# University of Mumbai 

Examination 2020 under cluster 9 (FAMT)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev2016
Examination: SE Semester IV
Course Code: MEC405 and Course Name: Kinematics of Machinery
Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Law of gearing states that in order to have constant angular velocity ratio between the gears in mesh |
| Option A: | Common tangent drawn at the point of contact must pass through pitch point |
| Option B: | Common normal drawn at the point of contact must pass through pitch point |
| Option C: | Common normal drawn at the point of contact must pass through point of tangency |
| Option D: | Common tangent drawn at the point of contact must pass through point of tangency |
| 2. | Which of the following statement is TRUE in case of cycliodal and involute gear teeth profiles |
| Option A: | Cycliodal teeth profile is generated upon base circle and involute teeth profile is generated upon pitch circle |
| Option B: | Both profiles are generated upon base circle |
| Option C: | Both profiles are generated upon pitch circle |
| Option D: | Cycliodal teeth profile is generated upon pitch circle and involute teeth profile is generated upon base circle |
| 3. | Calculate the maximum possible length of path of contact for a gear pinion of 50 mm radius in mesh with wheel of 200 mm radius for a 20 degree pressure angle. |
| Option A: | 56.87 |
| Option B: | 77.89 |
| Option C: | 85.50 |
| Option D: | 45.12 |
|  |  |
| 4. | Calculate the circular pitch for the gear with 30 teeth and 300 mm PCD |
| Option A: | 30 mm |
| Option B: | 10 mm |
| Option C: | 31.41 mm |
| Option D: | 35.45 mm |
|  |  |
| 5. | With increase in centrifugal tension the power output of belt drive will |
| Option A: | increase |
| Option B: | remains unchanged |
| Option C: | decrease |
| Option D: | Increases up to certain speed and then decreases |
|  |  |


| 6. | What will be the pitch of the chain with PCD of 300 mm and 45 number of teeth? |
| :---: | :--- |
| Option A: | 6.66 mm |
| Option B: | 14.76 mm |
| Option C: | 23.27 mm |
| Option D: | 20.92 mm |
|  |  |
| 7. | A car moving on a level road has a wheel base 5 m, distance of C.G. from ground <br> level is 600 mm and the distance of C.G. from rear wheels 1.2 m. What will be <br> the retardation of car if brakes are applied only at front wheel when coefficient of <br> friction is 0.6. |
| Option A: | $4.17 \mathrm{~m} / \mathrm{s}^{2}$ |$|$| Option B: |
| :---: |
| $1.52 \mathrm{~m} / \mathrm{s}^{2}$ |
| Option C: |
| $8.34 \mathrm{~m} / \mathrm{s}^{2}$ |
| Option D: |
| $18.32 \mathrm{~m} / \mathrm{s}^{2}$ |
| 8. |
| According to Aronhold Kennedy's theorem, if three bodies move relatively to |
| each other, their instantaneous centers will lie on a |


| 13. | The size of a cam depends upon |
| :---: | :---: |
| Option A: | base circle |
| Option B: | pitch circle |
| Option C: | prime circle |
| Option D: | pitch curve |
|  |  |
| 14. | A radial follower is one |
| Option A: | that reciprocates in the guides |
| Option B: | that oscillates |
| Option C: | in which the follower rotates |
| Option D: | in which the follower translates in any direction irrespective of the cam axis |
|  |  |
| 15. | Offset is provided to a cam follower mechanism to |
| Option A: | minimize the side thrust |
| Option B: | Accelerate the follower |
| Option C: | avoid jumping of follower |
| Option D: | maximize the side thrust |
|  |  |
| 16. | A Crank and slotted lever mechanism used in a shaper has a centre distance of 300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank. The radius of the crank is 120 mm . Find ratio of the time of cutting to the time of return stroke. |
| Option A: | 1.72 |
| Option B: | 1.5 |
| Option C: | 17.2 |
| Option D: | 1.9 |
|  |  |
| 17. | Two shafts are connected by a Universal joint. The driving shaft rotates at a speed of 1200 rpm . <br> The total fluctuation of speed does not exceed 200 rpm . The greatest permissible angle between shaft axes is ---------- degree |
| Option A: | 32.6 |
| Option B: | 23.6 |
| Option C: | 16.8 |
| Option D: | 40.9 |
|  |  |
| 18. | Ackermann steering gear fulfils the condition of correct gearing at |
| Option A: | one position |
| Option B: | two positions |
| Option C: | three positions |
| Option D: | all positions |
|  |  |
| 19. | Maximum velocity of the driven shaft of a Hooke's joint is observed at $\theta$ equal to |
| Option A: | $0^{\circ}$ and $180^{\circ}$ |
| Option B: | $90^{\circ}$ and $270^{\circ}$ |
| Option C: | $90^{\circ}$ and $180^{\circ}$ |
| Option D: | $180^{\circ}$ and $270^{\circ}$ |
|  |  |
| 20. | Which steering gear mechanism fulfills condition of correct steering at all position? |
| Option A: | Ackermann steering gear mechanism |


| Option B: | Davis steering gear mechanism |
| :---: | :--- |
| Option C: | Center point steering gear mechanism |
| Option D: | Positive drive steering gear mechanism |


| Q2. <br> (20 Marks Each) | Solve any Four out of Six |
| :---: | :--- |
| A | A Cylinder of mass 'm' and radius ' $r$ ', resting on an inclined plane is <br> released from rest and rolls down the inclined plane. Assume angle of <br> inclination of plane is with horizontal is ' $\theta$ '. Determine the acceleration of <br> its mass centre in terms of $\theta$ and $g$ (Acceleration due to gravity). |
| B | A Hooke's joint is used to couple two shafts together. The driving shaft <br> rotates at a uniform speed of 1000rpm. Determine the greatest permissible <br> angle between the shaft axes so total fluctuations of speed may not exceed <br> 150rpm. |
| C | Discuss the methods to determine the direction of coriolis component of <br> acceleration. |
| D | A cam drives a flat reciprocating follower in the following manner : <br> During first 120 rotation of the cam, follower moves outwards through a <br> distance of 20 mm with UARM. The follower dwells during next $30^{\circ}$ of <br> cam rotation. During next 120' of cam rotation, the follower moves <br> inwards with Cycliodal motion. The follower dwells for the next $90^{\circ}$ of <br> cam rotation. Determine the maximum velocity during ascent and <br> maximum acceleration during descent. |
| E | Compare involute and cycliodal gear teeth profiles. <br> FThe number of teeth on each of the two equal spur gears in mesh are 40 <br> The teeth have 20 $0^{\circ}$ involute profile and the module is 6 mm. If the arc of <br> contact is 1.75 times the circular pitch, find the addendum. |


| Q3. <br> (20 Marks Each) | Solve any Four out of Six $\quad$ 5 marks each |
| :---: | :--- |
| A | Define degrees of freedom and derive expression for the same. |
| B | With neat sketch elaborate working of pantograph. |
| C | Elaborate the procedure to determine the velocity of point on the slotted bar <br> of a shaper mechanism which is coinciding with end of point on a crank. |
| D | A cam, with a minimum radius of 25 mm , rotating clockwise at a uniform <br> speed is to be designed to give a roller follower, at the end of a valve rod, <br> motion described below : <br> 1. To raise the valve through 50 mm during $120^{\circ}$ rotation of the cam ; <br> 2. To keep the valve fully raised through next $30^{\circ} ;$ <br> 3. To lower the valve during next $60^{\circ} ;$ and <br> 4. To keep the valve closed during rest of the revolution i.e. $150^{\circ} ;$ <br> The displacement of the valve, while being raised is to take place with <br> simple harmonic motion and while being lowered is to take place by <br> uniform acceleration and retardation motion. Determine the maximum <br> acceleration of the valve rod when the cam shaft rotates at 100 r.p.m. |
| E | Elaborate different methods to avoid interference in gears. |
| F | State and prove law of gearing. |

# University of Mumbai 

Examination 2020
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to 6 $^{\text {th }}$ January 2021
Program: S.E. (Mechanical)
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: MEC401 and Course Name: APPLIED MATHEMATICS-IV
Time: 2 hour
Max. Marks: 80

| $\begin{gathered} \text { Q1. } \\ \text { (40 Marks) } \end{gathered}$ | All the Questions are compulsory and carry 2 marks each. |
| :---: | :---: |
| 1. | If $\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ -3 & -4\end{array}\right]$ find $A^{50}$ |
| Option A: | $\left[\begin{array}{cc}-149 & -150 \\ 150 & 151\end{array}\right]$ |
| Option B: | $\left[\begin{array}{rr}149 & -150 \\ 150 & 151\end{array}\right]$ |
| Option C: | $\left[\begin{array}{cc}149 & 150 \\ -150 & 151\end{array}\right]$ |
| Option D: | $\left[\begin{array}{cr}149 & -150 \\ -150 & 151\end{array}\right]$ |
| 2. | If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$ find $2 A^{4}-5 A^{3}-7 A+6 I$ |
| Option A: | $\left[\begin{array}{cc} 36 & -32 \\ -32 & -52 \end{array}\right]$ |
| Option B: | $\left[\begin{array}{ll} 36 & 32 \\ 32 & 52 \end{array}\right]$ |
| Option C: | $\left[\begin{array}{cc} 36 & 32 \\ -32 & -52 \end{array}\right]$ |
| Option D: | $\left\|\begin{array}{ll} 36 & 52 \\ 52 & 52 \end{array}\right\|$ |
| 3. | The mean weekly sales of powder in a super market is 146.3 . After a special advertisement campaign, the mean weekly sales in 22 branches increases to 153.7 with a S.D of 17.2 . Find the calculated value of ' $t$ '. |
| Option A: | 4.22 |
| Option B: | 1.97 |
| Option C: | 9.88 |
| Option D: | 16 |
| 4. | A simple sample of 400 students is taken from a large population. The mean height of students in the sample is 171.38 cm , while the mean height in the population is $171.17 \mathrm{~cm} \& S . D$ is 3.3 cm . Find the calculated value of 'z' |
| Option A: | 1.27 |
| Option B: | 8.21 |
| Option C: | 3.98 |
| Option D: | 11.21 |



|  | mistakes on 110 days. Find the number of days on which on which she made 3 mistakes using Poisson's distribution? |
| :---: | :---: |
| Option A: | 55 |
| Option B: | 68 |
| Option C: | 39 |
| Option D: | 93 |
| 12. | In a distribution exactly normal $7 \%$ of items are under $35 \& 89 \%$ are under 63. Find the mean \& S.D |
| Option A: | $\mathrm{m}=50.3, \sigma=10.33$ |
| Option B: | $\mathrm{m}=10.33, \sigma=50.3$ |
| Option C: | $\mathrm{m}=25.1, \sigma=5.15$ |
| Option D: | $\mathrm{m}=5.15, \sigma=25.1$ |
| 13. | A continuous R.V X has the p.d.f defined by $\mathrm{f}(\mathrm{x})=\mathrm{A}+\mathrm{Bx} \quad \begin{array}{cc}0 \leq x \leq 1 \\ 0 & \text { other wise }\end{array}$ If the mean of the distribution is $1 / 3$. Find $A \& B$. |
| Option A: | $\mathrm{A}=2, \mathrm{~B}=-2$ |
| Option B: | $\mathrm{A}=2, \mathrm{~B}=2$ |
| Option C: | $\mathrm{A}=-2, \mathrm{~B}=-2$ |
| Option D: | $\mathrm{A}=3, \mathrm{~B}=-2$ |
| 14. | The standard deviations calculated from two random samples of sizes $9 \& 13$ are $1.99 \& 1.9$ respectively. Find the calculated value of ' $F$ ' |
| Option A: | 1.139 |
| Option B: | 2.52 |
| Option C: | 6.61 |
| Option D: | 5.65 |
| 15. | If the random variable $X$ takes the values $1,2,3 \& 4$ such that $2 P(X=1)=3 P(X=2)=P(X=3)=5 P(X=4)$. Find $P(X=1)$. |
| Option A: | 15/61 |
| Option B: | 10/61 |
| Option C: | 30/61 |
| Option D: | 6/61 |
| 16. | Using Green's Theorem evaluate $\int\left(x y+y^{2}\right) d x+x^{2} d y$ over the curve C where C is the closed region bounded by $y=x \& y=x^{2}$ |
| Option A: | $\frac{1}{20}$ |
| Option B: | $\frac{19}{20}$ |
| Option C: | $\frac{-19}{20}$ |
| Option D: | $-\frac{1}{20}$ |
| 17. | Using Stoke's theorem evaluate $\int \bar{F} . d \bar{r}$ where $\bar{F}=(2 x-y) \bar{\imath}-y z^{2} \bar{\jmath}-$ $y^{2} z \bar{k} \& \mathrm{~S}$ is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying above the xy - plane |
| Option A: | $\pi a^{2}$ |


| Option B: | $\pi a$ |
| :---: | :---: |
| Option C: | $\pi a^{2}$ |
| Option D: | $\frac{2 a}{2}$ |
| 18. | Use Gauss - Divergence theorem to evaluate $\iint \bar{N} . \bar{F} d s$ where $\bar{F}=4 x \bar{\imath}-2 y^{2} \bar{\jmath}+z^{2} \bar{k} \& S$ is the region bounded by $x^{2}+y^{2}=4, z=$ $0 \& z=3$ |
| Option A: | $7 \pi$ |
| Option B: | $12 \pi$ |
| Option C: | $28 \pi$ |
| Option D: | $84 \pi$ |
| 19. |  |
| Option A: | $\mathrm{Z}_{\text {min }}=13$ |
| Option B: | $\mathrm{Z}_{\text {min }}=15$ |
| Option C: | $\mathrm{Z}_{\text {min }}=11$ |
| Option D: | $\mathrm{Z}_{\text {min }}=-11$ |
| 20. | Use Dual Simplex method to Maximize $Z=-3 x_{1}-2 x_{2}$ subject to $x_{1}+x_{2} \geq 1, x_{1}+x_{2} \leq 7, x_{1}+2 x_{2} \geq 10, x_{2} \leq 3 \quad x_{1}, x_{2} \geq 0$ |
| Option A: | $\mathrm{Z}_{\text {max }}=18$ |
| Option B: | $\mathrm{Z}_{\text {max }}=-18$ |
| Option C: | $\mathrm{Z}_{\text {max }}=9$ |
| Option D: | $\mathrm{Z}_{\text {max }}=-9$ |


| Q2 <br> (20 Marks) | Solve any Four out of Six, 5 marks each. |
| :---: | :--- |
| A | Show that the matrix $\left[\begin{array}{rrr}2 & -3 & 3 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$ is derogatory, hence find the minimal |
|  |  |$|$| A total number of 3759 individuals were interviewed in a public opinion |
| :--- |
| survey on a political proposal. Of them, 1872 were men \& the rest |
| women.A total of 2257 individuals were in favour of the proposal \& 917 |
| were opposed to it. A tptal of 243 men were undecided \& 442 women were |
| opposed to the proposal. Do you justify the hypothesis that there is no |
| assosciation between sex and attitude. |


| F | If the vector field $\bar{F}$ is irrotational find constants a , b , c where $\bar{F}$ is given <br> by $\bar{F}=(\mathrm{x}+2 \mathrm{y}+\mathrm{az}) \bar{\imath}+(\mathrm{bx}-3 \mathrm{y}-\mathrm{z}) \bar{J}+(4 \mathrm{x}+\mathrm{cy}+2 \mathrm{z}) \bar{k}$. Hence find the <br> work done in moving a particle in this field from $(1,2,-4)$ to $(3,3,2)$ <br> along the straight line joining these points. |
| :---: | :--- |



## University of Mumbai

## Examination 2020 under cluster 9 (FAMT)

Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021
Program: Mechanical
Curriculum Scheme: Rev-2016
Examination: SE Semester: IV
Course Code: MEC402 and Course Name: Fluid Mechanics
Time: 2 hour

| Q1. | Choose the correct option for following questions. All the Questions are compulsory <br> and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | A fluid is said to be ideal, if it is |
| Option A: | viscous and compressible |
| Option B: | non-viscous and compressible |
| Option C: | non-viscous and incompressible |
| Option D: | viscous and incompressible |
|  |  |
| 2. | When the net force acting on a fluid is the sum of only gravity force, pressure force and <br> viscous force, the equation is called as |
| Option A: | Reynolds equation of motion |
| Option B: | Navier-stokes equation of motion |
| Option C: | Bernoulli's equation |
| Option D: | Euler's equation of motion |
| 3. | The type of flow in which the velocity at any given time does not change with respect to <br> space is called |
| Option A: | steady flow |
| Option B: | unsteady flow |
| Option C: | uniform flow |
| Option D: | rotational flow |
|  |  |
| 4. | The ratio of absolute viscosity to mass density is known as |
| Option A: | specific viscosity |
| Option B: | kinematic viscosity |
| Option C: | coefficient of viscosity |
| Option D: | viscosity index |
|  |  |
| 5. | What are the reasons for minor head loses in a pipe? |
| Option A: | Friction |
| Option B: | Heat |
| Option C: | Valves and bends |
| Option D: | Temperature |
|  |  |
| 6. | Drag force is defined as the force exerted by a flowing fluid on a solid body |
| Option A: | in the direction of flow |
| Option B: | perpendicular to the direction of flow |
| Option C: | in the direction which is at an angle of 45 degree to the direction of flow |
| Option D: | in the direction which is at an angle of 60 degree to the direction of flow |
|  |  |
| 7. | Which among the following is an example of a converging-diverging nozzle? |
| Option A: | De Laval nozzle |
|  |  |


| Option B: | High velocity nozzle |
| :---: | :---: |
| Option C: | Magnetic nozzle |
| Option D: | Vacuum nozzle |
|  |  |
| 8. | The property of fluid by virtue of which it offers resistance to shear is called |
| Option A: | Surface tension |
| Option B: | Adhesion |
| Option C: | Cohesion |
| Option D: | Viscosity |
|  |  |
| 9. | Which of the following is NOT a type of force considered in the Navier-Stokes equation? |
| Option A: | Gravity force |
| Option B: | Pressure force |
| Option C: | Surface tension force |
| Option D: | Viscous force |
|  |  |
| 10. | $\qquad$ is defined as a scalar function of space and time such that its negative derivative with respect to any direction gives the fluid $\qquad$ in that direction. |
| Option A: | Velocity potential function, velocity |
| Option B: | Stream function, pressure |
| Option C: | Circulation function, velocity |
| Option D: | Velocity potential function, pressure |
|  |  |
| 11. | A stream line is one |
| Option A: | in which temperature remains constant |
| Option B: | in which the flow cannot cross the bounding surface |
| Option C: | which has a constant area throughout its length so that the velocity remains constant. |
| Option D: | in which the flow can cross the bounding surface |
|  |  |
| 12. | Darcy-Weisbach equation is used to find loss of head due to |
| Option A: | sudden enlargement |
| Option B: | sudden contraction |
| Option C: | friction |
| Option D: | bend |
|  |  |
| 13. | What is the velocity profile for Poiseuille flow? |
| Option A: | Zero |
| Option B: | Constant |
| Option C: | Linear |
| Option D: | Quadratic |
|  |  |
| 14. | Reynolds number is used to |
| Option A: | detect pressure changes |
| Option B: | predict flow patterns |
| Option C: | detect Temperature |
| Option D: | detect Viscosity |
|  |  |
| 15. | The Pitot tube is used for measurement of |
| Option A: | pressure |
| Option B: | flow |
| Option C: | velocity |
| Option D: | Discharge |
|  |  |
| 16. | A body is called stream lined body when it is placed in a flow and the surface of the body |
| Option A: | coincides with streamlines |


| Option B: | does not coincides with the streamlines |
| :---: | :--- |
| Option C: | is perpendicular to the streamlines |
| Option D: | is inclined to the streamlines |
|  |  |
| 17. | Which among the following is an assumption of the compressible flow? |
| Option A: | Resistance to flow of object |
| Option B: | No-slip condition |
| Option C: | Known mass flow rate |
| Option D: | Resistance to flow of heat |
|  |  |
| 18. | ..............is defined as the distance, measured perpendicular to the boundary of the <br> solid body, by which the boundary should be displaced to compensate for the reduction <br> in flow rate on account of boundary layer formation |
| Option A: | Boundary Layer Thickness |
| Option B: | Displacement Thickness |
| Option C: | Momentum Thickness |
| Option D: | Energy Thickness |
|  |  |
| 19. | Compressible flow is a flow that deals with |
| Option A: | fluid temperature |
| Option B: | fluid pressure |
| Option C: | fluid density |
| Option D: | fluid geometry |
|  |  |
| 20. | Venturi relation is one of the applications of |
| Option A: | Equation of continuity |
| Option B: | Bernoulli's equation |
| Option C: | Light equation |
| Option D: | Speed equation |


| Q2. <br> (20 Marks <br> Each) | Solve any Four out of Six $\quad$ 5 marks each |
| :---: | :--- |
| A | Find the kinematic viscosity of an oil having density $981 \mathrm{~kg} / \mathrm{m}^{3}$. The shear stress <br> at a point in oil is 0.2353 and velocity gradient at that point is 0.3 per second. |
| B | State Bernoulli’s theorem for steady flow of an incompressible fluid. Derive an <br> expression and state the assumptions made for such a derivation. |
| C | A stream function is given by $\Psi=5 \mathrm{x}-6 \mathrm{y}$, calculate the velocity component <br> and resultant velocity at any point. |
| D | A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way <br> that its plane makes an angle $35^{\circ}$ with the free surface of water. Determine the <br> total pressure force, when the upper edge is 2.5 m below the free surface. |
| E | A pitot-tube is inserted in a pipe of 300 mm diameter. The static pressure in pipe <br> is 100 mm of mercury (vacuum). The stagnation pressure at the centre of the pipe, <br> recorded by the pitot-tube is $0.981 \mathrm{~N} / \mathrm{cm}^{2}$. Calculate the rate of flow of water <br> through pipe, if the mean velocity of flow is 0.85 times the central velocity. Take |
| F | Sketch the stream lines represented by $\Psi^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$. |


| Q3. <br> (20 Marks | Solve any Two Questions out of Three | 10 marks each |
| :---: | :---: | :---: |


| Each) |  |
| :---: | :---: |
| A | Determine (i) the pressure gradient, (ii) the shear stress at the two horizontal parallel plates and (iii) the discharge per metre width for the laminar flow of oil with a maximum velocity of $2 \mathrm{~m} / \mathrm{s}$ between two horizontal parallel fixed plates which are 100 mm apart. Given $\mu=2.4525 \mathrm{Ns} / \mathrm{m}^{2}$. |
| B | Define laminar boundary layer, turbulent layer, laminar sub-layer and boundary layer thickens. |
| C | Find the Mach number when an aeroplane is flying at $1100 \mathrm{~km} / \mathrm{h}$ through still air having a pressure of $7 \mathrm{~N} / \mathrm{cm}^{2}$ and temperature $-5^{\circ} \mathrm{C}$. Wind velocity may be taken as zero. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. Calculate the pressure and temperature of air at stagnation point on the nose of the plane. Take adiabatic index $=1.4$. |

## University of Mumbai

Examination 2020 under cluster 9 (FAMT)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021
Program: MECHANICAL Engineering
Curriculum Scheme: Rev2016
Examination: Second Year Semester: IV
Course Code: MEC 403 and Course Name: Industrial Electronics
Time: 2hour

| Q1. | Choose the correct option for following questions. All the Questions are <br> compulsory and carry equal marks |
| :---: | :--- |
|  |  |
| 1. | Value of the frequency of the AC supply in India. |
| Option A: | 0 Hz |
| Option B: | 50 Hz |
| Option C: | 70 Hz |
| Option D: | 60 Hz |
|  |  |
| 2. | A direct on line starter is used for starting motors |
| Option A: | up to 5 H.P |
| Option B: | up to 10 H.P. |
| Option C: | up to 15 H.P. |
| Option D: | up to 20 H.P |
|  |  |
| 3. | Which is used to store critical pieces of data during subroutines and interrupts |
| Option A: | Queue |
| Option B: | Accumulator |
| Option C: | Data register |
| Option D: | Stack |
|  |  |
| 4. | Referred to a bidirectional trigger diode |
| Option A: | Triac |
| Option B: | UJT |
| Option C: | BJT |
| Option D: | Diac |
|  |  |
| 5. | The form factor for half wave rectified sine wave is |
| Option A: | 1.00 |
| Option B: | 1.11 |
| Option C: | 1.44 |
| Option D: | 1.57 |
|  |  |
| 6. | A certain noninverting amplifier has Ri of $1 \mathrm{k} \Omega$ and Rf of $100 \mathrm{k} \Omega$. The closed- <br> loop voltage gain is $\ldots . . . . .$. <br> Option A: <br> Option B: <br> Option C: <br> Option D: <br> 100000 <br> 7. |
|  | 100 |

## University of Mumbai

## Examination 2020 under cluster 9 (FAMT)

Examinations Commencing from $23^{\text {rd }}$ December 2020 to $6{ }^{\text {th }}$ January 2021

| Option A: | Trigger voltage |
| :---: | :---: |
| Option B: | Breakover voltage |
| Option C: | Barrier voltage |
| Option D: | Supply voltage |
| 8. | A monostable multivibrator has $\mathrm{R}=120 \mathrm{k} \Omega$ and the time delay $\mathrm{T}=1000 \mathrm{~ms}$, calculate the value of C ? |
| Option A: | $0.9 \mu \mathrm{~F}$ |
| Option B: | $1.32 \mu \mathrm{~F}$ |
| Option C: | $7.5 \mu \mathrm{~F}$ |
| Option D: | $2.49 \mu \mathrm{~F}$ |
|  |  |
| 9. | What is the store by register? |
| Option A: | Data |
| Option B: | Operands |
| Option C: | Memory |
| Option D: | Instructions |
|  |  |
| 10. | A UJT has ................. |
| Option A: | Two pn junctions |
| Option B: | One pn junction |
| Option C: | No pn junctions |
| Option D: | Three pn junctions |
|  |  |
| 11. | A bridge Inverter circuit converts |
| Option A: | DC Power to AC Power |
| Option B: | AC Power to DC Power |
| Option C: | DC Power to DC Power |
| Option D: | AC Power to AC Power |
|  |  |
| 12. | A microprocessor is capable of addressing 64 K bytes of memory. Its address bus width is |
| Option A: | 8 |
| Option B: | 16 |
| Option C: | 12 |
| Option D: | 20 |
|  |  |
| 13. | Choose the correct statement |
| Option A: | MOSFET is an uncontrolled device |
| Option B: | MOSFET is a voltage-controlled device |
| Option C: | MOSFET is a current controlled device |
| Option D: | MOSFET is a temperature-controlled device |
|  |  |
| 14. | With sinusoidal input, Schmitt Trigger gives an output as |
| Option A: | Saw tooth Wave |
| Option B: | Square Wave |
| Option C: | Triangular Wave |

## University of Mumbai

Examination 2020 under cluster 9 (FAMT)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021

| Option D: | Cosine wave |
| :---: | :--- |
|  |  |
| 15. | Which of the following finds applications in speed control of a DC motor? |
| Option A: | FET |
| Option B: | NPN transistor |
| Option C: | SCR |
| Option D: | Diode |
|  |  |
| 16. | The number of hardware interrupts present in 8085 microprocessor are |
| Option A: | 5 |
| Option B: | 10 |
| Option C: | 8 |
| Option D: | 16 |
|  |  |
| 17. | A Triac has three terminals viz $\ldots \ldots . . . . . . . . . . . . . . ~$ |
| Option A: | Drain, source, gate |
| Option B: | Two main terminal and a gate terminal |
| Option C: | Cathode, anode, gate |
| Option D: | Cathode, anode, Drain |
|  |  |
| 18. | Which D.C. motor will be preferred for machine tools? |
| Option A: | Series motor |
| Option B: | Shunt motor |
| Option C: | Cumulative compound motor |
| Option D: | Differential compound motor |
|  |  |
| 19. | For an Op-amp with negative feedback, the output is $\ldots . . . .$. |
| Option A: | equal to the input |
| Option B: | Increased |
| Option C: | fed back to the inverting input |
| Option D: | fed back to the noninverting input |
|  |  |
| 20. | According to Boolean law: A +1 = ? |
| Option A: | 1 |
| Option B: | A |
| Option C: | 0 |
| Option D: | A' |
|  |  |


| Q2. | Solve any Four out of Six; 5 marks each |
| :---: | :--- |
| A | Draw the characteristics of power BJT, power MOSFET and IGBT. |
| B | Draw and explain equivalent circuit of an OP-AMP. |
| C | Draw circuit diagram of single phase fully controlled rectifier and derive <br> the equation for average output voltage. |
| D | Write short note on: ALU |
| E | Write a short note on "Selection of motor and power rating for a pump". |
| F | Explain different peripherals of MSP 430 |

## University of Mumbai

Examination 2020 under cluster 9 (FAMT)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021

| Q3. | Solve any Four out of Six; $\mathbf{5}$ marks each |
| :---: | :--- |
| A | Explain UJT triggering method of SCR in brief with circuit diagram. |
| B | Draw and explain first order low pars filter. |
| C | Explain basic principle of single-phase inverter. |
| D | Compare microprocessor \& microcontroller. |
| E | Draw and explain R triggering method of SCR. |
| F | State and explain De-Morgan's theorem. |

# University of Mumbai 

Examination 2020 under cluster 9 (FAMT)
Examinations Commencing from 23 ${ }^{\text {rd }}$ December 2020 to $6^{\text {th }}$ January 2021
Program: Mechanical Engineering
Curriculum Scheme: Rev 2016
Examination: SE Semester IV
Course Code: MEC404 and Course Name: Production Process-II
Time: 2 hour
Max. Marks: 80

| Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| :---: | :---: |
| 1. | Cutting conditions like large chip thickness, low cutting speed \& small rake angle are favorable for producing following types of chips. |
| Option A: | Continuous chips |
| Option B: | Discontinuous chips |
| Option C: | Continuous chips with built up edge |
| Option D: | Segmental chips |
| 2. | In Rapid Prototyping process, the first step is |
| Option A: | Cleaning and Finishing |
| Option B: | CAD Model |
| Option C: | Part orientation |
| Option D: | Checking STL files |
|  |  |
| 3. | The wear caused by chemical or electrochemical reactions is called as |
| Option A: | Diffusion wear |
| Option B: | Abrasion wear |
| Option C: | Adhesion wear |
| Option D: | Corrosive wear |
|  |  |
| 4. | The extra material from a rough sheared edge is trimmed by cutting is called as |
| Option A: | Slitting |
| Option B: | Shaving |
| Option C: | Blanking |
| Option D: | Piercing |
|  |  |
| 5. | Which one of the following bushings is used to locate the renewable bushing? |
| Option A: | Press fit bushing |
| Option B: | linear bushing |
| Option C: | Special bushing |
| Option D: | Knurled bushing |
|  |  |
| 6. | Which locators provide a simple means of locating a drilled hole exactly on diameter or a cylindrical or spherical component? |


| Option A: | Conical and vee locators |
| :---: | :---: |
| Option B: | Conical locators |
| Option C: | Vee locators |
| Option D: | Diamond pin locators |
| 7. | In this type of dynamometer, strain gauges are used to measure the strain on cutting tool. |
| Option A: | Hydraulic dynamometer |
| Option B: | Pneumatic dynamometer |
| Option C: | Electrical dynamometer |
| Option D: | Strain gauge type dynamometer |
| 8. | In Abrasive jet machining, which medium is used for carrying the abrasive grains for machining? |
| Option A: | Gases |
| Option B: | Liquids |
| Option C: | Solid |
| Option D: | Semi solid |
| 9. | In a Merchant circle, it is a backing up force on the chip provided by the work piece normal to shear plane. |
| Option A: | Shear force |
| Option B: | Normal compressive force |
| Option C: | Friction force |
| Option D: | Cutting force |
| 10. | The sheet metal is fed through a coil strip, and a different operation is performed at the same station with each stroke of a series of punches |
| Option A: | compound die |
| Option B: | Combination die |
| Option C: | Progressive die |
| Option D: | Simple die |
| 11. | This angle in single point cutting tool provides a clearance to the trailing end of the cutting edge to prevent rubbing of cutting edge with machined surface. |
| Option A: | Back rake angle |
| Option B: | End relief angle |
| Option C: | End cutting edge angle |
| Option D: | Side rake angle |
| 12. | This wear produces wear lands on the side and end flanks of the tool due to rubbing action of machined surface. |
| Option A: | Crater wear |
| Option B: | Flank wear |
| Option C: | Corrosive wear |
| Option D: | Adhesion wear |
|  |  |
| 13. | Principle of following states that "In order to achieve the maximum accuracy in |


|  | location the locating points should, therefore, be placed as far apart from one another as it is possible". |
| :---: | :---: |
| Option A: | Mutually perpendicular planes |
| Option B: | Extreme positions |
| Option C: | Least points |
| Option D: | Six-point location |
| 14. | the surface of a cutting die between its cutting edge and the beginning of the relief provided for cutting hard materials is called as |
| Option A: | Angular Clearance |
| Option B: | Clearance hole |
| Option C: | land |
| Option D: | Straight land |
| 15. | In water jet cutting and abrasive water jet cutting, the separation between the nozzle opening and the work surface is called which one of the following. |
| Option A: | Standoff distance |
| Option B: | Gap |
| Option C: | Orifice |
| Option D: | Gap size |
|  |  |
| 16. | This cost includes loading and unloading time of the workpiece. |
| Option A: | Handling cost per piece |
| Option B: | Machining cost per piece |
| Option C: | Tool changing cost per piece |
| Option D: | Tooling cost per piece |
|  |  |
| 17. | Following is an example of Powder based prototyping systems |
| Option A: | Fused Deposition Modelling |
| Option B: | Selective Laser Sintering |
| Option C: | 3 D Printing |
| Option D: | Stereo lithography |
| 18. | Straight or helical grooves cut in the body of the drill to provide cutting edges, to allow chip removal, and to allow cutting fluid to reach the cutting edges is called as |
| Option A: | Margin |
| Option B: | Land |
| Option C: | Chisel edge |
| Option D: | Flutes |
|  |  |
| 19. | In a Stereo lithography process, the liquid used in a Vat is called as |
| Option A: | Die-electric fluid |
| Option B: | Photopolymer Resin |
| Option C: | Kerosene |
| Option D: | Electrolyte |
|  |  |
| 20. | Determine chip thickness ratio if uncut chip thickness is 0.125 mm and chip thickness is 0.45 mm . |
| Option A: | 2.6 |


| Option B: | 0.18 |
| :---: | :--- |
| Option C: | 0.28 |
| Option D: | 3.6 |


| Q2 | Solve any Four out of Six |
| :---: | :--- |
| A | Explain in short: Types of chips |
| B | Explain trueing and dressing of grinding wheel. |
| C | Explain constructional features of progressive die. |
| D | What is the difference between jigs and fixtures. |
| E | Give classification of Nontraditional machining. |
| F | What are the basic steps in Rapid Prototyping. |


| Q3. |  |
| :---: | :--- |
| A | Solve any Two |
| i. | Explain in short: Stereo lithography process. |
| ii. | What are the advantages and disadvantages of Electro-chemical machining <br> process. |
| iii. | Explain Template jig and Plate jig. |
| B | Solve any One |
| i. | A seamless tube of 50mm outside diameter is turned on a lathe with a <br> cutting speed of $20 \mathrm{~m} / \mathrm{min}$. the tool rake angle is $15^{0}$ and feed rate is |
| 0.2mm/rev. the length of continuous chip in one revolution measures 80mm. <br> Calculate <br> i) Chip thickness ratio <br> ii) Shear plane angle <br> iii) Chip velocity <br> iv) Shear strain <br> v) Shear strain rate |  |
| ii. | Calculate the following for a blanking die to produce 12000 pieces of M.S. <br> workpiece of diameter 32mm and 2mm thick. The material is having shear <br> strength of 400 N/mm |
| i) Assume suitable data if necessary. Find |  |
| ii) Total length of strip to produce 12000 pieces |  |
| iii)Percentage of stock used |  |

