cluster 09 (FAMT)
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to 26 ${ }^{\text {th }}$ June 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev 2019 C Scheme
Examination: SE Semester: III_(DSE)
Course Code: MEC305 Course Name: THERMODYNAMICS
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | If Mach no. is one the flow is |
| Option A: | Supersonic |
| Option B: | Sonic |
| Option C: | Subsonic |
| Option D: | Stagnant |
| 2. | Moiler diagram is plot of |
| Option A: | temperature and entropy |
| Option B: | enthalpy and entropy |
| Option C: | pressure and enthalpy |
| Option D: | pressure and volume |
| 3. | A series of operations, which take place in a certain order and restore the initial condition is known as |
| Option A: | reversible cycle |
| Option B: | irreversible cycle |
| Option C: | thermodynamic cycle |
| Option D: | open system |
| 4. | The gas constant ( R ) is equal to the |
| Option A: | sum of two specific heats |
| Option B: | difference of two specific heats |
| Option C: | product of two specific heats |
| Option D: | ratio of two specific heats |
| 5. | A process, in which the temperature of the working substance remains constant during its expansion or compression, is called |
| Option A: | Isothermal process |
| Option B: | Isobaric process |
| Option C: | Adiabatic process |
| Option D: | Polytrophic process |
| 6. | Stirling cycle consist of |
| Option A: | two constant volume and two isentropic process |
| Option B: | two constant volume and two isothermal process |
| Option C: | two constant pressure and two isothermal process |
| Option D: | one constant volume, one constant pressure and two isentropic processes |


| 7. | Otto cycle consist of |
| :---: | :---: |
| Option A: | two constant volume and two isentropic processes |
| Option B: | two constant pressure and two isentropic processes |
| Option C: | two constant volume and two isothermal processes |
| Option D: | One constant pressure, one constant volume and two isentropic processes |
|  |  |
| 8. | In throttling process enthalpy.......... |
| Option A: | does not change |
| Option B: | Increases |
| Option C: | Decreases |
| Option D: | first increases and then decreases |
|  |  |
| 9. | Kelvin-Planck's law deals with........ |
| Option A: | conservation of energy |
| Option B: | conservation of heat |
| Option C: | conversion of heat into work |
| Option D: | conversion of work into heat. |
|  |  |
| 10. | Helmholtz function is expressed as........... |
| Option A: | ( $\mathrm{u}+\mathrm{pv}$ ) |
| Option B: | ( - sdT + vdp) |
| Option C: | ( $u-\mathrm{Ts}$ ) |
| Option D: | ( $\mathrm{h}-\mathrm{Ts}$ ) |
|  |  |
| 11. | For the same compression ratio |
| Option A: | Thermal efficiency of Otto cycle is greater than that of Diesel cycle |
| Option B: | Thermal efficiency of the Otto cycle is less than that of Diesel cycle |
| Option C: | Thermal efficiency of Otto cycle is same as that for Diesel cycle. |
| Option D: | Thermal efficiency of Otto cycle cannot be predicted |
|  |  |
| 12. | Entropy of the universe always tends to |
| Option A: | zero |
| Option B: | decrease |
| Option C: | increases |
| Option D: | unpredictable |
|  |  |
| 13. | If compression ratio is 5 and specific heat ratio for air is 1.4 , what is otto cycle efficiency? |
| Option A: | 47\% |
| Option B: | 52\% |
| Option C: | 72\% |
| Option D: | 35\% |
|  |  |
| 14. | Dryness fraction of steam is defined as |
| Option A: | mass of water vapour in suspension/(mass of water vapour in suspension + mass of dry steam) |
| Option B: | mass of dry steam/mass of water vapour in suspension |
| Option C: | mass of water vapour in suspension/mass of dry steam |
| Option D: | mass of dry steam/(mass of dry steam + mass of water vapour in suspension) |


|  |  |
| :---: | :--- |
| 15. | Which Cycle consists of three reversible processes? |
| Option A: | Ericsson cycle |
| Option B: | Stirling cycle |
| Option C: | Lenoir cycle |
| Option D: | Atkinson cycle |
|  |  |
| 16. | If the exit pressure from a nozzle is less than critical pressure , it is |
| Option A: | Convergent - Divergent |
| Option B: | Convergent |
| Option C: | Divergent |
| Option D: | throat |
|  |  |
| 17. | The absolute zero pressure will be |
| Option A: | When molecular momentum of the system becomes zero |
| Option B: | at sea level |
| Option C: | at the temperature of -273K |
| Option D: | at the Centre of the earth |
|  |  |
| 18. | Energy can neither be created nor destroyed, but it can be transformed from one <br> form to another. This statement is known as |
| Option A: | Zeroth law of Thermodynamics |
| Option B: | First law of Thermodynamics |
| Option C: | Second law of Thermodynamics |
| Option D: | Kinetic theory of gases |
|  |  |
| 19. | Which of the following is true for a closed system? |
| Option A: | Mass and energy does not enter or leave the system |
| Option B: | Energy does not enter or leave the system |
| Option C: | Mass and energy does enter or leave the system |
| Option D: | Mass does not enter or leave the system |
|  |  |
| 20. | Heat supplied to dual cycle having usual notations is given by |
| Option A: | $\mathrm{C}_{\mathrm{v}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$ |
| Option B: | $\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$ |
| Option C: | $\mathrm{C}_{\mathrm{v}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)+\mathrm{c}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$ |
| Option D: | $\mathrm{C}_{\mathrm{p}}(\mathrm{T} 3-\mathrm{T} 2)+\mathrm{C}_{\mathrm{v}}\left(\right.$ T4- $\left.\mathrm{T}_{3}\right)$ |
|  |  |


| Q2 <br> (20 Marks) | Solve any Four out of Six. (5 marks each) |
| :---: | :--- |
| A | An aeroplane is flying at height of 14 km where temperature is $-45{ }^{\circ} \mathrm{C}$. Find <br> speed of plane in $\mathrm{m} / \mathrm{s}$ if Mach no. is 2. Find the speed of the plane if $\mathrm{R}=$ <br> $287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.4$. |
| B | Write four Maxwell relations. |
| C | Write short note on Modified Rankine Cycle. |
| D | Draw p-v, T-s diagram of otto diesel and dual cycle. |
| E | Define available energy, dead state and irreversibility. |
| F | State limitations of first law of thermodynamics. |


| Q3. <br> (20 Marks) | Solve any Two Questions out of Three. (10 marks each) |
| :---: | :--- |
| A | 8 kg of air at 650 K and 5.5 bar pressure is enclosed in a closed system. If <br> the atmospheric temperature and pressure are 300 K and 1 bar respectively, <br> determine: <br> (i) The availability if the system goes through the ideal work producing <br> process. <br> (ii) The availability and effectiveness if the air is cooled at constant <br> pressure to atmospheric temperature without bringing it to complete dead <br> state. <br> Take $c_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} ; \mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. |
| B | Show application of Steady Flow Energy Equation in i) Water Turbine <br> ii) Steam or Gas Turbine. |
| C | Explain statements of second law of thermodynamics and explain perpetual <br> motion machine of second kind in details. |

## University of Mumbai

Examination 2021 under cluster09 (FAMT)
Examinations Commencing from 15 ${ }^{\text {th }}$ June 2021 to 26 $^{\text {th }}$ June 2021

## Program: Mechanical Engineering <br> Curriculum Scheme: Rev2019 C Scheme

Examination: SE Semester:III
Course Code: MEC305 Course Name: THERMODYNAMICS
Time: 2 hours
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | In a reversible adiabatic process the work transfer is equal to |
| Option A: | Decrease in enthalpy |
| Option B: | Decrease in internal energy |
| Option C: | Heat transfer |
| Option D: | The product of pressure and change in volume |
| 2. | When the high temperature reservoir is supplying the heat to the heat engine, out of the following which will be correct? |
| Option A: | The temperature of the reservoir will decrease |
| Option B: | The temperature of the reservoir will increase |
| Option C: | The temperature of the reservoir will remain same |
| Option D: | Temperature and heat transfer both will decrease |
|  |  |
| 3. | Steady flow occurs when |
| Option A: | Properties do not change with time |
| Option B: | System is in equilibrium with its surrounding |
| Option C: | Properties change with time |
| Option D: | When change of volume with change in temperature is constant |
|  |  |
| 4. | In the isochoric process |
| Option A: | Free expansion takes place |
| Option B: | Very small amount of work is done |
| Option C: | No work is done |
| Option D: | All properties remain constant. |
|  |  |
| 5. | In a closed system, change in enthalpy is equal to the heat transfer if the process is carried out at constant $\qquad$ |
| Option A: | Temperature |
| Option B: | Pressure |
| Option C: | Volume |
| Option D: | entropy |
|  |  |
| 6. | Efficiency of Stirling cycle will $\qquad$ as compared to Carnot cycle when operating between same temperature limits. |
| Option A: | be more |
| Option B: | be less |


| Option C: | be equal |
| :---: | :---: |
| Option D: | depend on type of working fluid |
| 7. | Identify the cycle in which heat is supplied at constant volume and rejected at constant pressure. |
| Option A: | Brayton Cycle |
| Option B: | Atkinson cycle |
| Option C: | Otto cycle |
| Option D: | Diesel cycle |
| 8. | For the same compression ratio and heat rejection the efficiency of air standard dual cycle is $\qquad$ |
| Option A: | Greater than Otto cycle |
| Option B: | Less than Diesel cycle |
| Option C: | Less than Otto cycle and greater than Diesel cycle |
| Option D: | Greater than both Otto cycle and Diesel cycle |
|  |  |
| 9. | The relationship between entropy, enthalpy and work is given by |
| Option A: | Tds $=\mathrm{dH}+\mathrm{Vdp}$ |
| Option B: | $\mathrm{dH}=\mathrm{Vdp}-\mathrm{Tds}$ |
| Option C: | Tds $=\mathrm{dH}-\mathrm{Vdp}$ |
| Option D: | $\mathrm{Vdp}=\mathrm{dH} / \mathrm{Tds}$ |
|  |  |
| 10. | Enthalpy of vaporization of a saturated liquid |
| Option A: | decreases as the temperature or pressure increases |
| Option B: | increases as the temperature or pressure increases |
| Option C: | Does not depend on temperature and pressure |
| Option D: | first increases and then decreases as the temperature or pressure increases |
|  |  |
| 11. | Regenerative Rankine cycle thermal efficiency |
| Option A: | is always greater than simple Rankine thermal efficiency |
| Option B: | is greater than simple Rankine cycle thermal efficiency only when steam is bled at particular pressure |
| Option C: | is same as simple Rankine cycle thermal efficiency |
| Option D: | is always less than simple Rankine cycle thermal efficiency |
|  |  |
| 12. | At $\qquad$ pressure and temperature, a substance exists in three phases in equilibrium. |
| Option A: | Critical point |
| Option B: | Triple point |
| Option C: | Boiling point |
| Option D: | Freezing point |
|  |  |
| 13. | Flow of fluid is called transonic when |
| Option A: | Mach Number is greater than 1 |
| Option B: | Mach Number is equal to 1 |
| Option C: | Mach Number is less than 1 |
| Option D: | Mach Number lies between 0.8 \& 1.2 |
|  |  |
| 14. | What will be the effect on entropy when heat is added at constant temperature? |


| Option A: | It remains constant |
| :---: | :---: |
| Option B: | It will decreases |
| Option C: | It may increase or decrease |
| Option D: | It will increase |
| 15. | For an ideal gas the value of Joule-Thomson coefficient is |
| Option A: | Positive |
| Option B: | Negative |
| Option C: | Zero |
| Option D: | Indeterminate |
| 16. | Which of the following is called as Laval nozzle? |
| Option A: | Convergent nozzle |
| Option B: | Divergent nozzle |
| Option C: | Convergent divergent nozzle |
| Option D: | Venturi nozzle |
| 17. | The ratio of the maximum volume formed in the cylinder to the minimum (clearance) volume is called . $\qquad$ |
| Option A: | Cutoff ratio |
| Option B: | Compression ratio |
| Option C: | Pressure ratio |
| Option D: | Expansion ratio |
| 18. | The work done in an isothermal expansion of a gas depends upon |
| Option A: | Temperature |
| Option B: | Expansion ratio only |
| Option C: | Both temperature and expansion ratio |
| Option D: | Neither temperature nor expansion ratio |
| 19. | Kelvin-Planck's statement deals with |
| Option A: | Conservation of energy |
| Option B: | Conservation of heat |
| Option C: | Conservation of mass |
| Option D: | Conservation of heat into work |
| 20. | The efficiency of Diesel cycle approaches to Otto cycle efficiency when |
| Option A: | Cutoff is increased |
| Option B: | Cutoff is decreased |
| Option C: | Cutoff is zero |
| Option D: | Cutoff is constant |


| Q. 2 | Solve any TWO out of the following. (10 marks each) |
| :---: | :--- |
| A. | The initial pressure and temperature are 1 bar and $30{ }^{\circ} \mathrm{C}$ in an air standard dual cycle. <br> The compression ratio is 9 with maximum pressure limited to 60 bar. The heat is added <br> during constant pressure process upto $4 \%$ of the stroke. Assuming cylinder bore and <br> stroke as 250 mm and 300 mm respectively determine. :(a) Efficiency of the cycle (b) <br> Power developed if the number of working cycles is $3 /$ second. Take $\mathrm{Cv}=0.71 \mathrm{~kJ} / \mathrm{kgK} \&$ <br> $\mathrm{Cp}=1 \mathrm{~kJ} / \mathrm{kgK}$ |
| B. | Steam expands in a turbine from 25 bar and $300^{\circ} \mathrm{C}$ to a condenser pressure of 20 kPa . <br> Calculate Rankine cycle efficiency. <br> (a) What would be efficiency if the initial temperature of steam be $500^{\circ} \mathrm{C}$ instead of <br> $300^{\circ} \mathrm{C}$ ? |
| (b) If the boiler pressure is increased to 60 bar maintain the steam temperature at <br> $500^{\circ} \mathrm{C}$. Calculate the cycle efficiency. Assume condenser pressure remains <br> constant in all cases. |  |
| C.4 kg of air is compressed from $40^{\circ} \mathrm{C} \mathrm{\&} 125 \mathrm{kPa}$ to $250^{\circ} \mathrm{C}$ and 875 kPa . It is then throttled <br> to 257 kPa . Finally it is cooled to a pressure of 125 kPa and $180^{\circ} \mathrm{C}$. Calculate the overall <br> change in entropy and also for each process. <br> $\mathrm{Take} \mathrm{Cv}=0.717 \mathrm{~kJ} / \mathrm{kgK} \& \mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ |  |


| Q. 3 | Solve any TWO out of the following. (10 marks each) |
| :---: | :--- |

A. Air flows steadily at the rate of $0.5 \mathrm{~kg} / \mathrm{s}$ through an air compressor entering at $7 \mathrm{~m} / \mathrm{s}$ velocity, 100 kPa pressure and $0.95 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. The internal energy of the air leaving is 90 $\mathrm{kJ} / \mathrm{kg}$ greater than that of the air entering. Cooling water in the compressor jackets absorbs heat from the air at the rate of 58 kW .
(a) Calculate the rate of shaft work input to the air in kW
(b) Find the ratio of the inlet pipe diameter to outlet pipe diameter.
B. Air flows steadily and isentropically in a convering diverging nozzle. At the throat the air is at 140 kPa (abs) and at $60^{\circ} \mathrm{C}$. The throat cross sectional area is $0.05 \mathrm{~m}^{\wedge} 2$.
At a certain section in the diverging part of the nozzle the pressure is 70 kPa (abs). Calculate velocity and area of the this section
C. A rigid vessel of volume $0.86 \mathrm{~m}^{\wedge} 3$ contains 1 kg of steam at a pressure of 2 bar. Evaluate the specific volume, temperature, dryness fraction, internal energy, enthalpy and entropy of steam.

