UNIVERSITY OF MUMBAI CURRICULUM SCHEME R2016 EXAMINATION: FINAL YEAR SEMESTER VII

COURSE CODE ILO7019 COURSE NAME : DEVELOPMENT ENGINEERING TIME: 1 Hr Marks 50

QUESTION PAPER-1

	QUESTION	Answer
Q.No.1	The 73rd amendment Act pertains to which of the following	В
Option A	Statehood of Delhi	
Option B	Panchayti Raj Institutions	
Option C	Municipalities	
Option D	Land reforms	
Q.No.2	The Panchayati Raj is included in the	В
Option A	Union list	
Option B	State list	
Option C	Concurrent list	
Option D	Residuary list	
Q. No.3	Which of the following was the first committee on Panchayati raj in India	А
Option A	Balwant Rai Mehta	
Option B	Ashok Mehta	
Option C	L.M.Singhvi	
Option D	S. Mohinder Singh	
	Which of these is a factor that affects ethical and unethical	
Q.No.4	behaviour	A
Option A	Ethical dilemma	
Option B	Diversity	
Option C	Teamwork	
Option D	Open communication	С
Q. No.5	When is National Panchayati Day celebrated	
Option A	23rd December	
Option B	1st June	
Option C	24th April	
Option D	15th September	
Q.No.6	Those individuals who raise ethical concerns to others inside or outside the organisation are called	В
Option A	Entrepreneur	
Option B	Whistle blower	
Option C	Social entrepreneur	
Option D	Social impact management	
Q.No.7	The term that refers to principles, values, beliefs that define right or wrong behaviour is	с
Option A	Customer satisfaction	
Option B	Innovation	
Option C	Ethics	
Option D	Empowerment	

Q.No8	Which of the following principles is the essential principle of utilitarian school of ethics	В
Option A	Greatest health principle	
Option B	Greatest Happiness principle	
Option C	Greatest wealth principle	
Option D	Greatest respect principle	
Q.No9	Which of the following is an appropriate general principle with regard to engineering ethics	Α
Option A	The engineer shall regard his duty to the public welfare as paramount to all other obligations	
Option B	The engineer shall regard his duty to the objectives of the company as paramount to all other obligations	
Option C	The engineer shall regard his duty to the Profession of engineering as paramount to all other obligations	
Option D	The engineer shall regard his duty to his excellence as paramount to all other obligations	
Q.No10	Which of the following statements is the most correct description of the relationship between humans and technology	с
Option A	Technology impacts upon human action and human beings	
Ontion B	Human beings" act on use make" technology	
Option D	Technology provides apparatus for human action	
Option D	Technology hijacks human autonomy	
Q.No 11	Which of the following elements must always be in the mind of the engineer while performing his duties vis-a-visEthics (1)public safety, (2) economy, (3) health, (4) welfare	D
Option A	1,2,3	
Option B	1,2,3,4	
Option C	1,4	
Option D	1,3,4	
Q.No 12	73rd amendment gave practical shape to which article of the constitution	с
Option A	Article 14	
Option B	Article 32	
Option C	Article 40	
Option D	Article 51	
Q.No 13	Which one of the following is not correct ?	С
Option A	Growth is quantitative and value neutral	

	Development means a qualitative change which is always value	
Option B	positive	
Option C	Positive growth and development refer to changes over a period of time	
	Both growth and development refer to changes over a period of	
Option D	time.	
	The Human Development Index ranks the countries based on	
Q.No 14	their performance in the key areas of (1) health, (2) sex-ratio,	С
	(3)education (4) access to resources	
Option A	1,2,3	
Option B	2,3,4	
Option C	1,3,4	
Option D	1,2,4	
Q.No 15	The multi-dimensional poverty index is a measure developed by the	D
Option A	UNCTAD	
Option B	World Bank	
•		
Option C	International Monetary Fund IMF	
	Oxford poverty and human development initiative, OPHDI, and	
Option D	the UNDP	
Q.No 16	Which state has no Panchayati Raj Institution at all	Α
Option A	Mizoram	
Option B	Manipur	
Ontion C	Arunachal Pradech	
Option D	Tripura	
00000		
Q.No 17	Which state first reserved 50% setas for women	D
Option A	Andhra Pradesh	
Option B	Uttar Pradesh	
Option C	Madhya Pradesh	
Option D	Bihar	
Q.No 18	Which of the following system is established on the basis of direct election	А
Option A	Gram Panchayat	
Option B	Block Committee	
Option C	Zila Parishad	
Option D	District	
Q.No 19	The following is true about khap panchayat	Α
Option A	based on caste system	
Option B	Consists of elected representatives	
Option C	Are constitutional bodies	
Option D	Follow rule of law of the land	
Q.No 20	In which five year plan the Panchayat Raj System was introduced in India for the first time	В

Option A	First	
Option B	Second	
Option C	Fifth	
Option D	Sixth	
Q.No 21	Which of the following years has been declared year of Gram Sabha	В
Option A	2008-09	
Option B	2009-10	
Option C	2011-12	
Option D	2012-13	
Q.No 22	Engagement of local people in development project refers to	С
Option A	Economic development	
Option B	Socila development	
Option C	Participatory development	
Option D	Sustainable development	
Q.No 23	Panchayati Raj system is based on the vision of	В
Option A	Pandit Jawaharlal Nehru	
Option B	Mahatma Gandhi	
Option C	Lal Bahadur Shastri	
Option D	Sardar Patel	
Q.No 24	Panchayats are constituted for	В
Option A	four years	
Option B	five years	
Option C	six years	
Option D	three years	
Q.No 25	The G.V.K.Rao committee was appointed by	В
Option A	Government of India	
Option B	Planning Commission	
Option C	Block development office	
Option D	Zilla Parishad	

Q=QUESTION	question_description	question_explanation	question_type	question_difficulty
A=ANSWER	answer_description	answer_explanation	answer_isright	answer_position
Q	Which of them is not a wireless attack?		М	1
А	Eavesdropping		0	1
А	MAC Spoofing		0	2
А	Wireless Hijacking		0	3
A	Phishing		1	4
Q	Who deploy Malwares to a system or network?		M	1
	Criminal organizations, Black hat hackers,			
A	malware developers, cyber-terrorists		1	1
	Criminal organizations. White hat backers			
A	malware developers, cyber-terrorists		0	2
	Criminal organizations Black hat hackers			
A	continuar of gamzations, black hat hackers,		0	3
	Criminal organizations, gray bat backers, Malware			
А	developers. Depotyption testors		0	4
	developers, Penetration testers			
Q	Compromising confidential information comes		М	1
	under			
A	Threat		1	1
A	Bug		0	2
A	Vulnerability		0	3
A	Attack		0	4
0	What is the best option for thwarting social-		м	1
ч	engineering attacks?			-
A	Technology		0	1
A	Training		1	2
A	Policies		0	3
A	Physical controls		0	4
Q	Botnets are managed by		М	1
A	Bot-holders		0	1
A	Bot-herders		1	2
A	Bot-trainers		0	3
A	Bot-creators		0	4
Q	is a code injecting method used		М	1
	for attacking the database of a system / website.			
А	HTML injection		0	1
Α	SQL Injection		1	2
Α	Malicious code injection		0	3
A	XML Injection		0	4
	Try not to keep passwords.			
	especially fingerprint for your smart-phone.			
Q	because it can lead to physical backing if you're		М	1
	not aware or asleen			
Δ	Biometric		1	1
A A	PIN-based		0	
AA			0	2
A	Short	l	0	<u>ح</u>
A	Du dofault. Dhuataath dawigaa anayata in which		U	4
Q	by default, bluetooth devices operate in which		М	1
	Security mode:			
A	ivioue 1; non-secure mode		1	1
А			0	2
	iviode 2; leaving security up to each application.			

A	Mode 3; enforce link encryption for all traffic.	0	3
	Mode 4; security settings default to a mobile	-	
A	policy server.	0	4
	Which of the following is NOT real security		_
Q	threat?	M	1
А	Virus	0	1
A	Worms	0	2
A	Spam	1	3
A	Trojans		4
	A small piece of code used as a payload in the		
0	exploitation of software vulnerability, is called as	М	1
			-
А	Assembly code	0	1
Δ	Shell code	1	2
Δ	C and C++ code		3
Δ	Malicious code	0	4
	If you fall for a phishing scam, what should you do	0	
Q	to limit the damage?	M	1
Δ.		0	1
A	Delete the phishing email	0	2
A	Delete the phisming email.	0	2
А	onplug the computer. This will get hd of any	0	3
	Change and a second sec	1	4
A	Change any compromised passwords	1	4
	What kind of attempts is made by individuals to		
Q	obtain confidential information from a person by	M	1
	falsifying their identity?		
A	Phishing	1	1
A	Computer viruses	0	2
A	Spyware	0	3
A	Malware	0	4
0	Phishers often develop websites	М	1
	for tricking users & filling their		
A	Legitimate	0	1
A	Illegitimate		*
^		1	2
A	Genuine	0	2 3
A	Genuine Official	0 0	2 3 4
A	Genuine Official	0 0	2 3 4
A A Q	Genuine Genuine Official	0 0 M	2 3 4 1
A A Q	Genuine Official Official	0 0 M	1 2 3 4 1
A A Q A	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber law		1 2 3 4 1 1
A A Q A A	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber dyne	1 0 0 M 1 0	2 3 4 1 1 2
A A Q A A A	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber dyne Cyber café Cyber café	1 0 0 M 1 0 0 0	1 2 3 4 1 1 2 3
A Q A A A A A	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber dyne Cyber café Electronic law	1 0 0 M 1 0 0 0 0	1 2 3 4 1 1 2 3 3 4
A Q A A A A	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber dyne Cyber café Electronic law	1 0 0 0 1 1 0 0 0 0	1 2 3 4 1 1 2 3 4
A Q A A A A Q	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber dyne Cyber café Electronic law Which factor determines when your IT system will be qualitable for legalador workers to access?	1 0 0 M 1 1 0 0 0 0 0 M	1 2 3 4 1 1 2 3 4 1
A Q A A A A Q Q	Genuine Genuine Official is a generic term which refers to all the legal and regulator aspects of Internet and the World Wide Web Cyber law Cyber law Cyber dyne Cyber café Electronic law Which factor determines when your IT system will be available for knowledge workers to access?	1 0 0 0 1 1 0 0 0 0 0 0 0 0	1 2 3 4 1 1 2 3 4 1
A Q A A A A Q Q Q	Genuine Image: Constraint of the second	1 0 0 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ $
A Q A A A A Q A A A	Genuine Image: Constraint of the second	1 0 0 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 1 2 3 4 1 2 3 4 1 1 2
A Q A A A A Q Q A A A A	GenuineOfficial	1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 1 1 2 3 4 1 2 3 4 1 1 2 3
A A Q A A A A Q A A A A A	GenuineOfficialOfficial	I 0 0 M 1 0 0 0 0 0 0 M 0 0 0 0 1 0 0 0 0	2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 4
A A Q A A A A Q A A A A A	GenuineOfficial	I 0 0 0 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	2 3 4 1 1 2 3 4 1 2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 4 4 4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8
A A Q A A A A Q A A A A Q	GenuineOfficial	I 0 0 0 M 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0	2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1
A Q Q A A A A A A A Q A A A	GenuineImage: Constraint of the second s	I 0 0 M 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 1 1

Α	Legal Access	0	3
А	Unauthourized Access	1	4
	is the application of information and		
Q	communication technology (ICT) for delivering	М	1
	government services		
А	Governance	0	1
А	Governance and ethics	0	2
А	Electronic governance	1	3
А	Risk and governance	0	4
	The following cannot be exploited by assigning or		
Q	by licensing the rights to others	M	1
А	Patents	0	1
А	Designs	0	2
А	Trademark	1	3
А	Ownership	0	4
Q	When IT Act 2000 came into effect?	М	1
A	17 October,2000	1	1
Α	11 November,2000	0	2
А	17 October,2001	0	3
Α	11 November,2001	0	4
	Which section of IT Act deals with Hacking of		
Q	computer systems and its penalties?	M	1
А	Section 65	0	1
Α	Section 66	1	2
Α	Section 67	0	3
Α	Section 69	0	4
	Which are the sections of IT Act applicable for		
Q	Cyber pornography?	M	1
Α	66, 66A, 66B	0	1
А	67, 67A, 67B	1	2
Α	67, 67C, 67D	0	3
А	43, 43D, 69D	0	4
	Penalty for Breach of confidentiality and privacy is		
Q	defined in section	M	1
А	71	0	1
А	72	1	2
А	73	0	3
А	74	0	4
Q	Sarbanes-Oxley Act (SOX) is used for	М	1
А	to stop hacking	0	1
А	protect equity shares	0	2
А	protect employee	0	3
	To protect shareholders and the general public		
А	from accounting errors and fraudulent practices	1	4
	in enterprises		
Q	HIPPA Act of 1996 stands for	М	1
А	Health Insurance Policy and Administration Act	0	1
А	Health Insurance Policy and Accountability Act	0	2
	Health Insurance Portability and Administration		2
A	Act	U	3
•	Health Insurance Portability and Accountability		
A	Act		4
Q	NERC Stands for	M	1
А	North African Electric Reliability Corporation	0	1

А	North American Electric Reliability Corporation	1	2
A	North American Electronic Reliability Corporation	0	3
А	North American Electric Regularatory Corporation	0	4

Q=QUESTION question_description answer_description A=ANSWER

question_type question_difficulty answer_isright answer_position

Q	analyzes customer data for designing and executing targeted	Μ	1
A	Analytical CRM	1	1
A	Operational CRM	0	2
A	Collaborative CRM	0	3
A	Transactional CRM	0	4
Q	Cybersquatting refers to the practice of	Μ	1
A	Using someone else's domain names for profiting from their goodwill	1	1
A	Buying competitors information for profiting	0	2
А	Using illegal means to crash competitor's website	0	3
A	Selling competitors information for profiting	0	4
Q	Social computing forces companies to deal with customers	Μ	1
А	Reactively	0	1
А	Proactively	1	2
А	Neutrally	0	3
А	Economically	0	4
Q	Electronic commerce systems generally includes all of the following	Μ	1
А	Internet websites for online sales	0	1
А	Extranet access of inventory databases	0	2
А	Direct links to credit reporting services	1	3
А	Intranets that allow sales reps to access customer records	0	4
Q	Cloud computing can be best explained by	Μ	1
А	LAN operations	0	1
А	Intranet	0	2
А	Web application	0	3
А	Hadoop	1	4
Q	Pervasive computing systems are	Μ	1
А	Context aware	1	1
А	Content aware	0	2
А	Network specific	0	3
A	Range specific	0	4
Q	Difference between traditional data centre and the cloud includes	Μ	1
A	Cost of data centres is higher	1	1
A	Cost of data centres is less	0	2

А	Cost of cloud is higher	0	3
А	Cost of cloud is less	0	4
Q	Sourcing, Ownership, reliability are the provided by the cloud	Μ	1
А	Community	0	1
А	Applications	0	2
А	Services	1	3
А	Features	0	4
Q	A manufacturing approach that integrates several computerized	Μ	1
А	Sales force automation	0	1
А	Computer-integrated manufacturing	1	2
А	Product Lifecycle Management	0	3
А	Management of interdependent items	0	4
Q	Systems which typically provide information to managers in the	Μ	1
А	ERP systems	0	1
А	Business Intelligence System	0	2
А	Transaction Processing System	1	3
А	HR Information Systems	0	4
Q	An adhoc report which includes only information that	Μ	1
А	Comparative reports	0	1
А	Drill-down reports	0	2
А	Exception reports	1	3
А	Routine reports	0	4
Q	The three main business processes supported by ERP systems	Μ	1
А	Transaction and planning processes	0	1
А	Procurement, fulfillment, production processes	1	2
А	Analysis, Administrative and Adhoc Processes	0	3
А	Production planning and Administrative processes	0	4
Q	A business strategy that enables manufacturers to share		1
А	Planning Production and Operations	0	1
А	Quality Control	0	2
А	Product Lifecycle Management.	1	3
А	Control and Auditing	0	4
Q	The two different strategies that the production process can follow:		1
Α	Make-to-store and Make-to-sell	0	1
A	Make-to-process and Make-to-store	0	2
A	Best order, Least order	0	3

А	Make-to-stock and Make-to-order	1	4
Q	Which out of the subsquent is NOT an example of data?	 M	1
A	301062	0	1
A	Blue	 0	2
A	32, Primrose Hill	 1	3
A	Mumbai	0	4
Q	Definition of Sample in MIS is		1
A	A tool used to collect statistical data	0	1
A	Statistics collected from an entire population	0	2
A	The factual information collected from a survey or other source is	0	3
A	A group chosen from a population	1	4
Q	Cost leadership strategy of the competitive advantage is to		1
A	Produce products and/or services at the lowest cost in the industry.	1	1
A	Offer different products, services, or product features than your	0	2
A	Introduce new products and services, add new features to existing	0	3
A	Improve the manner in which a fi rm executes its internal business	0	4
Q	A provides easy access to timely information and direct access		1
A	Interface	0	1
A	Dashboard	1	2
A	Whiteboard	0	3
A	Openboard	0	4
Q	Which one of these is an incorrect category into which all managerial	М	1
A	Operational control	0	1
А	Management control	0	2
A	Inventory control	1	3
A	Strategic planning	0	4
Q	In the normal form, a composite attribute is converted to		1
A	First	1	1
A	Second	0	2
А	Third	0	3
A	Fourth	0	4
Q	The process of data to be presented to users in visual formats such as		1
A	Image Processing	0	1
А	Data Visualization	1	2
А	Human Machine Interaction	0	3
А	Data Segmentation	0	4

Q	A person who breaks into a computer to cause damage or to steal		1
А	Hacker	1	1
А	Cracker	0	2
А	Jammer	0	3
А	Spammer	0	4
Q	A program code that cannot work without being inserted into another	М	1
А	Worm	0	1
А	Virus	1	2
А	Sniffer	0	3
А	Spoofing	0	4
Q	Tracking or monitoring people's activities with the aid of information		1
А	Snooping	0	1
А	Electronic Surveillance	1	2
А	Investigation	0	3
А	Data collection	0	4
Q	An informal, personal journal that is frequently updated and is		1
А	Weblog	1	1
А	Electronic bulletin boards	0	2
А	Newsgroups	0	3
А	Electronic discussions	0	4

Examination 2020 under cluster 4 (PCE) Program: BE Computer Engineering Curriculum Scheme: Rev 2016 Examination: BE Semester VII Course Code: CSDLO7031 and Course Name: Adv. System Security & Digital Forensics Time: 1 hour Max. Marks: 50 Q=QUESTIC question description question type Q. No A=ANSWER answer_isright 1 Q Under theattack malicious scripts are injected in true M 0 A HTML Injection 0 0 A Cross Site Request Forgery (XSRF) 0 0 A Cross Site Request Forgery (XSRF) 0 0 A Malfunctioned Software 0 0 A Malfunctioning of Security 0 0 A Multipurpose Software 0 0			University of Mumbai	
Program: BE Computer Engineering Curriculum Scheme: Rev 2016 Examination: BE Semester VII Course Code: CSDLO7031 and Course Name: Adv. System Security & Digiatl Forensics Time: 1 hour Max. Marks: 50 Q=QUESTIG/question_description question_type Q. No A=ANSWER answer isright 1 Q Under the			Examination 2020 under cluster 4 (PCE)	
Curriculum Scheme: Rev 2016 Examination: BE Semester VII Course Code: CSDL07031 and Course Name: Adv. System Security & Digiatl Forensics Time: 1 hour Max. Marks: 50 Q.No Q_QUESTIC[question_description question_type A=ANSWER answer_isright 1 Q Under the			Program: BE Computer Engineering	
Examination: BE Semester VII Course Code: CSDLO7031 and Course Name: Adv. System Security & Digiatl Forensics Time: 1 hour Max. Marks: 50 Q=QUESTIC question description question type Q. No A=ANSWER answer_isright 1 Q Under theattack malicious scripts are injected in true M 1 Q Under theattack malicious scripts are injected in true M A HTTTL Injection 0 A Cross Site Request Forgery (XSRF) 0 A Malfunctioned Software 0 A Malfunctioning of Security 0			Curriculum Scheme: Rev 2016	
Course Code: CSDLO7031 and Course Name: Adv. System Security & Digiatl Forensics Time: 1 hour Max. Marks: 50 Q=QUESTIG question description question type A=ANSWER answer_isright 1 Q Under the			Examination: BE Semester VII	
Time: 1 hour Max. Marks: 50 Q.No $A=ANSWER$ answer_isright 1 Q Under theattack malicious scripts are injected in true M A HTML Injection 0 A XML Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 2 Q Malicious Software is also known as M A Malfunctioned Software 0 0 A Malfunctioning of Security 0 0 A Malfunctioning of Security 0 0 A Malfunctioning of Security 0 0 3 Q	Co	urse Cod	e: CSDLO7031 and Course Name: Adv. System Security & Digiatl Fe	orensics
Q=QUESTIC question_description question_type 1 Q Under theattack malicious scripts are injected in true M A HTML Injection 0 A KIL Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 2 Q Malicious Software 0 A Malfunctioned Software 0 A Malfunctioned Software 0 A Malfunctioning of Security 0 A Multipurpose Software 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Virus 0 A Virus 0 A Virus 0 A Salami 1 A Covert channel 0 A Covert channel 0 A Injection 1 A Covert channel 0 A Injec	Time: 1 ho	ur	Ma	x. Marks: 50
Q. No A=ANSWER answer_isright 1 Q Under theattack malicious scripts are injected in tru M A HTML Injection 0 A XML Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 11 2 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioning of Security 00 A Malfunctioning of Security 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Trapdoor 0 A Virus 0 A Vorus 0 A Covert channel 0 A Trapdoors 0 A Inearization 0 A Injection 1 A Injection 1 A Covert channel 0 A Covert channel 0 A Injection 1 <		Q=QUI	ESTIQ question_description	question_type
1 Q Under theattack malicious scripts are injected in trus M A HTML Injection 0 A XML Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 2 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioned Software 0 A Malware 1 A Malware 0 A Malfunctioning of Security 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Trapdoor 0 A Virus 0 A Covert channel 0 A Galami 1 A Injection 1 A Injection 1 A Covert channel 0 A Covert channel 0 A Trapdoors 0 A Injection 1 A<	Q. No	A=ANS	SWER	answer_isright
A HTML Injection 0 A XML Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 Q Malicious Software is also known as M A Malicious Software 0 A Malicious Software 0 A Maliunctioned Software 0 A Maliunctioned Software 0 A Maliunctioning of Security 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Logic Bomb 0 A Virus 0 A Worm 1 4 Q slicing refers to a series of many small actions M 4 Q slicing refers to a series of many small actions 0 A Covert channel 0 0 A Trapdoors 0 0 A Inearization 0 0 A Inearization 0 0 A Injection <	1	Q	Under the attack malicious scripts are injected in tru	s M
A XML Injection 0 A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioned Software 0 A Malfunctioning of Security 0 A Multipurpose Software 0 A Malfunctioning of Security 0 3 Q		А	HTML Injection	0
A Cross Site Request Forgery (XSRF) 0 A Cross Site Scripting (XSS) 1 2 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioned Software 0 A Malfunctioned Software 0 A Malware 1 A Multipurpose Software 0 A Malfunctioning of Security 0 3 Q		А	XML Injection	0
A Cross Site Scripting (XSS) 1 2 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioned Software 0 A Malfunctioning of Security 0 A Multipurpose Software 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Logic Bomb 0 A Virus 0 A Virus 0 A Worm 1 4 Q slicing refers to a series of many small actions M A Covert channel 0 0 A Salami 1 1 A Salami 1 1 A Covert channel 0 0 A Inearization 0 1 A Trapdoors 0		А	Cross Site Request Forgery (XSRF)	0
2 Q Malicious Software is also known as M A Malfunctioned Software 0 A Malfunctioned Software 0 A Malfunctioning of Security 0 A Logic Bomb 0 A Logic Bomb 0 A Trapdoor 0 A Virus 0 A Worm 1 4 Q slicing refers to a series of many small actions		А	Cross Site Scripting (XSS)	1
AMalfunctioned Software0AMalware1AMultipurpose Software0AMultipurpose Software0AMalfunctioning of Security03Qdo not need to attach themselves to a host program MALogic Bomb0ATrapdoor0AVirus0AWorm14Qslicing refers to a series of many small actionsMACovert channel0ASalami1ATrapdoors0AInearization05QAccording to OWASP what is the most dangerous vulnerabilitiesAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from its MAphone number0Apasswords0Aapps installed in the mobile1	2	Q	Malicious Software is also known as	М
AMalware1AMultipurpose Software0AMalfunctioning of Security03Qdo not need to attach themselves to a host program MALogic Bomb0ATrapdoor0ATrapdoor0AWirus0AWorm114Qslicing refers to a series of many small actionsMACovert channel0ASalami11ATrapdoors0AInearization05QAccording to OWASP what is the most dangerous vulnerabilitiesAInjection11Across-site request forgery0ASecurity miscofiguration06QWhich of the following type of data, phishers cannot steal from its MAphone number0Apasswords0		А	Malfunctioned Software	0
AMultipurpose Software0AMalfunctioning of Security03Q		А	Malware	1
A Malfunctioning of Security 0 3 Q		А	Multipurpose Software	0
3 Q do not need to attach themselves to a host program M A Logic Bomb 0 A Trapdoor 0 A Wirus 0 A Worm 1 4 Q slicing refers to a series of many small actions M A Covert channel 0 A Covert channel 0 A Salami 1 A Trapdoors 0 A Incarization 0 S Q According to OWASP what is the most dangerous vulnerabilities M A Injection 1 1 A cross-site request forgery 0 0 A cross-site scripting 0 0 A cross-site scripting 0 0 A bank details 0 0 A phone number 0 0 A passwords 0 0		А	Malfunctioning of Security	0
ALogic Bomb0ATrapdoor00AVirus00AWorm114Qslicing refers to a series of many small actionsMACovert channel00ASalami11ATrapdoors00AInearization00SQAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection11Across-site request forgery00ASecurity miscofiguration00Across-site scripting00Across-site scripting00Abank details00Aphone number00Apasswords00Aapps installed in the mobile11	3	Q	do not need to attach themselves to a host program	n M
ATrapdoor0AVirus0AWorm14Qslicing refers to a series of many small actionsMACovert channel0ASalami1ATrapdoors0Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration06QWhich of the following type of data, phishers cannot steal from its MAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	Logic Bomb	0
AVirus0AWorm14Qslicing refers to a series of many small actionsMACovert channel0ASalami1ATrapdoors0Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration06QWhich of the following type of data, phishers cannot steal from its MAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	Trapdoor	0
AWorm14Qslicing refers to a series of many small actionsMACovert channel0ASalami1ATrapdoors0Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from its MAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	Virus	0
4 Q slicing refers to a series of many small actions M A Covert channel 0 A Salami 1 A Salami 1 A Trapdoors 0 A linearization 0 A linearization 0 5 Q According to OWASP what is the most dangerous vulnerabilities M A Injection 1 A cross-site request forgery 0 A Security miscofiguration 0 A cross-site scripting 0 6 Q Which of the following type of data, phishers cannot steal from its M A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1		А	Worm	1
ACovert channel0ASalami1ASalami1ATrapdoors0Alinearization0SQAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting0Across-site scripting0Abank details0Aphone number0Apasswords0Aapps installed in the mobile1	4	Q	slicing refers to a series of many small actions	М
ASalami1ATrapdoors0Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesM5QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from itsMAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		A	Covert channel	0
ATrapdoors0Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from itsMAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	Salami	1
Alinearization05QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from itsMAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	Trapdoors	0
5QAccording to OWASP what is the most dangerous vulnerabilitiesMAInjection1Across-site request forgery0ASecurity miscofiguration0Across-site scripting06QWhich of the following type of data, phishers cannot steal from itsMAbank details0Aphone number0Apasswords0Aapps installed in the mobile1		А	linearization	0
A Injection 1 A cross-site request forgery 0 A security miscofiguration 0 A cross-site scripting 0 A cross-site scripting 0 6 Q Which of the following type of data, phishers cannot steal from its M A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1	5	Q	According to OWASP what is the most dangerous vulnerabilities	М
A cross-site request forgery 0 A Security miscofiguration 0 A cross-site scripting 0 6 Q Which of the following type of data, phishers cannot steal from its M 6 Q Which of the following type of data, phishers cannot steal from its M A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1		À	Injection	1
A Security miscofiguration 0 A cross-site scripting 0 6 Q Which of the following type of data, phishers cannot steal from its M 6 Q Which of the following type of data, phishers cannot steal from its M A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1		А	cross-site request forgery	0
A cross-site scripting 0 6 Q Which of the following type of data, phishers cannot steal from its M 0 A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1		А	Security miscofiguration	0
6 Q Which of the following type of data, phishers cannot steal from its M A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1		А	cross-site scripting	0
A bank details 0 A phone number 0 A passwords 0 A apps installed in the mobile 1	6	0	Which of the following type of data, phishers cannot steal from its	1M
A phone number 0 A passwords 0 A apps installed in the mobile 1	v	A	bank details	0
A passwords 0 A apps installed in the mobile 1		A	phone number	0
A apps installed in the mobile		A	passwords	0
		A	apps installed in the mobile	1

7	Q	The RADUIS Server	М	
	А	is a part of wireless infrastructure within a typical organisation		0
	А	is a part of security infrastructure within the typical organisation		0
	А	is resposible for Authentication. Authorization and Accounting (A.	A	1
	А	Communicates fluently using EAPOL messages		0
8	Q	The Key Confirmation key is used to which of the following proce	sМ	
	А	Integrity-Protect data between station and AP		0
	А	Integrity-Protect messages in the fourway handshake		1
	А	Encrypt data between station and AP		0
	А	Encrypt message containg the group key		0
9	Q	What are three major categories that cybercrime falls into the follo	M	
	А	Group, Illegal Property, and Govrnment		0
	А	Individual, Property and Government		1
	А	Group, Illegal Property, and Individual		0
	А	Group, Property, and Individual		0
10	Q	Which of the following is an example of Intellectual property?	М	
	А	Patent		1
	А	conversaction		0
	А	person		0
	А	Machine		0
11	Q	Reports and logs generated by forensic tools are typically in plainted	eМ	
	А	PDF		0
	А	PS		0
	А	TXT		0
	А	HTML		1
12	0	What is called as the process of creation a duplicate of digital med	ІМ	
	A	Acauisition	1	1
	А	Steganography		0
	А	Live analysis	1	0
	А	Hashing		0
13	0	AFF stands for	М	
	A	Advanced forensic format		1
	А	Advanced file format		0
	A			0
	А	Advanced for data format	1	0
14	0	EnCase was originally created by	М	
	A	Shawn McCreight	-	1
	А	Shamir	1	0
	A	Rivest	1	0
			1	-

-					
		А	Roger		0
	15	Q	FTK and other computer forensics programs use to tag	g and deM	
		А	tracers		0
		А	hyperlinks		0
		А	bookmarks		1
		А	indents		0
	16	Q	The Criminal Law is defined by	М	
		А	Statutes		1
		А	Contracts		0
		А	Government		0
		А	Society		0
	17	Q	The secrets stored on the SIM card include	М	
		А	The longterm key shared with MSC/HLR		1
		А	The TMSI		0
		А	the key used for encrypting user messages		0
		А	the key is used for integrity-protecting all messages		0
	18	Q	The SSL Record Layer protocol handles	М	
		A	entity authentication		0

	А	session key management		0
	А	key agreement		0
	А	message integrity checking & message encryption		1
19	Q	Attack which forces a user(end user)to execute unwanted actions or	М	
	А	Cross-site scoring scripting		0
	А	Cross-site request forgery		1
	А	Cross-site scripting		0
	А	Two-factor authentication		0
20	Q	The Bell-LaPadula and Biba models are concerned with	М	
	А	confidentiality only		0
	А	integrity only		0
	А	confidentiality and integrity respectively		1
	А	integrity and confidentiality respectively		0
21	Q	Sparse Linearization (XSL) attack was a method used to break	М	
	A	DES		0
	А	AES		1
	А	RSA		0
	А	Deffi-Hellman		0
22	Q	An HTTP connection uses port whereas HTTPS uses p	М	
	A	40,80		0
	А	60.62		0
	А	80,443		1
	А	60,80		0
23	Q	Which of the following is might be a Real-World Covert Channel	М	
	A	ARP Packet Header		0
	А	IP Packet Header		0
	А	TCP header "reserved" field		1
	А	UPD datagram field		0
24	Q	Which of the following variables generated/computed by the MSC	М	
	А	The Random Number Generated by the MSC		1
	А	The cipher (encryption) Key		0
	А	The Integrity Check Key		0
	А	The Sequence Number		0
25	Q	Which statement is true for Tort law?	М	
	A	the already written body of standards of proper behavior, document		0
	А	the already written body of standards of proper behavior, not docur		0
	А	the unwritten body of standards of proper behavior, documented in		1
	А	the unwritten body of standards of proper behavior, and not docum		0

University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev 2016 Examination: Final Year Semester VII Course Code: CSC703 and Course Name: AISC

Time: 1 hour

Max. Marks: 50

	The process by which you become aware of messages		
Q	through your sense is called?	М	
A	Organization		0
А	Sensation		0
А	Perception		1
А	Evaluation		0
Q	What is the form of Fuzzy logic?	М	
А	Two-valued logic		0
А	Crisp set logic		0
А	Many-valued logic		1
А	Binary set logic		0
Q	Uninformed search is also called as	М	
А	Heuristic search		0
А	Blind search		1
А	Hash search		0
А	Binary search		0
Q	Which search solves the problem of Depth Limited Se	earc M	
А	BFS		0
А	Iterative Deepening Search		1
А	DFS		0
А	UCS		0
	In search, DFS is carried out with a		
Q	predetermined depth limit	М	
А	Depth Limited		1
А	A*		0
А	IDA*		0
А	BFS		0
Q	Which is not a terminology of Genetic algorithm ?	М	
А	Chlorophyll		1
А	Chromosome		0
А	Population		0
А	Gene		0
	is a location in hill which is at height from othe	er	
Q	parts of the hill but is not the actual hill top	Μ	
А	Local Maximum		1
А	Global Maximum		0
A	Plateau		0

Consider the following steps:i.Gathering knowledgeii.Defining problemiii.Applying solutioniv.Planningvi.Forming the state spaceWhat is theQcorrect order for solving an AI problem?MAi. v. ii. iv. iii.0Ai. v. ii. v. iii.0Aii. i. v. v. iii.0Aii. i. v. v. iii.0Aii. v. iii.1Ai. v. iii.0Aii. v. iii.0Aii. v. iii.0Aii. v. iii.0Aii. v. iii.0Aii. v. iii.0A(P Q) ~(Q P)0A(P Q) ~(Q P)0A(P Q) ~(Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0APostcondition0APostcondition0APartially Observable0APartially Observable0AAPartially Observable0Anormal fuzzy set1Asub normal fuzzy set0Aconcever points of a membership function has at least one element x in the universe whose membership value is Q0Qunity is calledMAnormal fuzzy set0Aconcever points of a membership function are de	А	Ridges	0
Gathering knowledgeii. Defining problemiii. Defining problemApplying solutioniv. Planningvi. vi. Forming the state spaceWhat is the QQcorrect order for solving an AI problem?MAi. v. ii. iv. iii.0Ai. v. ii. iv. iii.0Ai. v. ii. v. iii.0Ai. v. ii. v. iii.1Ai. v. ii. v. iii.1Ai. v. ii. v. iii.0Ai. v. ii. v. iii.0Ai. v. iii.0A(P Q) ~(Q P)0A(P Q) (~Q P)0A~(P Q) $\rightarrow ~(Q P)$ 0A~(P Q) $\rightarrow ~(Q P)$ 0A~(P Q) $\rightarrow ~(Q P)$ 0APreconditions1AFinish0AProcondition0AProcondition0AProtondition0APostcondition0APostcondition0APartially Observable0APartially Observable0ANeither Completely and Partially Observable0Anormal fuzzy set0Anormal fuzzy sets0Anormal fuzzy set0Anormal fuzzy set0Anormal fuzzy set A0Anormal fuzzy set A0Anormal fuzzy set A0A00A00A		Consider the following steps: i.	
Defining problemiii. iv. Planningiv. iv. Forming the state spaceWhat is the vi. Forming the state spaceWhat is the vi. Forming the state spaceQcorrect order for solving an AI problem?MAi. v. ii. iv. iii.0Ai. v. v. ii. v.0Aii. i. v. v. viii.1Ai. vi. iii.0Aii. i. v. vi. iii.1Ai. vi. iii.0Aii. vi. viii.1Ai. vi. iii.0Ai. vi. iii.0A(P Q) ~(Q P)0A(P Q) $\sim (Q P)$ 0A(P Q) $\sim (Q P)$ 0A(P Q) $\rightarrow -(Q P)$ 0QWhat are not present in start actions?MAPreconditions1AEffect0APostcondition0Knowledge and reasoning also play a crucial role in q0Qdealing withenvironment.APortially Observable1ANeither Completely and Partially Observable0AAnormal fuzzy set0Aconvex fuzzy set0Aconvex fuzzy set0Aenvires whose membership function has at least one element x in the universe whose membership value isQunity is calledMAnormal fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aeonever fuzzy		Gathering knowledge ii.	
Applying solutioniv. PlanningForming the state spaceWhat is theQcorrect order for solving an Al problem?MAi. v. ii. iv. iii.0Ai. v. ii. iv. viii.0Aii. i. v. v. iii.0Aii. i. v. v. iii.0Ai. v. ii. iv. iii.0Ai. v. ii. viii.0Ai. vi. ii. viii.0Ai. vi. ii. viii.0Ai. vi. ii. viii.0A $(-v. v)$ (Q P)0A $(-P Q) (-Q P)$ 0A $(-P Q) - \sim (Q P)$ 0QWhat are not present in start actions?MAPreconditions1AEffect0APostcondition0Knowledge and reasoning also play a crucial role in Q0Qdealing withenvironment.ACompletely Observable0AOnly Completely and Partially Observable0AOnly Completely and Partially Observable0Anormal fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set has values equal toMAInfinite0A00 <t< td=""><td></td><td>Defining problem iii.</td><td></td></t<>		Defining problem iii.	
Planningvi. Forming the state spaceWhat is the What is the correct order for solving an AI problem?MAi. v. ii. iv. iii.0Ai. i. v. iv. iii.0Aii. i. v. v. iii.1Ai. v. ii. iv. viii.1Ai. vi. iii.0Aii. vi. iii.0Bi. vi. iii.0Ai. vi. iii.0In propositional logic $P \Leftrightarrow Q$ is equivalent to (Where ~ denotes NOT):MA $\sim (P Q) ~ \sim (Q P)$ 0A $\sim (P Q) ~ \sim (Q P)$ 0A $\sim (P Q) \rightarrow \sim (Q P)$ 0A $\sim (P Q) \rightarrow \sim (Q P)$ 0A $\sim (P Q) \rightarrow \sim (Q P)$ 0QWhat are not present in start actions?MAFiffect00AFinish0APostcondition0Knowledge and reasoning also play a crucial role in q dealing with environment.MACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0Anormal fuzzy set0Aconcave fuzzy set0Ainfinite0 <td></td> <td>Applying solution iv.</td> <td></td>		Applying solution iv.	
Forming the state spaceWhat is the correct order for solving an AI problem?MAi. v. ii. iv. iii.0Ai. ii. iii. iv. v.0Aii. i. vi. iii.1Ai. vi. iii.1Ai. vi. iii.0In propositional logic P \Leftrightarrow Q is equivalent to (Where ~ Q denotes NOT):MA \sim (P Q) \sim (Q P)0A(\sim P Q) (\sim Q P)0A(\sim P Q) (\sim Q P)0A(\sim P Q) (\sim Q P)0A(\sim P Q) \rightarrow (Q P)0A \sim (P Q) \rightarrow - (Q P)0QWhat are not present in start actions?MAEffect0AFinish0AEffect0APostcondition0Knowledge and reasoning also play a crucial role in Q0Qdealing withenvironment.MACompletely Observable0ANeither Completely nor Partially Observable0Anormal fuzzy set1Asub normal fuzzy sets0Aconvex fuzzy set0Aconvex fuzzy set0Ainc ruszy set0Ainc ruszy set solve points of a membership function are defined as the elements in the universe for which aQparticular fuzzy set solve solve points of a membership function are defined as the elements in the universe for which aQparticular fuzzy set solve solve solve points of a membership function are		Planning vi.	
Qcorrect order for solving an AI problem?MAi. vr. ii. v. iii.0Ai. ii. v. vi. iii.0Aii. i. v. v. iii.1Ai. vi. ii. iv. iii.0Th propositional logic P \Leftrightarrow Q is equivalent to (Where ~0Qdenotes NOT):MA \sim (P Q) \sim (Q P)0A(\sim P Q) \sim (Q P)0A \sim (P Q) $\rightarrow \sim$ (Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0APostcondition0Knowledge and reasoning also play a crucial role in Q dealing withenvironment.MACompletely Observable0APartially Observable0ANeither Completely and Partially Observable0Anormal fuzzy set1Asub normal fuzzy sets0Aconcave fuzzy set1Asub normal fuzzy sets0Aonex fuzzy set has values equal to		Forming the state space What is the	
Ai. v. ii. v. iii.0Ai. ii. iv. vi. iii.0Aii. i. v. iv. iii.1Ai. vi. iii.1Ai. vi. iii.0In propositional logic P ⇔ Q is equivalent to (Where ~ denotes NOT):MA \sim (P Q) \sim (Q P)0A \sim (P Q) \sim (Q P)0APreconditions1AEffect0APartially Observable0ANeither Completely on Partially Observable0ANoither Completely and Partially Observable <td< td=""><td>Q</td><td>correct order for solving an AI problem?</td><td>М</td></td<>	Q	correct order for solving an AI problem?	М
Ai. ii. iii. iv. v.0Aii. i. v. v. iii.1Ai. vi. ii. iv. iii.0In propositional logic P \Leftrightarrow Q is equivalent to (Where ~0Qdenotes NOT):MA~ (P Q) ~ (Q P)0A(~P Q) (Q P)0A~ (P Q) \rightarrow (Q P)0A~ (P Q) \rightarrow (Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0ACompletely Observable0ACompletely observable0APartially Observable0AOnly Completely and Partially Observable0Anormal fuzzy set1Asub normal fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Ao0Ao0Ao0Ao0Ao0Ao0Ao0Ao0Ao0Ao0AoAo0AoAin the universe for which aAo0AoAoAoAoAoAoAo<	А	i. v. ii. iv. iii.	0
Aii. i. v. iv. iii.1Ai. vi. ii. iv. iii.0In propositional logic P \Leftrightarrow Q is equivalent to (Where ~ denotes NOT):0A~(P Q) ~(Q P)0A~(P Q) (Q P)0A(P Q) (Q P)0A~(P Q) \rightarrow (Q P)0A~(P Q) \rightarrow (Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0APostcondition0Knowledge and reasoning also play a crucial role in q dealing withenvironment.0APostcondition0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0Anormal fuzzy set1Asub normal fuzzy sets0Aconcave fuzzy set0Aconcave fuzzy set0AInfinite0A00A00A00A00A00A00A00A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0 <td>А</td> <td>i. ii. iii. iv. v.</td> <td>0</td>	А	i. ii. iii. iv. v.	0
A i. vi. ii. iv. iii. 0 In propositional logic P ⇔ Q is equivalent to (Where ~ M Q denotes NOT): M A ~ (P Q) ~ (Q P) 0 A (P Q) (Q P) 0 A ~ (P Q) ~ (Q P) 0 A (P Q) (Q P) 0 A Preconditions 1 A Effect 0 A Postcondition 0 A Finish 0 A Postcondition 0 Q dealing with environment. A Completely Observable 0 A Partially Observable 0 A Neither Completely nor Partially Observable 0 A Neither Completely and Partially Observable 0 A normal fuzzy set 0 A normal fuzzy set 0 A concave fuzzy set 0 A concave fuzzy set 0 A normal fuzzy set has values equal to	А	ii. i. v. iv. iii.	1
In propositional logic P \Leftrightarrow Q is equivalent to (Where ~ denotes NOT):MA~(P Q) ~(Q P)0A(~P Q) (~Q P)1A(P Q) (Q P)0A~(P Q) \rightarrow ~(Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0APreconditions1AEffect0APostcondition0APostcondition0APostcondition0ACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0Anormal fuzzy set0Anormal fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Anormal fuzzy set0Afinite0Aop articular fuzzy set0AInfinite0A00A10A00A10A00A00A00A00A00A00A00A00A00A00A00A0 <td< td=""><td>А</td><td>i. vi. ii. iv. iii.</td><td>0</td></td<>	А	i. vi. ii. iv. iii.	0
Qdenotes NOT):MA \sim (P Q) \sim (Q P)0A(\sim P Q) (\sim Q P)1A(P Q) \rightarrow (Q P)0A \sim (P Q) \rightarrow (Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0APostcondition0APostcondition0Knowledge and reasoning also play a crucial role in q0Qdealing with environment.MACompletely Observable0APartially Observable0ANeither Completely and Partially Observable0AOnly Completely and Partially Observable0Aintrive set whose membership function has at least one element x in the universe whose membership value is unity is calledMAconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set has values equal toMAInfinite0A00A0.51AA0.51AGrade of membership0AGrade of membership0		In propositional logic $P \Leftrightarrow Q$ is equivalent to (Where ~	
A \sim (PQ) \sim (QP)0A(\sim PQ)(\sim QP)1A(PQ)(\sim QP)0A \sim (PQ) \rightarrow (QP)0QWhat are not present in start actions?M1AEffect00AFinish0APrecondition0Knowledge and reasoning also play a crucial role in0Qdealing with environment.MACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0AOnly Completely and Partially Observable0Anormal fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set has values equal toMAInfinite0A00A0.51A4 fuzzy set 'A' in Z is characterized by a that associates with element of Z, a real number in the interval [0, 1].M	Q	denotes NOT):	М
A(~P Q) (~Q P)1A(P Q) (Q P)0A~(P Q) →~(Q P)0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0ACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0AOnly Completely and Partially Observable0Afuzzy set whose membership function has at least one element x in the universe whose membership value isQunity is calledMAconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set has values equal toMAInfinite00A000A0.51Afuzzy set 'A' in Z is characterized by a1AGrade of membership00AGrade of membership00	А	$\sim (P Q) \sim (Q P)$	0
A $(P \ Q) \ (Q \ P)$ 0A $\sim (P \ Q) \rightarrow \sim (Q \ P)$ 0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0APostcondition0ACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0AOnly Completely and Partially Observable0Afuzzy set whose membership function has at least one element x in the universe whose membership value isQunity is calledMAconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0A00A0.51Afuzzy set 'A' in Z is characterized by a 	А	$(\sim P Q) (\sim Q P)$	1
A \sim (PQ) $\rightarrow \sim$ (QP)0QWhat are not present in start actions?MAPreconditions1AEffect0AFinish0APostcondition0Knowledge and reasoning also play a crucial role in0Qdealing with environment.MACompletely Observable0APartially Observable0ANeither Completely nor Partially Observable0AOnly Completely and Partially Observable0AOnly Completely and Partially Observable0AInternet x in the universe whose membership value isMQunity is calledMAconcave fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0AInfinite0A00A0.51A4 fuzzy set 'A' in Z is characterized by a that associates with element of Z, a real 	А	(P Q) (Q P)	0
Q What are not present in start actions? M A Preconditions 1 A Effect 0 A Finish 0 A Postcondition 0 A Postcondition 0 A Postcondition 0 Q dealing withenvironment. M A Completely Observable 0 A Partially Observable 0 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A fuzzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M M A normal fuzzy set 0 0 A convex fuzzy set 0 0 A convex fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A Infinite 0 0 A 0 0 0	А	$\sim (P Q) \rightarrow \sim (Q P)$	0
A Preconditions 1 A Effect 0 A Finish 0 A Postcondition 0 A Completely Observable 0 A Neither Completely nor Partially Observable 0 A Neither Completely and Partially Observable 0 A Only Completely and Partially Observable 0 A fuzzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M M A normal fuzzy set 0 0 A conceve fuzzy set 0 0 A concave fuzzy set 0 0 A Infinite <td< td=""><td>Q</td><td>What are not present in start actions?</td><td>М</td></td<>	Q	What are not present in start actions?	М
A Effect 0 A Finish 0 A Postcondition 0 Q dealing with environment. M A Completely Observable 0 A Partially Observable 0 A Partially Observable 0 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Only Completely and Partially Observable 0 A Only Completely and Partially Observable 0 A Interview of the universe whose membership value is 0 Q unity is called M M A normal fuzzy set 0 0 A sub normal fuzzy sets 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set sa values equal to	A	Preconditions	1
A Finish 0 A Postcondition 0 Q Rowledge and reasoning also play a crucial role in dealing with environment. M Q dealing with environment. M A Completely Observable 0 A Partially Observable 0 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Infuzzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M M A sub normal fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0	А	Effect	0
A Postcondition 0 Knowledge and reasoning also play a crucial role in dealing withenvironment. M A Completely Observable 0 A Partially Observable 0 A Partially Observable 0 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Infuzzy set whose membership function has at least one element x in the universe whose membership value is unity is called M A normal fuzzy set 0 0 A sub normal fuzzy sets 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A infinite 0 0 A Infinite 0 0 A 0.5 1 0 A 1 0 1 A	А	Finish	0
Knowledge and reasoning also play a crucial role in M Q dealing withenvironment. M A Completely Observable 0 A Partially Observable 1 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Infuzzy set whose membership function has at least one element x in the universe whose membership value is unity is called M A normal fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set has values equal to	А	Postcondition	0
Q dealing with environment. M A Completely Observable 0 A Partially Observable 1 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Outzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M 1 A normal fuzzy set 0 0 A convex fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set 0 0 A Infinite 0 0 0 A Infinite 0 0 0 A 0.5 1 1 A fuzzy set 'A' in Z is characterized by a		Knowledge and reasoning also play a crucial role in	
A Completely Observable 0 A Partially Observable 1 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Outzet whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M 1 A normal fuzzy set 0 0 A convex fuzzy set 0 0 A concave fuzzy set 0 0 A concave fuzzy set has values equal to	Q	dealing with environment.	М
A Partially Observable 1 A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A fuzzy set whose membership function has at least one element x in the universe whose membership value is unity is called M A normal fuzzy set 1 A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set 0 A concave fuzzy set 0 A concave fuzzy set has values equal to M A Infinite 0 A Infinite 0 A 0.5 1 A 0.5 1 A 1 0 A 0.5 1 A 0.5 1 A 1 <td>À</td> <td>Completely Observable</td> <td>0</td>	À	Completely Observable	0
A Neither Completely nor Partially Observable 0 A Only Completely and Partially Observable 0 A Only Completely and Partially Observable 0 A fuzzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M A normal fuzzy set 1 A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set has values equal to	А	Partially Observable	1
A Only Completely and Partially Observable 0 A fuzzy set whose membership function has at least one element x in the universe whose membership value is 0 Q unity is called M A normal fuzzy set 1 A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set set as values equal to	А	Neither Completely nor Partially Observable	0
A fuzzy set whose membership function has at least one element x in the universe whose membership value is M Q unity is called M A normal fuzzy set 1 A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set has values equal to M A Infinite 0 A 0 0 0 A 0.5 1 0 A 0.5 1 0 A fuzzy set 'A' in Z is characterized by a	А	Only Completely and Partially Observable	0
Qelement x in the universe whose membership value is unity is calledMAnormal fuzzy set1Asub normal fuzzy set0Aconvex fuzzy set0Aconcave fuzzy set has values equal toMAInfinite0A00A00A0.51Afuzzy set 'A' in Z is characterized by a 		A fuzzy set whose membership function has at least one	
Qunity is calledMAnormal fuzzy set1Asub normal fuzzy sets0Aconvex fuzzy set0Aconcave fuzzy set0Aconcave fuzzy set0The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal toMQparticular fuzzy set has values equal toMAInfinite0A00A0.51A0.51Qthat associates with element of Z, a real number in the interval [0, 1].MAGrade of membership0		element x in the universe whose membership value is	
A normal fuzzy set 1 A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set 0 The crossover points of a membership function are defined as the elements in the universe for which a 0 Q particular fuzzy set has values equal to M A Infinite 0 A 0 0 A 0.5 1 A 0.5 1 Q number in the interval [0, 1]. M A Grade of membership 0	Q	unity is called	М
A sub normal fuzzy sets 0 A convex fuzzy set 0 A concave fuzzy set 0 A concave fuzzy set 0 The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal to M Q particular fuzzy set has values equal to M A Infinite 0 A 0 0 A 0.5 1 A 0.5 1 Q number in the interval [0, 1]. M	À	normal fuzzy set	1
A convex fuzzy set 0 A concave fuzzy set 0 The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal to M M Q particular fuzzy set has values equal to M 0 A Infinite 0 A 0 0 A 0 0 A 0 0 A 1 0 A 0.5 1 A 0.5 1 Q number in the interval [0, 1]. M A Grade of membership 0	А	sub normal fuzzy sets	0
A concave fuzzy set 0 The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal to M 0 Q particular fuzzy set has values equal to M 0 A Infinite 0 A 0 0 A 1 0 A 0.5 1 A 0.5 1 Q number in the interval [0, 1]. M A Grade of membership 0	А	convex fuzzy set	0
The crossover points of a membership function are defined as the elements in the universe for which a particular fuzzy set has values equal to M A Infinite 0 A Infinite 0 A 0 0 A 0 0 A 1 0 A 1 0 A 0.5 1 A fuzzy set 'A' in Z is characterized by a	А	concave fuzzy set	0
defined as the elements in the universe for which a particular fuzzy set has values equal to MAInfiniteA0A0A1A0.5Image: A fuzzy set 'A' in Z is characterized by a mumber in the interval [0, 1].AGrade of membershipO0		The crossover points of a membership function are	
Qparticular fuzzy set has values equal toMAInfinite0A00A10A0.51Afuzzy set 'A' in Z is characterized by a that associates with element of Z, a real number in the interval [0, 1].MAGrade of membership0		defined as the elements in the universe for which a	
A Infinite 0 A 0 0 A 1 0 A 0.5 1 A 0.5 1 Q that associates with element of Z, a real number in the interval [0, 1]. M A Grade of membership 0	Q	particular fuzzy set has values equal to	М
A 0 0 A 1 0 A 0.5 1 A fuzzy set 'A' in Z is characterized by a 1	Ā	Infinite	0
A 1 0 A 0.5 1 A fuzzy set 'A' in Z is characterized by a 1	А	0	0
A 0.5 1 A fuzzy set 'A' in Z is characterized by a 1	А	1	0
A fuzzy set 'A' in Z is characterized by a	А	0.5	1
Qthat associates with element of Z, a real number in the interval [0, 1].MAGrade of membership0		A fuzzy set 'A' in Z is characterized by a	
Qnumber in the interval [0, 1].MAGrade of membership0		that associates with element of Z. a real	
A Grade of membership 0	0	number in the interval [0, 1].	М
	À	Grade of membership	0

А	Membership function	1
А	Generic element	0
А	Degree of truthness	0
	The Student is Tall.Here the Tall (linguistic variable)	
Q	can be represented by	М
А	Fuzzy relation	0
А	Fuzzy Set	1
А	Crisp set Logic	0
А	Crisp Relation	0
	While designing Fuzzy Logic Machine steps are	
Q	performed in which sequence?	М
А	Fuzzification->Rule Evaluation ->Defuzzification	1
А	Defuzzification->rule Evaluation->Fuzzification	0
А	Rule Evaluation->Fuzzification->Defuzzification	0
А	Fuzzification->Defuzzification->Rule Evaluation	0
	What is the starting weight value in Self organization	
Q	map	М
А	One	0
А	Two	0
А	Null	0
А	Random	1
Q	Who proposed the first perceptron model in 1958?	М
А	McCulloch-pitts	0
А	Marvin Minsky	0
А	Hopfield	0
А	Rosenblatt	1
Q	Hebb rule is more suited for which type of data	М
A	Bipolar	1
А	Binary	0
А	Continuous	0
А	Discrete	0
Q	Which of the following learning rule is unsupervised	М
А	Perceptron	0
А	Delta	0
А	Correlation	0
А	Hebbian	1
Q	Correlation learning law is special case of?	М
А	Hebb learning law	1
А	Perceptron learning law	0
А	Delta learning law	0
А	LMS learning law	0
Q	What is unsupervised learning?	М
А	weight adjustment based on deviation of desired output t	0
А	weight adjustment based on desired output only	0
А	weight adjustment based on local information available t	1
А	weight variation	0
Q	What is shape of dendrites like	М

А	Oval		0
А	Rectangle		0
А	Round		0
А	Tree		1
	Which of the following is incorrect application of		
Q	Expert System?	Μ	
А	Design Domain		0
А	Monitoring Systems		0
А	Knowledge Domain		0
А	Systems domain		1
Q	A Neuro-fuzzy system can be seen as	М	
А	3-layer feed forward neural network.		1
А	2-layer feed forward neural network		0
Α	1-layer feed forward neural network		0
А	Perceptron		0

University of Mumbai Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev 2016 Examination: Final Year Semester VII Course Code: CSC701 and Course Name: Digital Signal and Image Processing Time: 1 hour

Max. Mar

			Correct				
Q NO	QUESTION	Α	В	С	C D		
1	Signals conveys	Value	Information	Time	object	В	
2	Which of the following should be done in order to convert a continuous-time signal to a discrete-time signal?	Sampling	Differentiating	Integrating	Computing	A	
3	The function given by the equation $x(n)=1$, for $n=0$; $x(n)=0$, for $n>0$ is a:	Step function	Ramp function	Triangular function	Impulse function	D	
4	Is the function $y[n] = x[n-1] - x[n-56]$ causal?	The system is non-causal	Both causal and non-causal	The system is causal	Neither causal nor non-causal	С	
5	The interface between an analog signal and a digital processor is	A/D converter	D/A converter	Modulator	Demodulator	Α	
6	The method of finding input sequence x(n) from DFT X(K) is called as	DFT	IDFT	DTFT	Convolution	В	
7	In 4-point DFT, Value of twiddle factor repeats after	kn=3	kn=4	kn=2	kn=5	Α	
8	The no of complex multiplications required in 32- point DFT is	1024	992	1243	932	Α	
9	DFT of unit impulse signal is	1	-1	2	0	Α	
10	Fast Fourier Transform (FFT) calculates	DTFT	DFT in faster way	DTFT in faster way	DFS	В	
11	In DIT-FFT	Input is decimented in time	Output is decimented in time	Input is decimented in frequency	Output is decimented in frequency	А	
12	FFT improves the speed of computation by exploring	Symmetry property	Periodicity property	Symmetry & Periodicity property	Linearity property	С	
13	The number of butterflies in each stage of computation of 16 point radix 2 FFT is	4	6	8	10	С	
14	The spatial coordinates of a digital image (x,y) are proportional to:	Position	Brightness	Contrast	Noise	В	

0.110			OPTI	ONS		Correct
Q NO	QUESTION	Α	В	С	D	Answer
15	What is pixel?	Pixel is the elements of a digital image	Pixel is the elements of an analog image	Pixel is the cluster of a digital image	Pixel is the cluster of an analog image	А
16	Assume that an image $f(x, y)$ is sampled so that the result has M rows and N columns. If the values of the coordinates at the origin are $(x, y) = (0, 0)$, then the notation $(0, 1)$ is used to signify :	Second sample along first row	First sample along second row	First sample along first row	Second sample along second row	А
17	An image whose gray-levels span a significant portion of gray scale have dynamic range while an image with dull, washed out gray look have dynamic range.	Low and High respectively	High and Low respectively	Both have High dynamic range, irrespective of gray levels span significance on gray scale	Both have Low dynamic range, irrespective of gray levels span significance on gray scale	В
18	involves sharpening of somefeatures of the image such as edges, boundaries, contrast etc.	Image enhancement	Image restoration	Image histogram	Image morphing	Α
19	Image restoration involves removal of	Background	Blur and noise	Pixels	High frquency component	В
20	A negative of image is obtained by of gray levels of the image.	Average	Sum	Difference	Reverse scalling	D
21	Gray level slicing / intensity level slicing technique is used to highlight a specific range of gray levels in a image. This transformation displays high value for gray levels in the range and low value otherwise.	$r1 \le r \le r2$	$r1 + r2 \ge r$	r1 < r2	r1 > r2	А
22	Example of discontinuity approach in image segmentation is	edge based segmentation	centre based segmentation	region based segmentation	area based segmentation	Α
23	First derivative approximation says that values of intensities at the onset must be	nonzero	zero	positive	negative	Α
24	Image segmentation is also based on	morphology	set theory	extraction	Recognition	A
25	Vertical lines are angles at	0	45	90	135	С

Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev2016 Examination: Final Year Semester VII Course Code: CSC702 and Course Name:Mobile Communication and Computing

Time: 1 hour

____:

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which of the following measures spectrum efficiency of a wireless system?
Option A:	Channel capacity
Option B:	Radio capacity
Option C:	Spectral capacity
Option D:	Carrier capacity
Q2.	Which of the following is not an objective for channel assignment strategies?
Option A:	Efficient utilization of spectrum
Option B:	Increase of capacity
Option C:	Minimize the interference
Option D:	Maximize the interference
Q3.	Who launched the first commercial 1G network in the world?
Option A:	AMPS, America
Option B:	NMT, Netherlands
Option C:	NTT, Japan
Option D:	TACS, UK
Q4.	Who launched the first commercial 1G network in the world?
Option A:	AMPS, America
Option B:	NMT, Netherlands
Option C:	NTT, Japan
Option D:	TACS, UK
Q5.	Which of the following comes under supplementary ISDN services?
Option A:	Emergency calls
Option B:	Packet switched protocols
Option C:	Call diversion
Option D:	Standard mobile telephony
Q6.	Which of the following is not a TDMA standard of 2.5G network?
Option A:	HSCSD
Option B:	GPRS

Option C:	EDGE
Option D:	GSM
Q7.	GPRS and EDGE supports which 2G standard?
Option A:	GSM only
Option B:	IS-136 only
Option C:	GSM and IS-136 both
Option D:	PDC
Q8.	What is the chip rate of W-CDMA?
Option A:	1.2288Mcps
Option B:	3.84Mcps
Option C:	270.833Mcps
Option D:	100Mcps
Q9.	The IEEE 802.11g, uses
Option A:	DSSS
Option B:	OFDM
Option C:	FHSS
Option D:	both DSSS and FHSS
Q10.	In IEEE 802.11, the access method used in the DCF sublayer is
Option A:	CSMA/CA
Option B:	CSMA/CD
Option C:	ALOHA
Option D:	slotted ALOHA
Q11.	The RTS and CTS frames in CSMA/CA solve the hidden station problem.
	The RTS and CTS frames in CSMA/CA solve the exposed station problem.
Option A:	cannot; cannot
Option B:	can; cannot
Option C:	cannot; can
Option D:	can; can
010	
Q12.	MACA avoids the hidden terminal problem by
Option A:	RTS is unicast.
Option B:	RTS is braodcast
Option C:	CTS is unicast.
Option D:	CTS is braodcast
010	
Q13.	Multiple access schemes are used to allow mobile users to share
	simultaneously a finite amount of radio spectrum.

Option A:	Many
Option B:	One
Option C:	Two
Option D:	Ten-Fifteen
Q14.	Which of the following is not a standard of WLAN?
Option A:	HIPER-LAN
Option B:	HIPERLAN/2
Option C:	IEEE 802.11b
Option D:	AMPS
Q15.	Which of the following specifies a set of media access control (MAC) and physical
	layer specifications for implementing WLANs?
Option A:	IEEE 802.16
Option B:	IEEE 802.3
Option C:	IEEE 802.11
Option D:	IEEE 802.15
Q16.	What is the nominal range of Bluetooth?
Option A:	1 Km
Option B:	10 m
Option C:	1m
Option D:	10Km
Q17.	In ad-hoc networks, the complexity of each node is higher because every node has
	to implement
Option A:	users location
Option B:	mechanisms to handle voice and data
Option C:	medium access mechanisms
Option D:	quality of communication
Q18.	In IEEE 802.11 ESSID is the 'name' of a network and is used to
Option A:	combined different networks
Option B:	separate different networks
Option C:	communicate different networks
Option D:	provide services to different networks
Q19.	IPv6 has a larger address space of
Option A:	2^16
Option B:	2^128

Option D:	2^8
Q20.	In practical IPv6 application, a technology encapsulates IPv6 packets inside IPv4
	packets, this technology is called
Option A:	Tunneling
Option B:	Hashing
Option C:	Routing
Option D:	NAT
001	
Q21.	Fast Handover Mobile IPv6 (FMIPv6) reduces long handover latency by:
Option A:	Fast Movement Detection, Fast Binding Update, acquiring COA on anticipation
Option B:	Slow Movement Detection, Slow Binding Update, acquiring COA not on
	anticipation
Option C:	Soft Handover
Option D:	Fast Movement Detection, Fast Binding Update, non anticipation based COA
	acquiring
022	What type of handovers is supported by LTE?
Q22.	Soft handover only
Option B:	Herd hendever only
Option D.	Hard and Soft handover
Option C:	Na handayan sunnart
Option D:	
023	What is the average uploading speed of 4G LTE network?
Option A:	2-5 Mbps
Option B:	1-3 Gbps
Option C:	2-5 Gbps
Option D:	1-3 Mbps
Q24.	Data rate of LTE-A is
Option A:	4 times LTE
Option B:	3 times LTE
Option C:	5 times LTE
Option D:	2 times LTE
Q25.	SON is
Option A:	Plug n play functionality
Option B:	Easy functionality
Option C:	Moderate functionality
Option D:	Complex functionality

Examination 2020 under cluster 4 (PCE)

Program: BE Computer Engineering Curriculum Scheme: Rev2016 Examination: Final Year Semester VII

Course Code: CSDLO7032 and Course Name: Big Data & Analytics

Time: 1-hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Which of the following is example of structured data?
Option A:	Media and entertainment data
Option B:	Audio data
Option C:	video data
Option D:	Transactional data
Q2.	Which one of the following options is not part of the three Vs of big data?
Option A:	Volume
Option B:	velocity
Option C:	Vitality
Option D:	Variety
Q3.	Concerning the Forms of Big Data, which one of these is odd?
Option A:	Structured
Option B:	Unstructured
Option C:	Processed
Option D:	Semi-Structured
Q4.	Hadoop is affordable because of
Option A:	parallelism
Option B:	inexpensive commodity hardware
Option C:	master-slave architecture
Option D:	online analytical processing
Q5.	If in HDFS architecture, a 1GB stream of data is broken up into 8 blocks. What
	will be size of each block?
Option A:	64 MB
Option B:	128MB
Option C:	192 MB
Option D:	256 MB
Q6.	Which of the following is default replication factor for HDFS file system in
	Hadoop ?
Option A:	1
Option B:	2
Option C:	3
Option D:	4

Q7.	Source of HDFS architecture in Hadoop originated as which of the following
Option A:	Google distributed filesystem
Option B:	Yahoo distributed filesystem
Option C:	Amazon Distributed File System
Option D:	Facebook Distributed File System
Q8.	What is the full form of YARN?
Option A:	Yet Another Resource Network
Option B:	Yet Another Relational Negotiator
Option C:	Yet Another Resource Negotiator
Option D:	Yet Another Relational Network
Q9.	Which function will associate the value with the key?
Option A:	Get(key)
Option B:	Put(key, value)
Option C:	Multi-get(key1,key2,,keyN)
Option D:	Delete(key)
010	
Q10.	Which of the following is not an example of a NoSQL database?
Option A:	CouchDB
Option B:	MongoDB
Option C:	HBase
Option D:	PostgreSQL
011	Point out the wrong statement:
Q11. Option A:	Non Belational databases require that schemes he defined before you can add
Option A.	data
Option B:	NoSQL databases are built to allow the insertion of data without a predefined
	schema
Option C:	NoSQL is a set of concepts that allows the rapid and efficient processing of
	datasets with a focus on scalability, performance
Option D:	Developed to handle large amount of data that need to be frequently accessed
	and processed.
012	
Q12.	Which of the following statements about data streaming is true?
Option A:	Stream data is always unstructured data.
Option B:	Stream data often has a high velocity.
Option C:	Stream elements cannot be stored on disk.
Option D:	Stream data is always structured data.
012	Which of the following statements about compliances correct?
Q13.	Compling reduces the amount of date field to a subsequent date mining a local the
Option A:	Sampling reduces the amount of data fed to a subsequent data mining algorithm
Option B:	Sampling reduces the diversity of the data stream
Option C:	Sampling increases the amount of data fed to a data mining algorithm
Option D:	Sampling algorithms often need multiple passes over the data

Q14.	In FM algorithm we shall use estimatefor the number of distinct elements seen in the stream.
Option A:	2 to the power R
Option B:	3 to the power R
Option C:	2R
Option D:	3R
Q15.	The FM-sketch algorithm uses the number of zeros the binary hash value ends in
	to make an estimation. Which of the following statements is true about the hash tail?
Option A:	Any specific bit pattern is equally suitable to be used as hash tail.
Option B:	Only bit patterns with more 0's than 1's are equally suitable to be used as hash tails.
Option C:	Only bit patterns with more 0's than 1's are equally suitable to be used as hash tails.)
Option D:	Only the bit pattern 000000000 (list of 0s) is a suitable hash tail.
Q16.	Which attribute is _not_ indicative for data streaming?
Option A:	Limited amount of memory
Option B:	Limited amount of processing time
Option C:	Limited amount of input data
Option D:	Limited amount of processing power
Q17.	A Bloom filter guarantees no
Option A:	false positives
Option B:	false negatives
Option C:	false positives and false negatives
Option D:	false positives or false negatives, depending on the Bloom filter type
Q18.	CURE stands for
Option A:	Clustering Using Repeaters
Option B:	Cloud Using Representatives
Option C:	Clustering Using Representatives
Option D:	Cloud Using Routers
Q19.	Which of the following is similar to Euclidean distance?
Option A:	Manhattan distance
Option B:	Pythagoras metric
Option C:	Chebyshev distance
Option D:	Heuristic distance
Q20.	d(x, y) < d(x, z) + d(z, y), This fuction means:
Option A:	Non-negativity
Option B:	Identity
Option C:	Symmetry

Option D:	Triangle inequality
Q21.	To combat term spam, Google introduced two innovations:
Option A:	PageRank was used to simulate and the terms used in or near the links to that
	page
Option B:	Serializability and Synchronization
Option C:	Machine Learning and Deep Learning.
Option D:	Clustering and Classification
Q22.	The main task of collaborative filtering can be categorized into two parts.
	Identify the correct statement related to each part.
Option A:	Look for users who share the same rating patterns with the active user
Option B:	Not using the ratings from those like-minded users found in previous to calculate
	a prediction for the active user.
Option C:	Build an item-item matrix determining relationships between pairs of items.
Option D:	Build a user-user matrix determining relationships between users
Q23.	Identify the correct recommendation system's algorithm(s) from given options.
Option A:	Collaborative page ranking
Option B:	Collaborative filtering
Option C:	Item based recommendation system
Option D:	Object based recommendation system
Q24.	Process that identifies dense sub graphs from social network graphs is called
Option A:	mining data stream
Option B:	Community Detection
Option C:	Clustering
Option D:	Map reduce
Q25.	In page Rank computation in a web a Dead Ends are the pages with no in the web graph
Option A:	Trust Rank
Option B:	In links
Option C:	out links
Option D:	Hub Score

Program: BE Computer Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year Semester VII

Course Code: CSDLO7033 and Course Name: Robotics

Time: 1 hour

Max. Marks: 50

Q.1.	A robot manipulator is controlled by
Option A.	Computer that runs a program
Option B.	Human who operates and controls the actuators
Option C.	Hardware Controller
Option D.	Changes in the Environment
Q.2.	Which type of robot's coordinate has two prismatic joints and one revolute joint
	for positioning the part, plus revolute joints for orientating the part?
Option A.	Cylindrical
Option B.	Cartesian
Option C.	Spherical
Option D.	Articulated
Q.3.	A robot with how many minimum degrees of freedom can place objects at any
	desired location and orientation?
Option A.	3
Option B.	4
Option C.	5
Option D.	6
Q.4.	In which programming mode, robot joints are moved simultaneously, while the
	motion is continuously sampled and recorded by the controller and during
	playback, the exact motion that was recorded is executed?
Option A.	Physical Setup
Option B.	Lead Through
Option C.	Continuous Walk-Through
Option D.	Logical setup
Q.5.	if all the robot joint variables are known, what can be calculated using forward
	kinematic equations.
Option A.	Position of Robotic arm
Option B.	Orientation of Robotic arm
Option C.	Position and Orientation of Robotic arm
Option D.	Either position or Orientation
Q.6.	Which vector is aligned along with the Tool Roll axis and always point away from
	the wrist.
Option A.	Normal
Option B.	Approach
Option C.	Sliding
Option D.	Orthogonal
Q.7.	A vector is described as $P = 3i + 5j + 2k$. Express the vector in matrix form to
	describe a direction as a unit vector.
Option A.	$[0.42\ 0.403\ 0.152\ 0\]^T$
Option B.	$[0.87 \ 0.811 \ 0.324 \ 0]^T$
Option C.	$[0.87 \ 0.411 \ 0.324 \ 0]^T$
Option D.	$[0.87 \ 0.411 \ 0.124 \ 0]^T$

Q.8.	A point] $p = [2 3 4]^{T}$ is attached to a rotating frame. The frame rotates by an
	angle 90 about the x-axis of the reference frame. Find the coordinates of the point
	relative to the reference frame after rotation.
Option A.	$[2 \ 3 \ -4]^T$
Option B.	$[2 \ 4 \ -3]^T$
Option C.	$[2 - 43]^T$
Option D.	$[-2 4 3]^T$
Q.9.	A sensor is a device that converts
Option A.	Physical quantity into measurable signals
Option B.	Physical quantity into mechanical signal
Option C.	Electrical signal into physical quantity
Option D.	Physical quantity into electrical signal
Q.10.	Which of the following is correct for tactile sensors?
Option A.	Touch sensitive
Option B.	Pressure sensitive
Option C.	Input voltage sensitive
Option D.	Humidity sensitive
Q.11.	The ability to give same output reading when same input value is applied
	repeatedly is known as
Option A.	Stability
Option B.	Repeatability
Option C.	Accuracy
Option D.	Sensitivity
Q.12.	Any radiation of appropriate wavelength fall on the depletion layer of p-n junction
	develops a potential difference between the junction is working principle of
Option A.	Hall Effect sensor
Option B.	Proximity sensor
Option C.	Light sensor
Option D.	Touch Sensor
Q.13.	Reactive robotic systems have no memory, thus limits reactive behaviours to what
	biologists would call
Option A.	pure stimulus-response reflexes
Option B.	action-condition reflexes
Option C.	fixed-action pattern type of response
Option D.	real time reflexes
Q.14.	Following is not method of path planning:
Option A.	Visibility graph
Option B.	Voronoi graphs
Option C.	Bug algorithm
Option D.	Task planning
Q.15.	A reactive robotic system tightly couples without the use of intervening
	abstract representations or time history
Option A.	action to perception
Option B.	perception to action
Option C.	behaviour to perception
Option D.	behaviour to action
Q.16.	Following is the weakness of subsumption architecture:
Option A.	Hardware retargetability
Option B.	Support for parallelism

Option C.	Niche targetability
Option D.	Run time flexibility
Q.17.	can be generated by decomposing the general problem into a number of
	simpler sub-problems.
Option A.	Generalized Voronoi diagrams
Option B.	Configuration
Option C.	Configuration space
Option D.	State space
Q.18.	A binary image that has only two levels,
Option A.	Red and blue
Option B.	Red and green
Option C.	Blue and white
Option D.	Black and white
Q.19.	One limitation of template matching is that
Option A.	The two images being compared should have same average intensities.
Option B.	The two images being compared should have same average contrast.
Option C.	The two images being compared should have same average intensities and
	contrast.
Option D.	The two images being compared should have different average intensities.
Q.20.	Swell operator is of shrink operator.
Option A.	binary
Option B.	duel
Option C.	simplex
Option D.	duplex
Q.21.	Advantage of the chain code representation of a curve is that it is
	representation, whereas a list of coordinates is an representation.
Option A.	absolute, relative
Option B.	relative, absolute
Option C.	transitive, absolute
Option D.	relative, transitive
Q.22.	Intersection of following fuzzy set is:
	⊭ 4 4
	12 0020
	à B
	1 1
	0 y 0 y
Option A	C 101 Vez *
Option A.	<u>н</u>
	o y

Examination 2020 under cluster

Program: BE _____ Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year Semester VII

Course Code: ILO 7017 and Course Name: Disaster Management and

Mitigation Measures

Time: 1 hour

Max. Marks: 50

Note to the students:-All the Questions are compulsory and carry equal marks .

Q1.	can be explained as, tragic set of events which consequently cause
	damage to property and life?
Option A:	Hazards
Option B:	Vulnerability
Option C:	Disaster
Option D:	Risk
Q2.	Which natural disaster is a sudden and violent shaking of the ground, sometimes
	causing great destruction, as a result of movements within the earth's crust or
	volcanic action?
Option A:	Earthquake
Option B:	Tsunami
Option C:	Thunderstorm
Option D:	Flooding
Q3.	Which of the following is not a component of disaster management cycle?
Option A:	Preparedness
Option B:	Response
Option C:	Construction
Option D:	Recovery
Q4.	What is EMS?
Option A:	Emergency medical services
Option B:	Effective mitigation system
Option C:	Emergency management system
Option D:	Effective management system
Q5.	N.D.R.F Stands for
Option A:	National Disaster Response Fund
Option B:	Natural Disaster Relief Fund
Option C:	National Dedicated Relief Fund
Option D:	National Dynamic Response Fund
Q6.	Risk can be dealt with following ways except:

Option A:	Risk acceptance
Option B:	Risk avoidance
Option C:	Risk reporting
Option D:	Risk reduction
Q7.	Which of the following is not a man-made hazard?
Option A:	Leakage of Toxic waste
Option B:	War
Option C:	Drought
Option D:	Environmental Pollution
Q8.	Which of the following are not the causes of manmade disaster?
Option A:	Technological
Option B:	Transportation
Option C:	Landslides
Option D:	Production errors
Q9.	Who heads the crisis management Committee
Option A:	Prime Minister
Option B:	President
Option C:	Cabinet Secretory
Option D:	Ministry Of Environment
Q10.	EMS technology helps in aread which are prone to effective disaster management
	except:
Option A:	Trials of evacuation and general disaster plans
Option B:	Training volunteers
Option C:	Construction of shelter
Option D:	Prevention of next emergency
Q11.	What is called for the manuals that identify the role of each officer in State for
	managing the natural disasters?
Option A:	State Relief Manuals
Option B:	State Environmental Protection Manuals
Option C:	State Disaster Manuals
Option D:	State Protection Manuals
012	
Q12.	The efforts taken by an ergenization
Option A:	I he efforts taken by an organization
Option B:	Money
Option C:	Vulnerability analysis
Option D:	The action plans
012	Turnen i'r en e en e he hei'r e
Q13.	I sunami s can occur only during
Option A:	Evening Aftermoon
Option B:	Anternoon Any time of the day or night
Option C:	Any time of the day or night
Option D:	Morning

Examination 2020 under cluster

Г

Q14.	Under which ministry Disaster Management Authority comes
Option A:	Ministry Of Environment
Option B:	Ministry of Foreign Affaires
Option C:	Ministry of Pollution
Option D:	Ministry of Home Affairs
Q15.	Which of the following components is not the part of EMS?
Option A:	Communication
Option B:	Recovery
Option C:	Budget
Option D:	Materials requirement
option D.	
016	Which the first step adopted for the assessment of the requests made by the state
Q10.	government to CENTRAL Government
Option A	Central Govt directly sends funds to State Govt
Option B:	The central team is deputed to make the on the spot assessment
Option C:	Finance Ministry Guides Contal Cover to release funds
Option D:	Union Home Secretary visits State Court of feated by Disaster
Option D:	Union Home Secretary visits State Govi affected by Disaster
017	What is CDDM2
Q17.	What is CDDM?
Option A:	Customers blased disaster management
Option B:	Cluster based disaster management
Option C:	Community based disaster management
Option D:	Consumer based disaster management
Q18.	The Richter scale expresses an earthquakes
Option A:	Magnitude
Option B:	Location
Option C:	Duration
Option D:	Depth
Q19.	Who is not first responder
Option A:	Police
Option B:	SDRF
Option C:	Fire and Medical Services
Option D:	NDRF
O20.	Which of the following component of EMS does not add a value to disaster
	management?
Option A:	Emergency medical services
Option B.	Hazardous Materials Management
Option C.	Prevention of disaster
Option D.	Response and Recovery
Option D.	
021	Prompt and effective response minimizes loss of life and property
Q21.	Prompt and effective response minimizes loss of me and property.
Option D:	Pasauraa Allasstian
Option B:	Resource Allocation

Option C:	Planning
Option D:	Financing
Q22.	Floods can be prevented by
Option A:	Afforestation
Option B:	Cutting the forest
Option C:	Tilling the land
Option D:	Removing the top soil
Q23.	Which amongst the following ensures accurate documentation of all aspects of
	disaster events for creating good historical records for future research and
	mitigation planning
Option A:	NDMA
Option B:	MoUD
Option C:	NDRF
Option D:	NIDM
Q24.	The point of the earth's surface directly above the point where an earthquake
	occurs is called
Option A:	Focus
Option B:	Epicenter
Option C:	Fracture
Option D:	Fault
-	
Q25.	Which committee recommend financial assistance to various disaster acros
-	country
Ontion A.	
Option A:	National Executive Committee
Option A: Option B:	National Executive Committee Finance Committee
Option B: Option C:	National Executive Committee Finance Committee Central Committee

Examination 2020

Program: _

Curriculum Scheme: Rev 2016 Examination: Semester VII Course Code: ILO7012 and Course Name: Reliability Engineering

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If A and B are two events such that P(a) =0.3, P(b) = 0.6, and P(A/~B) is
Option A:	0.3
Option B:	0.5
Option C:	0.8
Option D:	0.2
Q2.	Previous probabilities in Bayes Theorem that are changed with help of new available information are classified as
Option A:	Independent Probabilities
Option B:	Posterior probabilities
Option C:	Interior probabilities
Option D:	Dependent probabilities
Q3.	Let X be a random variable with probability distribution function f(x)=0.2 for x <1 =0.1 for 1< x <4 =0 otherwise The probability P(0.5 < x <5) is
Option A:	0.3
Option B:	0.5
Option C:	0.4
Option D:	0.8

Examination 2020

Q4.	If 'm' is the mean of a Poisson Distribution, the standard deviation is given by
Option A:	\sqrt{m}
Option B:	m^2
Option C:	m
Option D:	$\frac{m}{2}$
Q5.	What is the mean time to failure if time to failure of a gadget follows Weibull distribution with scale =1000 hours and shape = 0.5?
Option A:	2500 hours
Option B:	1500 hours
Option C:	3000 hours
Option D:	2000 hours
Q6.	The failure density function f(t) is defined as the derivative of the
Option A:	Failure probability
Option B:	Intensity
Option C:	Pass probability
Option D:	Density
Q7.	Mean time between failures can be defined as:
Option A:	total number of failure total operation time
Option B:	total operation time total number of failure

Option C:	total operation time
	total number of components
Option D:	total number of components
	total operation time
Q8.	A component with time to failure T has constant failure rate $\pi(t) = \lambda = 2.5 \times 10^{-5} [hours]^{-1}$
	Determine the probability that the component survives a period of 2 months without failure.
Option A:	0.815
Option B:	0.965
Option C:	0.911
Option D:	0.864
Q9.	The system reliability of the parallel system
Option A:	Is greater than the reliability of any subsystem
Option B:	Is equal to the reliability of the best subsystem
Option C:	Decreases as more redundant subsystem are added to the system
Option D:	Increase if the subsystem with the lowest reliability is removed
Q10.	Consider a four component system of which the components are independent and identically distributed with Constant Failure Rate (CFR). If R ₂ (100) = 0.95, find the individual component Mean Time to Failure?
Option A:	0.128
Option B:	0.0128
Option C:	0.000128
Option D:	1

Q11.	What failure rate must each component of a series system have, so that the probability that the system operates beyond 1000 hours is 0.9917 (Assume that all three components are independent, operate simultaneously, and have identical constant failure rates.)						
Option A:	0.00278 per hour						
Option B:	2.78 ×10 ⁻⁶ per hour						
Option C:	2.78 × 10 ⁻⁵ per hour						
Option D:	0.0287 per hour						
Q12.	The components each with a reliability of 0.9 are placed in series. What is the reliability of the system?						
Option A:	0.729						
Option B:	0.986						
Option C:	0.458						
Option D:	0.589						
Q13.	If the probability of a car starting on a sub-zero morning is 0.5 and we have two such cars. What is the probability that at least one of the cars will start on a sub-zero morning?						
Option A:	0.92						
Option B:	0.75						
Option C:	0.81						
Option D:	0.60						
Q14.	Calculate the system unavailability, if the failure rate of a system is 2 failures/year and the average repair time is 20 hours.						
Option A:	14.97 hr/yr						
Option B:	18.47 hr/yr						
Option C:	39.81 hr/yr						

Option D:	32.17 hr/yr
015	
Q15.	Which of the following approach is not the redundancy approach?
Option A.	
Option A:	Unit redundancy
Option B:	Component redundancy
Option B .	component redundancy
Option C:	Strong component should be identified and strengthened for reliability
option of	strong component should be identified and strengthened for reliability
Option D:	Mixed redundancy
Ĩ	,
Q16.	For the successful operation of the system, the reliability of the system will be
	much better due to
Option A:	Absence of redundant element and proper operation one element
Option B:	Presence of redundant element and improper operation one element
Oration C:	
Option C:	Absence of redundant element and improper operation one element
Option D:	Presence of redundant element and proper operation and element
Option D.	resence of redundant element and proper operation one element
Q17.	In unit redundancy, for improving the reliability of the system, a similar system
-	should be added to the existing system in
Option A:	Series
Option B:	Both series and parallel
Outing Ci	
Option C:	parallel
Option D:	No connection
Option D.	
Q18.	Redundant system consisting of two or more component connected in parallel
_	and both components were operating simultaneously is called
Option A:	Standby redundancy
Option B:	Active redundancy
Option C:	Sitting redundancy
Onting D	The active we done done or
Option D:	inacuve redundancy

Q19.	In order to maintain maintainability in the system, repair time must
Option A:	Be increased
Option B:	Be reduced
Option C:	Be kept constant
Option D:	Keeps on changing
Q20.	While discussing the concept of parts interchangeability, "if new part does not meet the required functional substitution then,
Option A:	It should be fractionally interchangeability
Option B:	It should not be physically interchangeability
Option C:	It should be physically interchangeability
Option D:	It should not be fractionally interchangeability
Q21.	The inherent availability can be calculated for repairable system as:
Option A:	$A_I = \frac{MTBF}{MTTF + MTTR}$
Option B:	$A_I = \frac{MTTF}{MTTF + MTTR}$
Option C:	$A_I = \frac{MTTF}{MTBF + MTTR}$
Option D:	$A_I = \frac{MTTF}{MTTF + MTTR}$
Q22.	Risk priority number is
Option A:	Product of severity (S), Occurrence (O) & Detection (D)
Option B:	Sum of severity (S), Occurrence (O) & Detection (D)

Option C:	Maximum of Severity (S), Occurrence (O) & Detection (D)							
Option D:	Minimum of Severity (S), Occurrence (O) & Detection (D)							
Q23.	Failure mode and effect analysis (FMEA) provide a checklist procedure. Which of the following question is NOT likely to feature on the checklist?							
Option A:	What would be the cost of avoiding failure be?							
Option B:	How likely is such a failure to be detected before it affects the customer?							
Option C:	What is the likelihood that failure will occur?							
Option D:	What would the consequences of the failure be?							
Q24.	Which of the following is not the advantage of Event Tree Analysis are:							
Option A:	Structured, rigorous and methodical approach							
Option B:	Can be effectively performed on varying levels of design detail							
Option C:	Permits probability assessment							
Option D:	Partial successes/failure are distinguishable							
Q25.	What is the probability of an impossible event?							
Option A:	0							
Option B:	1							
Option C:	Not defined							
Option D:	Insufficient data							

University of Mumbai Online Examination 2020

Program: BE Engineering Curriculum Scheme: R-2016 Examination: Final Year Semester VII Course Code: ILOC 7015 Course Name: Operations Research Time: 1 hour Max. Marks: 50

Question Paper Set No._01

Note: Each question is for 2 marks.

		Multiple Choice Questions (MCQ)						
		ALL questions are compulsory.						
		There are 25 questions, each question carries 2 mark.						
1.	Que	euing models measure the effect of:						
	a)	Random arrivals						
	b)	Random service						
	c)	Effect of uncertainty on the behaviour of the queuing system						
	d)	Length of queue.						
2.	If th arri arri	e number of arrivals during a given time period is independent of the number of vals that have already occurred prior to the beginning of time interval, then the new vals followdistribution.						
	a)	Erlang						
	b)	Poisson						
	c)	Exponential						
	d)	Normal						
3.	An	M/M/8 system is a system with						
	a)	Generic M channel system, exponential arrivals, and Poisson service time.						
	b)	Eight channel system, Poisson arrivals, and Exponential service time.						
	c)	M channel system with Exponential arrivals and Poisson service times.						
	d)	Eight channel system with Binomial arrival times and normally distributed service times						
4.	As	simulation is not analytical model, therefore result of simulation must be viewed as						
	a)	Unrealistic						
	b)	Exact						
	c)	approximation						
	d)	simplified						
5.	Mo	nto-Carlo simulation						
	a)	Randomness is the key requirement						
	b)	The model is of deterministic nature						
	c)	The random numbers can be used to generate the value of input variables only, if the sampled distributed is uniform						
	d)	None of these						
6.	Wh	ile assigning random numbers in Monte-Carlo simulation, it is						
	a)	Not necessary to assign the exact range of random number interval as the probability						
	b)	Necessary to develop a cumulative probability distribution						
	c)	Necessary to assign the particular appropriate random numbers						
	d)	Not necessary to develop a cumulative probability distribution						

7.	Wh	'hich of the following is a property of a dynamic programming problem?						
	a)	Optimal substructure						
	b)	Non-Overlapping sub problems						
	c)	Local Optimal choice						
	d)	The given problem can be reduced to the 3-SAT problem						
8	Wh	en a problem is solved using the top-down approach of dynamic programming, it						
0.	usu	ally						
	a)	Decreases both, the time complexity and the space complexity						
	b)	Increases the time complexity and decreases the space complexity						
	c)	Increases both, the time complexity and the space complexity						
	d)	Increases the space complexity and decreases the time complexity						
9.	Wh	hich of the following problems should be solved using dynamic programming?						
	a)) Long Integer Multiplication						
	b)	Reliability problems						
	c)	Spanning Tree						
	d)	Matrix Multiplication						
10.	Wh	en Minimax and Maximin criteria matches, then						
	a)	Fair game is exists						
	b)	Unfair game is exists						
	c)	Mixed strategy exists						
	d)	Saddle point exists.						
11.	The	e games with saddle points are:						
	a)	Probabilistic in nature						
	b)	Normative in nature						
	c)	c) Stochastic in nature						
	d)	Deterministic in nature						
12.	The	e size of the Payoff matrix of a game can be reduced by using the principle of						
	a)	Saddle point						
	b)	Dominance						
	c)	Game transpose						
	d)	Game Inverse						
13.	If o	orders are placed with size the EOQ, then the re-order costs component is						
	a)	Equal to the holding cost component						
	b)	Greater than the holding cost component						
	c)	Less than the holding cost component						
	d)	Either greater or less than the holding cost component						
14.	Wh	ich cost can vary with order quantity						
	a)	Unit cost only						
	b)	Re-order cost						
	c)	Holding cost only						
	d)	All of these						
15	Anı	nual demand for product costing Rs. 100 per piece is Rs. 900 Ordering cost per order						
15.	is R	s. 100 and inventory holding cost is Rs.2 per unit per year. The economic lot size is						
	a)	200						
	b)	300						
	c)	400						
	d)	500						
16	Cor	nsider the following 7 jobs J1, J2, J3, J4, J5, J6 and J7. They are processed on						
10.	mac	chines A and B in the order AB. The processing times on machine A for the 7 jobs are						

	[3,	12, 13, 4, 10, 11, 9] and the processing times on machine B for the 7 jobs are [8, 9, 8,							
	6, 13, 1, 3]. The optimum sequence of the jobs will have the first job going to machine A								
	as -								
	a)	J1							
	b)	J3							
	c)	J7							
	d)	J6							
	Tra	velling Salesman Problem can be solved using: a-Simplex Method, b-Assignment							
17.	Me	Method, c-Dynamic Programming, d- Waiting line Method							
	a)	Only a							
	b)	Only b							
	c) Only c								
	d)	With b and d							
18.	The	Vogel approximation method is used for solving transportation problems as it gives -							
	a)	neither optimum nor feasible solution							
	h)	both optimum and feasible solution							
	c)	Ontimum but infeasible solution							
	d)	Feasible but non-optimum solution							
19	In t	he Dual Simplex Method, the Initial Table represents a solution -							
17.	in t	that is fassible but not Optimel							
	a) h)	that is both fassible and antimal							
	(b)	that is optimal but not fassible							
	() ()	c) that is optimal but not feasible							
	d) Eor	a Maximization I DD if a constraint has a surplus variable, the artificial variable							
20.	For a Maximization LPP, if a constraint has a surplus variable, the artificial variable								
	audeu III uie Duai Simplex Method Will have -								
	b) negative large co-efficient in the objective function								
	(D)	zero co efficient in the objective function							
	() ()	artificial variables are not required in Dual Simpley Mathod							
21	(1) (1)	aruncial variables are not required in Dual Simplex Method							
21.	n u	Minimization							
	a)	Minimization							
	b)								
	c)	Can be Minimization or Maximization							
	d)	Inteasible							
22.	The	optimal solution in a linear programming model will							
	a)	always be a slack variable							
	b)	always be a surplus variable							
	c)	always occur at an extreme point							
	d)	always be outside the feasible solution space							
	Ac	ompany produces two products: Product A and Product B. Each product must go							
	thro	bugh two processes. Each Product A produced requires 2 hours in Process 1 and 5							
	Pro	cess 2 There are 80 hours of capacity available each week in each process Each unit							
23.	of Product A produced generates \$6.00 in profit for the company Each unit of Produ								
	produced generates $\$9.00$ in profit for the company. If A = the number of units of								
	Product A to produce each week and $B =$ number of units of Product B to produce each								
	wee	ek, then the capacity constraint for Process 2 would be							
	a)	$5A + 3B \ge 80$							
	b)	$6A + 3B \leq 80$							
	c)	$5A + 3B \le 80$							
	d)	5A + 3B < 80							

24.	A company produces two products: Product A and Product B. Each product must go through two processes. Each Product A produced requires 2 hours in Process 1 and 5 hours in Process 2. Each Product B produced requires 6 hours in Process 1 and 3 hours in Process 2. There are 80 hours of capacity available each week in each process. Each unit of Product A produced generates \$6.00 in profit for the company. Each unit of Product B produced generates \$9.00 in profit for the company. The optimal weekly profit for the company would be										
	a)	a) \$125									
	b)	\$150									
	c) \$156										
	d) \$162										
25.	 The following transportation table shows the cost of shipping one unit from each sou to each destination in the upper right hand corner of each cell, as well as the supply capacities and demand requirements: Destination Los Angeles New York Houston Supply Memphis Los Angeles New York Houston Supply Memphis Los Angeles La La La<							from each source s the supply 6,000 3,000 8,000 17,000			
					Los Angele	s New Yor	k Houst	on_			
		0		Memphis	0	1500	4500	0			
Source Boise 3000 0 0											
	The	e total amount sh	ipped fr	om Boise	to Los Ange	les is:]			
	a)	3	-rpea II	2011 20150							
	b)	6									
	c)	3,000									
	d)	5,000									

University of Mumbai Examination 2020 under cluster

Program: BE Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year Semester VII

Course Code: ILO7018 and Course Name: Energy Audit and Management

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Choose the correct source of renewable energy.
Option A:	Natural gas
Option B:	Coal
Option C:	Tidal
Option D:	Nuclear
Q2.	Primary energy content of all fuels are generally expressed in terms of
Option A:	KW
Option B:	KVA
Option C:	KVAR
Option D:	Ton of oil equivalent (toe)
Q3.	Which of the following is a form of secondary energy?
Option A:	Steam
Option B:	Petrol
Option C:	Crude oil
Option D:	Coal
Q4.	The objective of Energy Management is to
Option A:	Minimize energy costs
Option B:	Minimize production
Option C:	Minimize duration of work
Option D:	Minimize manpower
Q5.	Energy Audit is the key to a systematic approach for decision-making in the area of
Option A:	Time management
Option B:	Water management.
Option C:	Pollution management
Option D:	energy management
Q6.	The verification, monitoring and analysis of use of energy and its report with recommendations is
Option A:	Energy monitoring

Option B:	Energy Conservation
Option C:	Energy Audit
Option D:	energy management
Q7.	Bench-mark in Energy Audit refers to:
Option A:	Trend of energy use
Option B:	Profit margin in energy business
Option C:	Reference point for managing energy in organization
Option D:	Energy Losses
Q8.	Energy Audit can be classified into the following types.
Option A:	Short Audit and Lengthy Audit
Option B:	Preliminary Audit and Secondary Audit
Option C:	Feasible Audit and non-feasible Audit
Option D:	Preliminary Audit, targeted energy audit and Detailed Audit
Q9.	For charging Maximum demand charges, maximum demand is measured in
Option A:	kWh
Option B:	kVA
Option C:	kVAr
Option D:	KV
Q10.	Power factor is ratio of
Option A:	Active power to apparent power
Option B:	Active power to reactive power
Option C:	Reactive power to apparent power
Option D:	Apparent power to active power
Q11.	Maximum demand controller is used to
Option A:	Switch off non-essential loads in a logical sequence
Option B:	Controls the power factor of the plant
Option C:	Switch off essential loads in a logical sequence
Option D:	Exceed the demand of the plant
Q12.	For which among the following consumers was penalty imposed for low power factor
	before 1st April, 2020
Option A:	Residential
Option B:	Industrial
Option C:	Agricultural
Option D:	BPL customers
Q13.	The basic functions of electronic ballast exclude one of the following:
Option A:	To ignite the lamp
Option B:	To reduce lumen output of the lamp
Option C:	To supply power to the lamp

Option D:	To stabilize the gas discharge
Q14.	Find the odd retrofit group for illumination from the following
Option A:	capacitor based control
Option B:	photo-sensors
Option C:	timer based control
Option D:	Occupancy sensors
Q15.	Motor loading calculation is based on
Option A:	Ideal load of motor
Option B:	actual operating load of motor
Option C:	90 % load of motor
Option D:	future load of the motor
Q16.	The motor input power Pi in pump can be measured by using
Option A:	Stroboscope
Option B:	Efficiency meter
Option C:	Portable power analyzer.
Option D:	Tachometer
Q17.	One Tons of refrigeration (TR) is equivalent to
Option A:	3420 Btu/h
Option B:	3024 kCal/h
Option C:	1200 thermal kW
Option D:	3024 kW/ton
Q18.	What does a LEED rating reflect?
Option A:	The cost of a building
Option B:	How green a building is
Option C:	The carbon footprint of a building's occupants
Option D:	The location of a building
Q19.	What is the name for the procedure used to clear buildings of contaminants before they
	are occupied?
Option A:	Flush-out
Option B:	Infiltration
Option C:	Ventilation
Option D:	Ex-filtration
Q20.	Which of the following trap has intermittent discharge for large load
Option A:	Inverted bucket
Option B:	Float
Option C:	Thermostatic
Option D:	Bimetallic

Q21.	Which is the best steam for an industrial process heating
Option A:	Dry saturated steam
Option B:	Wet steam
Option C:	Dry steam
Option D:	Superheated steam
Q22.	Which one is the most efficient equipment having Star rating
Option A:	2 star
Option B:	5 star
Option C:	4 star
Option D:	1 star
Q23.	Which one is NOT the reason of incomplete combustion
Option A:	Shortage of air
Option B:	Excess of fuel
Option C:	Poor distribution of fuel
Option D:	GCV of fuel
Q24.	The heat loss from the surface is expressed in
Option A:	Watt
Option B:	Watt/sq. meter-deg K
Option C:	Watt/sq. meter-deg C
Option D:	Joules
Q25.	Which is the purpose of insulation
Option A:	To facilitate free flow of heat
Option B:	Offers better process control by maintaining process temperature
Option C:	Reduce temperature of steam
Option D:	Refrigerated surface below due point

Examination 2020 under cluster

Program: BE_____ Engineering

Curriculum Scheme: Rev2016

Examination: Fourth Year Semester VII

Course Code: ILO7011 and Course Name: Product Life Cycle Management

Time: 1hour

Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks .

Q1.	The PLC describes the stages a new product goes through in the
Option A:	Introduction phase
Option B:	Test Market
Option C:	Product Development
Option D:	Market Place
Q2.	In introduction stage of PLC sales grow slowly and
Option A:	Competition becomes tough
Option B:	Profit is Minimal
Option C:	More Investors needed
Option D:	Profit is Maximum
Q3.	Marketing Objective for the maturity stage of PLC is
Option A:	Maintain Brand Loyalty
Option B:	Stress Differentiation
Option C:	Harvest
Option D:	Deletion
Q4.	PLC stage where Competitors appears is
Option A:	Introduction phase
Option B:	Decline Phase

University of Mumbai Examination 2020 under cluster

Option C:	Maturity
Option D:	Growth
Q5.	The stage when the cost of gaining new Buyers increases
Option A:	Growth
Option B:	Introduction
Option C:	Maturity
Option D:	Pre-Investment
Q6.	Color and size of the product, brand and packaging are considered as,
Option A:	Chemical features of product
Option B:	Physical features of product
Option C:	Product designing
Option D:	Product manufacture
Q7.	Developing a unique superior product with high quality, new features, and high value in use is in new product development strategy.
Option A:	New product development process
Option B:	Typical reasons for failure
Option C:	Success factors
Option D:	Product concept
Q8.	Reason of product failure associated with its feature is due to,
Option A:	Good quality of product
Option B:	Good quantity of product
Option C:	Poor quality of product
Option D:	Poor quantity of product

Q9.	Which of the following is the first step of product development process?
Option A:	Production ramp-up
Option B:	Prototyping
Option C:	Product design
Option D:	Identification of customer needs
Q10.	In which of the following stage of Product Development Process, a detailed specification for the product development and pricing is established?
Option A:	Launch
Option B:	Testing
Option C:	Feature specification
Option D:	Idea screening
Q11.	Product data management is the activity of
Option A:	Managing product data.
Option B:	Invention data recording.
Option C:	Managing computer for data.
Option D:	Manipulation of data.
Q12.	A is a high-level data model that shows, from the user viewpoint, the main entities and the relationships between them. It may also define the entities, and show their attributes and structure
Option A:	Physical data model
Option B:	Conceptual data model
Option C:	Entity-relationship model
Option D:	Logical data model

Examination 2020 under cluster

Г

Т

Q13.	A is a very detailed model that is specific to the technology (e.g., database). It shows how the data will be physically stored and accessed.
Option A:	Logical data model
Option B:	Conceptual data model
Option C:	Physical data model
Option D:	Entity relationship model
Q14.	Virtual product development is the Practice of and developing the products in entire 2D/3D environment
Option A:	prototyping
Option B:	producing
Option C:	protecting
Option D:	purchasing
Q15.	is not the component of virtual product development
Option A:	Virtual product design
Option B:	Virtual product simulation
Option C:	Virtual product manufacturing
Option D:	shop floor manufacturing
Q16.	is not a part of digital manufacturing
Option A:	virtual plant design
Option B:	virtual process planning
Option C:	virtual assembly visualization
Option D:	realistic manufacturing
Q17.	Sustainability Science is the study of the concepts of sustainable development and

-

University of Mumbai Examination 2020 under cluster

Option A: Environmental Science Option D: General Science Option D: Geo science Q18. UN decade of education for Sustainable development Option A: 2002-11 Option B: 2003-12 Option D: 2004-13 Option D: 2005-14 Q19. Number of sustainable development goals (SDGs) by UN are Option A: 15 Option B: 16 Option C: 17 Option D: 18 Q20. LCA stands for Option B: life cycle analogy Option B: life cycle analogy Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option D: Standardization		
Option B: General Science Option D: Geo science Q18. UN decade of education for Sustainable development Option A: 2002-11 Option R: 2003-12 Option D: 2004-13 Option D: 2005-14 Q19. Number of sustainable development goals (SDGs) by UN are Option A: 15 Option B: 16 Option C: 17 Option C: 17 Option B: 16 Option C: 17 Option C: 17 Option B: 16 Option C: 17 Option C: 17 Option B: life cycle assessment Option B: life cycle analogy Option C: Life cycle assurance Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization	Option A:	Environmental Science
Option C: Social science Q18. UN decade of education for Sustainable development Option A: 2002-11 Option B: 2003-12 Option C: 2004-13 Option D: 2005-14 Q19. Number of sustainable development goals (SDGs) by UN are Option A: 15 Option B: 16 Option D: 17 Option D: 18 Q20. LCA stands for Option A: life cycle assessment Option D: Life cycle assurance Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization	Option B:	General Science
Option D:Geo scienceQ18.UN decade of education for Sustainable developmentOption A:2002-11Option B:2003-12Option C:2004-13Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle assessmentOption C:Life cycle assuranceOption A:SimplificationOption A:SimplificationOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option C:	Social science
Q18. UN decade of education for Sustainable development Option A: 2002-11 Option B: 2003-12 Option C: 2004-13 Option D: 2005-14 Q19. Number of sustainable development goals (SDGs) by UN are Option A: 15 Option C: 17 Option D: 18 Q20. LCA stands for Option B: life cycle assessment Option C: Life cycle assessment Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option B: Standardization Option B: Standardization Option D: Socialization	Option D:	Geo science
Q18.UN decade of education for Sustainable developmentOption A:2002-11Option B:2003-12Option C:2004-13Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option D:18Q20.LCA stands forOption A:life cycle analogyOption B:life cycle analogyOption D:Life cycle analogyOption D:Life cycle analogyOption D:SimplificationOption A:SimplificationOption B:StandardizationOption B:StandardizationOption D:Socialization		
Option A:2002-11Option B:2003-12Option C:2004-13Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle assessmentOption C:Life cycle analogyOption D:Life cycle assuranceOption D:Life cycle assuranceOption B:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Q18.	UN decade of education for Sustainable development
Option B:2003-12Option C:2004-13Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption B:life cycle assessmentOption B:life cycle analogyOption C:Life cycle analogyOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption B:SimplificationOption B:StandardizationOption D:SpecializationOption D:Specialization	Option A:	2002-11
Option C:2004-13Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption D:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption D:SpecializationOption D:Specialization	Option B:	2003-12
Option D:2005-14Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle assuranceOption D:Life cycle assuranceOption A:SimplificationOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Specialization	Option C:	2004-13
Q19.Number of sustainable development goals (SDGs) by UN areOption A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption D:SpecializationOption D:SpecializationOption D:Socialization	Option D:	2005-14
Q19. Number of sustainable development goals (SDGs) by UN are Option A: 15 Option B: 16 Option C: 17 Option D: 18 Q20. LCA stands for Option A: life cycle assessment Option B: life cycle analogy Option D: Life cycle assurance Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization		
Option A:15Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption D:StandardizationOption D:StandardizationOption D:Socialization	Q19.	Number of sustainable development goals (SDGs) by UN are
Option B:16Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option A:	15
Option C:17Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option B:	16
Option D:18Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option C:	17
Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option D:	18
Q20.LCA stands forOption A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization		
Option A:life cycle assessmentOption B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Q20.	LCA stands for
Option B:life cycle analogyOption C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option A:	life cycle assessment
Option C:Life cycle assuranceOption D:Life cycle ArrayQ21.Product is the ultimate objective of variety reductionOption A:SimplificationOption B:StandardizationOption C:SpecializationOption D:Socialization	Option B:	life cycle analogy
Option D: Life cycle Array Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization	Option C:	Life cycle assurance
Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization	Option D:	Life cycle Array
Q21. Product is the ultimate objective of variety reduction Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization		
Option A: Simplification Option B: Standardization Option C: Specialization Option D: Socialization	Q21.	Product is the ultimate objective of variety reduction
Option B: Standardization Option C: Specialization Option D: Socialization	Option A:	Simplification
Option C: Specialization Option D: Socialization	Option B:	Standardization
Option D: Socialization	Option C:	Specialization
	Option D:	Socialization

Q22.	An attractive idea must be developed into a
Option A:	Product idea
Option B:	product concept
Option C:	Test market
Option D:	Product image
Q23.	There are basic components of an EDM/PDM system
Option A:	NINE
Option B:	SEVEN
Option C:	SIX
Option D:	FIVE
Q24.	Select suitable potential reasons why to implement PDM
Option A:	Data missing in hard drives, systems not responding, less data is stored
Option B:	Life cycle is managed, less systems available, data is sufficient
Option C:	Data is not centralized, CAD versions are not supported, messed up with data in mapping
Option D:	Data is available but extended facility is not existing.
Q25.	Select suitable reasons, so that PDM can lead to major benefits
Option A:	Huge investments may attract more profits
Option B:	Eases data availability, no data is missing, data storage is done
Option C:	Generates revenues, quality of product improves
Option D:	Reduces product development times by 25%, reduces cost by 15%.

University of Mumbai Examination 2020 under cluster

Program: BE Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year	Semester VII
Course Code: ILO7014	Course Name: Design of Experiments
Time: 1 hour	Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	is a vital part of the scientific (or engineering) method
Option A:	Evaluation
Option B:	Experimentation
Option C:	Estimation
Option D:	Authentication
Q2.	The general approach to planning and conducting the experiment is called the
Option A:	Strategy of experimentation
Option B:	Method of experimentation
Option C:	Preparation of experimentation
Option D:	Outline of experimentation
Q3.	The basic principles of experimental design are
Option A:	Randomization, repetition, blocking
Option B:	Replication, blocking randomization
Option C:	Randomization, repetition, factorization
Option D:	Optimization, blocking, factorization
Q4.	Consider the mathematical model
	Y = f(x, z);
	$\Delta y = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial x} \Delta z$
	ox oz now
	Determining the most influential variables on the response y is called
Option A:	Process control
Option B:	Robust design
Option C:	Process characterization
Option D:	Process optimization

Q5.	The strategy which fails to consider any possible interaction between the factors is called
Option A:	Multiple factors at a time (MFAT)
Option B:	one-factor-at-a-time (OFAT)
Option C:	Best guess
Option D:	Best fit
Q6.	Which of the following is a correct expression for a multiple linear regression model having three regressor variables?
Option A:	$y = x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$
Option B:	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$
Option C:	$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
Option D:	$y = \beta_0 - \beta_1 x_1 + \beta_2 x_2 - \beta_3 x_3 + \epsilon$
Q7.	Theis typically used to estimate the regression coefficients in a
	multiple linear regression model.
Option A:	Method of least squares
Option B:	Method of Jacobians
Option C:	Runge-Kutta Method
Option D:	Method of Moments
Q8.	In multiple linear regression problems, certain about the model
	parameters are helpful in measuring the usefulness of the model.
Option A:	tests of hypotheses
Option B:	tests of uniqueness
Option C:	tests of convergence
Option D:	tests of divergence
Q9.	How many dependent variables does a two-way ANOVA have?
Option A:	Four
Option B:	Two
Option C:	Three
Option D:	One
Q10.	The analysis of variance will have parts
Option A:	One
Option B:	Three
Option C:	Two
Option D:	Four

Q11.	In Split spot design, Randomization is done in stages
Option A:	1
Option B:	2
Option C:	3
Option D:	4
•	
Q12.	In field experiments certain factors may require plots than for others.
Option A:	Lesser
Option B:	Same
Option C:	Larger
Option D:	Small
Q13.	The key idea used for the successful implementation of fractional factorial design are
Option A:	Sparsity of effects principle, randomization, repetition
Option B:	Sparsity of effects principle, projection property, sequential experimentation
Option C:	Sparsity of effects principle, projection property, randomization
Option D:	Sparsity of effects principle, projection property, randomization, repetition
Q14.	When we estimate A, B, and C with complementary one-half fraction, we are really
Oution A.	estimating
Option A:	(A + BC, B + AC, C + AB)
Option B:	
Option C:	(A - BC, B - AC, C - AB)
Option D:	
015.	ANOVA is a statistical method of comparing the of several populations
Option A:	Variance
Option B:	Standard deviations
Option C:	Means
Option D:	Mean deviation
Q16.	In a factorial experiment
Option A:	Testing one factor at a time
Option B:	Cannot estimate interactions
Option C:	all possible combination of factor levels are tested
Option D:	Levels are not tested
Q17.	Factorial designs allow us to study both effects of the independent variables on the dependent(s).
Option A:	Main and interactive

Option B:	Rank order and correlational
Option C:	Symbiotic and dichotomous
Option D:	Dependent and independent
Q18.	What statistical procedure is used to assess the statistical significance of the main effects and the interaction(s) in a factorial design?
Option A:	Analysis of covariance
Option B:	Correlation
Option C:	T-test
Option D:	Analysis of variance
Q19.	Which of the following item is required to be considered in logistics of testing?
Option A:	a plan to acquire materials needed for various test combinations
Option B:	regression model
Option C:	Taguchi Orthogonal Array
Option D:	missing runs
Q20.	Which of the following is an example of a plan for identifying results of the experimental trials?
Option A:	conducting missing trials
Option B:	tagging parts with trial and repetition numbers
Option C:	confounding
Option D:	preparing data sheets
Q21.	Large differences in results from trial to trial can happen in case of
Option A:	good data sets
Option B:	bad data sets
Option C:	sample data sets
Option D:	attribute data sets
Q22.	Consistent results within a trial can be achieved with
Option A:	good data sets
Option B:	bad data sets
Option C:	sample data sets
Option D:	conducting missing trials
Q23.	Which of the following is known as a structured approach for determining the "best" combination of inputs to produce a product or service
Option A:	Taguchi approach
Option B:	signal to noise ratio

Option C:	design of experiments
Option D:	linear regression
Q24.	The factors whose values are hard-to-control during normal process or use conditions are called as-
Option A:	control factors
Option B:	noise factors
Option C:	random factors
Option D:	robust factors
Q25.	Which of the following is not an example of common types of noise factors?
Option A:	environmental factors
Option B:	customer usage
Option C:	Degradation that occurs through usage and environmental exposure
Option D:	cake mixture ingredients