Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: Second Year Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics-3

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace transform of $\cos(\sqrt{3}t)$ is
Option A:	$\frac{s}{s^2+9}$
Option B:	$\frac{s}{s^2 - 9}$
Option C:	$\frac{s}{s^2+3}$
Option D:	$\frac{s}{s^2 - 3}$
2.	The value of $\int_0^\infty e^{-3t} \left(\frac{\sinh t}{t}\right) dt$ is
Option A:	$\frac{1}{3}ln3$
Option B:	$\frac{1}{3}\ln\left(\frac{1}{3}\right)$
Option C:	$\frac{1}{2}ln 2$
Option D:	$\frac{1}{2}\ln\left(\frac{1}{2}\right)$
3.	Laplace transform of $f(t) = t^2 e^{-t}$ is
Option A:	$\frac{2}{(s-1)^3}$
Option B:	$\frac{2}{(s+1)^3}$

Option C:	$\frac{\Gamma(2)}{(s-1)^3}$
Option D:	$\frac{\Gamma(2)}{(s+1)^3}$
4.	Laplace transform of $\int_0^t \sin 2t \cosh 2t dt$ is
Option A:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} - \frac{1}{(s+2)^2 - 4} \right]$
Option B:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} + \frac{1}{(s+2)^2 - 4} \right]$
Option C:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} - \frac{1}{(s+2)^2 + 4} \right]$
Option D:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} + \frac{1}{(s+2)^2 + 4} \right]$
5.	Inverse Laplace transform of $\frac{s-1}{s^2}$ is
Option A:	-1-t
Option B:	-1+t
Option C:	1 + <i>t</i>
Option D:	1-t
6.	$L^{-1}\left[\frac{s+2}{s^2+4s+5}\right]$ is
Option A:	$e^{-2t} \cos t$
Option B:	$e^{-2t} \sin t$
Option C:	e ^{2t} cos t
Option D:	e ^{2t} sin t
7.	$L^{-1}(tan^{-1}s)$ is
Option A:	$\frac{\sin t}{t}$
Option B:	$\frac{\cos t}{t}$
Option C:	$-\frac{\sin t}{t}$
Option D:	$-\frac{\cos t}{t}$

8.	$L^{-1}\left[\frac{s(2s^2-3)}{(s^2+1)(s^2-4)}\right]$ is
Option A:	$\cosh t + \cosh 2t$
Option B:	cos t + cosh 2t
Option C:	$\cos t + \cos 2t$
Option D:	$\cosh t + \cos 2t$
9.	Fourier coefficient a_2 for $f(x)=x$, x belongs to (-1, 1) is
Option A:	-1
Option B:	1
Option C:	0
Option D:	2
10.	Fourier coefficient b_1 for $f(x) = x$. sinx, where $x \in (0, 2\pi)$ is
Option A:	0
Option B:	π
Option C:	$-\pi$
Option D:	$\frac{\pi}{\sqrt{2}} - \frac{\pi}{\sqrt{3}}$
11.	Fourier coefficient a_0 in half range cosine series for $f(x) = e^x$, $x \in (0,1)$ is
Option A:	e+1
Option B:	-e-1
Option C:	-e+1
Option D:	e-1
12.	Value of constant real number m such that $f(z) = f(x + iy) = e^{3mx+2iy}$ is analytic function is
Option A:	2/3
Option B:	-2/3
Option C:	3/2
Option D:	-3/2

13.	For real variables x, y function $u(x, y) = 2xy$			
Option A:	does not satisfy Laplacian equation.			
Option B:	is not continuous.			
Option C:	is harmonic.			
Option D:	is continuous but not partially differentiable.			
14.	For $f(z) = sinx \cosh(y) + i \cos x \sinh(y)$, where $z = x + iy$, $f'(z)$ is			
Option A:	-sin z			
Option B:	sinh z			
Option C:	COS Z			
Option D:	cosh z			
15.	If coefficients of correlation between variables x, y is 0.5 and coefficient of regression b_{xy} is 0.2 then coefficient of correlation b_{yx} is			
Option A:	1.25			
Option B:	-1.25			
Option C:	2.5			
Option D:	-2.5			
16	If a straight line is y-ay this fitted to following data			
10.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	y 1 2 3 4 5			
	Then values of a & b are			
Option A:				
Option B:	a=1, b=1			
Option C:	a=0, b=1			
Option D:	a=-1, b=1			
17.	The coefficient of rank correlation between two variables with unequal ranks is - 0.9. If the number of pairs is 5, then the sum of squares of differences in ranks is			
Option A:	37			
Option B:	36			
Option C:	39			
Option D:	38			

18.	If random var	riable X has th	ne probability	distribution a	IS	
	Х	-2	-1	0	1	2
	P(X=x)	3k	2k	2k	k	0.2
	Then P(-2 <x< td=""><td>\leq 2) is</td><td></td><td></td><td></td><td></td></x<>	\leq 2) is				
Option A:	1					
Option B:	0.7					
Option C:	0.8					
Option D:	0.5					
19.	A random va	riable X has _I	probability dis	stribution with	h E(X) = 1.5 ,	$E(X^2) = 3$ then
	then variance	is				
Option A:	0.75					
Option B:	1.5					
Option C:	3					
Option D:	5.25					
20.	A continuo	us random	variable X	has the	probability	law $f(x) =$
	$k^2 x^3$,	$0 \le x \le 3$,	k > 0 then va	lue of k is		
Option A:	2/81					
Option B:	4/81					
Option C:	4/9					
Option D:	2/9					

				5 11	arks each	n	
(20 Marks)							
A I	Find Laplace transfe	orm of f	f(t) = sin	n²t cos³t	•		
В	Using convolution t	heorem f	ind the in $\phi(s) =$	verse Lap $\frac{s}{s^4 - 1}$	place trans	sform of	
C I	Find Fourier series	of $f(x) =$	= <i>x sinx</i> i	$\ln(-\pi,\pi)$	•		
D 1	Find an analytic function real part is $u(x, y)$	$\begin{array}{l} \text{iction } \omega \\ = x^2 - y \end{array}$	$= f(z) =$ $y^2 + 2y =$	u + iv, - sin(x).	where z = sinh (y)	= x + iy,	whose
E	Calculate Spearman coefficient of correl 5 students. Height(in inches)	i's coeffic ation from 61	cient of ra n the foll 63	owing da	ation and ta on heig 67	Pearson's ght and we	ights of
	Weight(In kgs)	64	62	65	70	72	

F	The warranty of electronic device in thousand of days has the density function $f(x) = \begin{cases} 4e^{-4x}, x > 0\\ 0, & otherwise \end{cases}$
	Find the expected warranty of the device.

Q3	Solve any Four out of Six			5 ma	rks each
(20 Marks)	, i i i i i i i i i i i i i i i i i i i				
А	Given $f(t) = \begin{cases} 4, & 0 \le x < \\ 0, & x > 3 \end{cases}$ Find $L[f(t)]$, $L[f'(t)]$.	< 3			
В	Find inverse Laplace trar	nsform of Ø	$(s) = \frac{3s^2}{s^3 + 6}$	+11s+11 s ² +11s+6	
С	Find half range sine series for $f(x) = e^{-x}$, $0 < x < 1$.				
D	In the polar coordinates, let $\omega = u + iv$, $u(r, \theta) = r^2 sin 2\theta$. Show that u satisfies Laplace's equation and find $v(r, \theta)$.				
	Fit a second degree parabolic	curve to the fo	ollowing data	a.	
Е	x 0 1	2 3	4	5	6
	y 1 1	3 7	13	21	31
F	A random variable X has the $x = 0,1,2,3,4$.Write Probabil	probability dis ity distribution	tribution <i>P</i> (. and find sta	X = x) = ndard dev	$\frac{1}{16} (4_{C_x}),$ iation.

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	Let $A = \{2,3,4,5,6\}$ and let R1,R2 be relations on A such that
	$R1 = \{(a,b) \mid a-b=2\}$ and
	$K2=\{(a,b) a+1=b \text{ or } a=2b\}$
	Find the composite relation K2.K1?
Option A:	$\{(4,3),(5,4),(6,2),(6,5)\}$
Option B:	$\{(3,2),(5,4),(4,3)\}$
Option C:	{(5,2),(6,3)}
Option D:	$\{(2,3),(3,4),(4,5),(5,6)\}$
2.	Which of the following is the correct representation of the sentence "Someone is
	liked by everyone ".
Option A:	$(\exists x)(\exists y)$ likes(x,y)
Option B:	$(\forall x)(\forall y)$ likes(x,y)
Option C:	(∃y)(∀x) likes(x,y)
Option D:	$(\forall x)(\exists y)$ likes(x,y)
3.	Draw the Hasse diagram of D30.
	i) It is Complemented Lattice
	ii) It is Distributive Lattice
	Which of the above statement is True?
Option A:	Only 1
Option B:	Only ii
Option C:	Both 1 and 11
Option D:	Neither 1 nor 11
4	Consider the set N of residue integers and let * denote the exerction of least
4.	common multiple(lcm) on N. Which of the following sentence is True?
Option A:	(N.*) is not a Semi group.
Option B:	(N,*) is commutative Semi group
Option C:	(N,*) is not commutative Semi group.
Option D:	None of the Above.
5.	How many two digits or three digits numbers can be formed using the digits

	1,2,3,4,5,6,7,8 and 9, if no digits are repeated ?				
Option A:	210				
Option B:	24				
Option C:	212				
Option D:	252				
6.	Consider the following subsets of the positive integers N. Which of the following is not closed under multiplication operation?				
Option A:	$A = \{0, 1\}$				
Option B:	E={1,3,5,}				
Option C:	C={x: x is prime}				
Option D:	$F = \{0, 1, 2\}$				
7.	If every vertex of simple graph has same degree it is called as				
Option A:	Bipartite Graph				
Option B:	Regular Graph				
Option C:	Planner Graph				
Option D:	Sub graph				
8.	The less than relation,<, on real is				
Option A:	A Partial ordering since it is asymmetric and reflexive.				
Option B:	A partial ordering since it is anti-symmetric and reflexive.				
Option C:	Not a partial ordering because it is not asymmetric and not reflexive.				
Option D:	Not a partial ordering because it is not anti-symmetric and not reflexive.				
9.	Consider set of integers from 1 to 250. Find how many of these numbers are divisible by 5 or 6 but not by 8?				
Option A:	83				
Option B:	69				
Option C:	100				
Option D:	31				
10.	Consider $G=\{1,5,7,11,17\}$ under multiplication modulo 18. Find inverse of 5, 7 and 17?				
Option A:	11,17 and 13				
Option B:	11,13 and 17				
Option C:	11, 17 and 7				
Option D:	13,11 and 7				
11.	The following graph is				
	A P C				
	F E D				
Option A:	Bipartite Graph				
Option B:	Complete Bipartite Graph				
Option C:	Eulerian Graph				
Option D:	Eulerian but not Bipartite Graph				

12.	The set of integers Z with binary operation '*' defined as $a*b=a+b+1$ for $a,b \in Z$,		
	is a group. The identity element of this group is		
Option A:	0		
Option B:	1		
Option C:	-1		
Option D:	12		
13.	How many persons must be chosen in order that at least five of them will have birthdays in the same calendar month?		
Option A:	28		
Option B:	69		
Option C:	49		
Option D:	52		
14.	Which of the following is true for above graph? i) It is Eulerian Graph ii) It is Hamiltonian Graph		
Option A:	Only i		
Option B:	Only ii		
Option C:	Both i and ii		
Option D:	Neither i nor ii		
15.	A Poset in which every pair of elements has both a least upper bound and a		
	greatest lower bound is termed as		
Option A:	Walk		
Option B:	Trail		
Option C:	Sub lattice		
Option D:	Lattice		
16.	State the type of function for following example "To each country assign the number of people living in the country"		
Option A:	Many-One		
Option B:	One-Many		
Option C:	One-One		
Option D:	Many-Many		
17.	Let P: We should be trustworthy. Q: We should be committed. R: We should be overconfident. Then 'We should be trustworthy or committed but not overconfident.' is best represented by?		

Option A:	$P V Q \wedge R$		
Option B:	~PV~QVR		
Option C:	PVQA~R		
Option D:	$P \land \sim Q \land R$		
•			
18.	Total how many Cut Vertex exists in the following graph? a b f e g g d i h		
Option A:	2		
Option B:	4		
Option C:	3		
Option D:	1		
19.	The binary relation $\{(a,a), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b)\}$ on the set $\{a,b,c\}$ is		
Option A:	irreflexive, symmetric and transitive		
Option B:	reflexive, symmetric and transitive		
Option C:	irreflexive and antisymmetric		
Option D:	neither reflexive, nor irreflexive but transitive		
20.	Which rule of inference is used in this argument?		
	"No humans can fly. John is human. Therefore John can not fly."		
Option A:	Universal instantiation		
Option B:	Existential instantiation		
Option C:	Universal generalization		
Option D:	Existential generalization		

Q2	
•	
А	Solve any 1 wo 5 marks each
i.	Let $A = \{1,2,3,4,5\}$, $R = \{(a,b) (a+b) \text{ is even}\}$. R is a relation on set A. Check
	whether R s an equivalence relation?
ii.	X={2,3,6,1,24,36}
	R on $X = \{(x,y) \in \mathbb{R}, x \text{ divides } y\}$
	a) Construct Hasse diagram
	b) Maximum and Minimal elements?
	c) Give Chain and Ant chains.
	d) Maximum length of chain?
	e) Is a poset lattice?
iii.	Define the following with suitable example
	a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planner Graph

В	Solve any One 10 marks each
i.	Define with example Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit. Determine if following diagram has Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit and state the path/circuit.
ii.	Find the number of code word generated by the parity check matrix H given below. Find all the code words generated. $H = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$

Q3.	
A	Solve any Two 5 marks each
i.	Define Isomorphic Graph. Determine if following graphs G1 and G2 are isomorphic or not.
ii.	Convert into CNF: $((P \rightarrow Q) \rightarrow R)$
iii.	Functions f,g,h are defined on a set $X=\{a,b,c\}$ as f={(a,b),(b,c),(c,a)} g={(a,b),(b,a),(b,b)} h={(a,a),(b,b),(c,a)} i) Find fog, gof . Are they equal? ii) Find fogoh and fohog?
В	Solve any One 10 marks each
i.	Prove that (z5,+5) is a Abelian group.
ii.	Solve the recurrence relation for Fibonacci sequence 1,1,2,3,5,8,13.

Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: COMPUTER ENGINEERING

Curriculum Scheme: Rev2019

Examination: SE Semester: III

Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which data structure has fixed size?
Option A:	Array
Option B:	Linked List
Option C:	Graph
Option D:	Tree
2.	The result of evaluating the postfix expression 59+84-*8/
Option A:	6
Option B:	7
Option C:	5
Option D:	4
3.	What will be the output of the following program? void main () { char str [] ="STRUCTURE":
	int len = strlen(str); int i;
	<pre>for (i=0; i<len; ();="" (i="0;" an="" element="" for="" from="" i++="" i++)="" i<len;="" into="" pop="" pops="" pre="" push(str[i]);="" pushes="" stack="" the="" }<=""></len;></pre>
Option A:	ERUTCURTS
Option B:	CTURESTRU
Option C	EUCRSTUTR
Option D:	STRUCTURF
Option D.	
4.	Which data structure is also known as a head tail linked list because elements can be added to or removed from the front (head) or back (tail)? However, no element can be added or deleted from the middle.
Option A:	Circular queue

Option B:	Stack
Option C:	Deque
Option D:	Priority queue
5.	A circular queue is implemented using an array of size 15. The array index starts with 0, front is 10, and rear is 14. The insertion of next element takes place at which array index?
Option A:	15
Option B:	1
Option C:	0
Option D:	11
6.	What will the output of the following function if nodes present in linked list are $6 \rightarrow 5 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow \text{NULL}$ and START points the first node.
	void fun (struct node* START)
	if(START == NULL)
	return:
	fun (START \rightarrow next):
	printf ("%d", START \rightarrow data):
	}
Option A:	6.5.2.8.9
Option B:	982.56
Option C:	96528
Option D:	98265
option Di	
7.	What is the output of following function if start pointing to first node of following linked list? $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow \text{NULL}$
	void fun (struct node* start)
	$\int_{\mathcal{A}} \frac{1}{\int_{\mathcal{A}} \frac{1}{$
	return:
	$\operatorname{printf}("%d" \operatorname{start})$
	printi (/ou , start / uata),
	if (start→next! = NULL)
	fun(start \rightarrow next):
	printf ("%d " start \rightarrow data):
	}
Option A.	6.5.4.3.2.1.6.5.4.3.2.1
Option B:	1.3.5.5.3.1.1.3.5.5.3.1
Ontion C	135246135246
Option D	123456654321
Option D.	
8	Which type of linked list has no beginning and no ending
Ontion Δ .	Circular Linked List
Option R.	Doubly Linked List
Option C.	Singly Linked List
Option D	Multi Linked List

9.	In a doubly linked list, the number of pointers affected for an insertion operation
	in middle will be
Option A:	1
Option B:	4
Option C:	0
Option D:	2
10.	struct node *ptr = start->next;
	what "ptr" will contain if it is variable of type struct node? (start points to first
Option A:	Address of second node
Option B:	Address field of second node
Option C:	Data of second node
Option D:	Data fields of second field
11	
11.	what are the number of nodes in left and right sub-tree of the root node if the data
	18 inserted in the following order in binary search tree 45, 15, 8, 50, 64, 65, $4/$, 12, 50, 10, 72, 50, 16, 612
Ontion A.	
Option R:	
Option B:	/,0
Option C:	δ,5 5.9
Option D:	5,8
12	Consider the following gode segment in C to traverse a hinery tree using the
12.	breader
	preorder
	void preorder (node *tree)
	$\mathbf{i} \mathbf{f}(\mathbf{t})$
	Statement1
	Statement2
	Statement3
	}
	The above Statements should be,
Option A:	printf("%d", tree->info);
	preorder(tree->right);
	preorder(tree->left);
Option B:	preorder(tree->left);
	preorder(tree->right);
	printf("%d", tree->info);
Option C:	preorder(tree->left);
	printf("%d", tree->info);
	preorder(tree->right);
Option D:	printf ("%d", tree->info);
	preorder(tree->left);
	preorder(tree->right);

13.	A BST is traversed in the following order recursively: Right, root, left		
	The output sequence will be in,		
Option A:	Ascending order		
Option B:	Descending order		
Option C:	No specific sequence		
Option D:	Random sequence		
14.	What is the maximum possible number of nodes in a binary tree at level 6?		
Option A:	64		
Option B:			
Option C:	48		
Option D:	80		
1.5			
15.	Assume that a structure for a Binary Search Tree exists. What does the following		
	function do?		
	int function (no at)		
	i ptr = root:		
	pu = 100i, while (ntr sleft = NUU L)		
	$\begin{cases} \text{while (pul->left:= NOLL)} \\ \end{cases}$		
	h ntr = ntr->left		
	return(ptr->data):		
	}		
Option A:	Leftmost child of BST		
Option B:	Rightmost child of BST		
Option C:	It gives error		
Option D:	Root of BST		
16.	When in-order and post-order traversing a tree resulted D, B, E, A, C, G, F and D,		
	E, B, G, F, C, A respectively. the pre-order traversal would return:		
Option A:	A, B, C, F, G, D, E		
Option B:	A, D, E, B, C, F, G		
Option C:	A, B, D, E, C, F, G		
Option D:	A, B, G, F, D, E, C		
17.	What is the number of edges present in a complete graph having n vertices?		
Option A:	(n*(n+1))/2		
Option B:	n		
Option C:	(n-1)/2		
Option D:	(n*(n-1))/2		
18.	What is the maximum possible number of edges in a directed graph with no self-		
	loops having 7 vertices?		
Option A:	28		
Option B:	35		
Option C:	42		
Option D:	56		

19.	Using division method, in a given hash table of size 153, the key of value 172 be
	placed at position.
Option A:	19
Option B:	72
Option C:	17
Option D:	15
20.	What are the values of $h_1(k)$ and $h_2(k)$ in the double hashing?
Option A:	$h1(k) = (m \mod k) \text{ and } h2(k) = 1 + (m' \mod k)$
Option B:	$h1(k) = (1 + (m \mod k)) \text{ and } h2(k) = m' \mod k$
Option C:	$h1(k) = (k \mod m) \text{ and } h2(k) = k \mod m'$
Option D:	$h1(k) = (k \mod m) \text{ and } h2(k) = 1 + (k \mod m')$

Q2	Solve any Four out of Six	5 marks each
(20 Marks Each)		
А	Write a C program to test if a string is a palindrome or not using a stack data structure (Note: palindromes ignore spacing, punctuation, and capitalization)	
В	Write a C program that compresses a string by deleting all space characters in the string using queue data structure	
С	Give the breadth-first traversal of the graph for following g from vertex 0. Show all the steps.	raph, starting
D	Consider a hash table with size = 10. Using quadratic probikeys 27, 72, 63, 42, 36, 18, 29, 101 into the table. Take c1 =	ng, insert the $= 1$ and $c2 = 3$.
E	Explain types of data structure with example	
F	Write an algorithm to convert infix expression to postfix ex stepwise execution of algorithm for converting infix express expression for following expression A * B + C * D	preesion. Show sion to postfix

Q3.	Solve any Two Questions out of Three10 marks each	
(20 Marks Each)		
	Create an AVL tree using the following data entered as a sequential se	et.
А	Show all the steps. 15, 20, 24, 10, 13, 7, 30, 36, 25. Show which rotati	ons
	are used while constructing AVL tree.	
	Write a C program for Singly Linked list for performing following	
	operations	
D	i. Create SLL	
D	ii. Display SLL	
	iii. Delete a node from SLL	
	iv. Append two SLLs	
C	Draw the B-tree of order 3 created by inserting the following data arri	ving
C	in sequence: 92 24 6 7 11 8 22 4 5 16 19 20 78	

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour

Max. Marks: 80

Q1. 40 Marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2 marks each)
1	
	Convert number(723.17) ₈ into equivalent nexadecimal number
Option A:	(0D3.3C)16
Option B:	(1D3.3C)16
Option C:	(1E3.3C)16
Option D:	(1D3.4C)16
2.	What is the equivalent of (52)10 in Gray code
Option A:	110100
Option B:	1011101
Option C:	111000
Option D:	101110
3.	As per_Boolean Laws which of the expressions results in 0
	(i) A+A
	(ii) A.A
	(iii)A.0
	(iv) A. 1
Option A:	ii only
Option B:	ii &iii
Option C:	iii only
Option D:	ii,iii,iv
4.	For 4 bit number what is the range of 2's complement representation? Also perform
	(5) ₁₀ -(7) ₁₀ using 2's complement method
Option A:	-7 to +7 , 1101
Option B:	-8 to +8 , 1110
Option C:	-8 to +7 , 1110
Option D:	-7 to +8 , 1101
5.	Arrange the steps for obtaining IEEE representation of floating point in proper

	format
	1) calculate the biased exponent
	2) convert to binary
	3) convert to normalized form
Option A:	1,2,3
Option B:	3,2,1
Option C:	2,3,1
Option D:	2,1,3
6.	In Restoring division Algorithm if A<0 then which of the following is immediate
	step (Assume M as Dividend Q as Divisor and A as result)
Option A:	Q ₀ =0
Option B:	A= A +M
Option C:	Q ₀ =0 & A=A-M
Option D:	Q ₀ =0 & A=A+M
7.	In full adder, Boolean expression of sum will be
Option A:	S=A XOR B
Option B:	S=A XOR B
Option C:	S = A XOR B XOR C
Option D:	S = A XOR B XOR C
8.	Which of the following Twos Complement binary numbers is equivalent to decimal –75 ?
Option A:	1001011
Option B:	1001100
Option C:	0001100
Option D:	0110101
- 1	
9.	Identify the type of addressing mode
	Instruction
	OPCODE Address
	memory
	Pointer to operand
	Operand
	Operand
Option A.	Register Addressing mode
Option B:	Register Indirect Addressing mode
Option C:	Direct Addressing mode
Option D:	Indirect Addressing mode
Spassi D.	

10.	Choose appropriate sequence of instruction cycle
Option A:	Instruction fetch, Instruction address calculation, Instruction decode, operand address calculation, fetch operand, data operation, operand address calculation, operand store
Option B:	Instruction address calculation, Instruction fetch, operand address calculation fetch operand, Instruction decode, data operation, operand address calculation and operand store
Option C:	Instruction address calculation , Instruction fetch, Instruction decode, operand address calculation , fetch operand, data operation , operand address calculation, operand store
Option D:	Instruction address calculation, Instruction fetch, Instruction decode, operand address calculation, fetch operand, operand address calculation, operand store, data operation
11.	Basic task for control unit is
Option A:	To perform logical operations
Option B:	Execution
Option C:	To initiate the resources
Option D:	To decode instructions and generate control signal
opuonizi	
12.	A micro instruction has
Option A:	Control field
Option B:	Address field
Option C:	Status field
Option D:	Both control and address field
1	
13.	Microprogram consisting of is stored in control memory of control unit
Option A:	instructions
Option B:	micro instructions
Option C:	micro program
Option D:	macro program
-	
14.	In memory Hierarchy which is the fastest memory
Option A:	SRAM
Option B:	DRAM
Option C:	Register
Option D:	Cache
15.	The correspondence between the main memory blocks and those in the cache is
	given by
Option A:	Mapping function
Option B:	Hash function
Option C:	Locale function
Option D:	Assign function
16.	Consider a direct mapped cache of size 64 KB with block size 16 bytes. The CPU generates 28-bit addresses. The number of bits needed for cache indexing are

	respectively are:	
Option A:	13	
Option B:	10	
Option C:	12	
Option D:	11	
17.	In Instruction Pipelining Structural Hazard means	
Option A:	any condition in which either the source or the destination operands of an	
	instruction are not available at the time expected in the pipeline	
Option B:	a delay in the availability of an instruction causes the pipeline to stall	
Option C:	the situation when two instructions require the use of a given hardware resource at	
	the same time.	
Option D:	When a data gets overwritten by branching	
18.	Identify the Type of Flynn's Classification of Parallel Processing	
	Instruction Memory Control Unit Processing Unit Data Memory	
	Instruction Stream Data Stream	
	Instruction Memory Control Unit Processing Unit Data Memory	
	Instruction Stream Data Stream	
	Instruction Memory	
	Instruction Stream Data Stream	
Option A:	SISD	
Option B:	SIMD	
Option C:	MISD	
Option D:	MIMD	
1		
19.	To resolve the clash over the access of the System Bus we use	
Option A:	BUS arbitrator	
Option B:	Multiple BUS	
Option C:	Priority access	
Option D:	virtual access	
20.	SIMD represents an organization that	
Option A:	refers to a computer system capable of processing several programs at the same	
	time.	
Option B:	represents organization of single computer containing a control unit, processor unit	
	and a memory unit.	
Option C:	includes many processing units under the supervision of a common control unit	
Option D:	includes many processing units with many control unit.	

Q2	Solve any Four out of Six (5 marks each)
20 Marks	
A	Show the mathematical step for the following conversion

	i) Convert decimal (123.25) to its equivalent octal
	ii) Convert decimal (123.25) to its equivalent hexadecimal
	iii) Convert Hexadecimal (ABCD) to its equivalent binary
	iv) Convert binary (10111100) to equivalent gray code
	v) Convert decimal (1543) to Excess-3 code
В	Write short note on Von-Neumann Model
C	Explain the single and double precision format for representing floating point
C	number using IEEE 754 standards
D	Define Instruction cycle. Explain it with a detailed state diagram.
Е	Differentiate between static RAM and dynamic RAM.
F	What are the functions of following Register
	1. IR 2. PC 3. MAR 4. MDR 5. SP

03	
Q 3.	
20 marks	
Α	Solve any Two Questions out of Three (5 marks each)
i)	Write micro program for the instruction ADD A, B (Register A and B are added and result is stored at Register A.)
ii)	Differentiate between Hardwired control unit and Micro programmed control unit
iii)	Explain memory Hierarchy
В	Solve any One Question out of two (10 marks each)
i)	A program having 10 instructions (without Branch and Call instructions) is executed on non-pipeline and pipeline processors. All instructions are of same length and having 4 pipeline stages and time required to each stage is 1nsec. (Assume the four stages as Fetch Instruction ,Decode Instruction, Execute Instruction, Write Output) i. Calculate time required to execute the program on Non-pipeline and Pipeline processor. Ii Show the pipeline processor with a diagram.
ii)	Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using this Algorithm

Examination 2020 under cluster ____ (Lead College: ______)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC305 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In mid point ellipse method, coordinate of points lying on ellipse are calculated in
Option A:	One quadrant first and others by successive rotation
Option B:	One quadrant first and others by successive reflection
Option C:	One quadrant first and others by successive translation
Option D:	All quadrants
2.	In DDA line drawing method, for lines having negative slope with absolute value greater than 1 and taking right end point as starting point, the X and Y coordinate increments are
Option A:	1/m and -1
Option B:	-1/m and 1
Option C:	-1 and -m
Option D:	1 and m
3.	In Homogenous Coordinate System, all Transformations are captured by
Option A:	Addition
Option B:	Subtraction
Option C:	Multiplication
Option D:	Division
4.	In Liang Barsky line clipping method, for a parallel lines, k indicates window boundary if
Option A:	$P_k > 0$
Option B:	$P_k < 0$
Option C:	$P_k = 0$
Option D:	$P_k \neq 0$
5.	What is the 1^{st} point on the circumference of the circle centered at (10,10) with
	radius = 10, using midpoint circle method
Option A:	(0, 10)
Option B:	(1,10)
Option C:	(1,9)
Option D:	(10,20)
6.	Coordinates of clipping window are $(4,4)$ and $(9,8)$. A line is drawn from point A(2,2) to point B(12,9). The result of logical AND operation on the region codes

	is
Option A:	0101
Option B:	1010
Option C:	1111
Option D:	0000
•	
7.	A circle is drawn at (30.30) with radius = 10. Its mirror image cannot be obtained
	by
Option A:	Rotation by 90 ⁰ .
Option B:	Reflection about Y-axis
Option C:	Translation by $T_{\rm x} = 60$ and $T_{\rm y} = 0$
Option D:	Scaling by $S_x = -1$ and $S_y = 1$
option D.	
8	A conceptual line is drawn starting from the particular point and extending to a
0.	distance point outside the coordinate extends of the object in direction of X-axis
	the line intersects twice with the polygon edges and once with the polygon vertex
	Then according to inside outside test, the point lies
Option A:	Outside the polygon
Option B:	Inside the polygon
Option C:	On the boundary of the polygon
Option D:	Cannot say
option D.	
9	To clip concave area, which of the following algorithm is best suited
Ontion A:	Cohen Sutherland line clipping method
Option R:	Liang harsky line clipping method
Option C:	Sutherland Hodgeman polygon clipping method
Option D:	Weiler Atherton polygon clipping method
Option D.	wener Auterton porygon enpping method
10	In depth buffer method, when $z > depth of (x, y)$
Option A:	Point is visible
Option B:	Z value is not stored in depth buffer
Option C:	Z value is stored as surface intensity value
Option D:	Z value is stored in depth buffer
option D.	
11.	Give the series of transformation required to rotate an object about any arbitrary
	axis not parallel to any one of the coordinate axes in 3D space
Option A:	$\mathbf{R} = [\mathbf{T}] [\mathbf{R}_{x}] [\mathbf{R}_{y}] [\mathbf{R}_{z}] [\mathbf{R}_{y}^{-1}] [\mathbf{R}_{x}^{-1}] [\mathbf{T}^{-1}]$
Option B:	$\mathbf{R} = [\mathbf{T}] [\mathbf{R}_{v}] [\mathbf{R}_{z}] [\mathbf{R}_{v}] [\mathbf{R}_{v}^{-1}] [\mathbf{R}_{v}^{-1}] [\mathbf{T}^{-1}]$
Option C:	$\mathbf{R} = [\mathbf{T}] [\mathbf{R}_{v}] [\mathbf{R}_{z}] [\mathbf{R}_{x}] [\mathbf{R}_{v}^{-1}] [\mathbf{R}_{z}^{-1}] [\mathbf{T}^{-1}]$
Option D:	$\mathbf{R} = [\mathbf{R}_{x}][\mathbf{R}_{v}][\mathbf{R}_{z}][\mathbf{T}] [\mathbf{R}_{x}^{-1}] [\mathbf{R}_{v}^{-1}] [\mathbf{R}_{z}^{-1}]$
12.	In window to viewport mapping, which of the following set of transformations
	are involved
Option A:	Translation and scaling
Option B:	Scaling and rotation
Option C:	Scaling and reflection
Option D:	Rotation and translation
13.	What happens when in 3D space uniform scaling with respect to origin is
	performed,
	I) Original shape of object may change

	II) Original position of object may change
Option A:	Only I
Option B:	Only II
Option C:	Both I and II
Option D:	Neither I nor II
14.	Which of the following input is accepted only by Boundary Fill method and not
	by Flood fill method
Option A:	Fill color
Option B:	Background color
Option C:	Edge color
Option D:	Seed pixel
15.	To convert a square into a parallelogram, which transformation is used
Option A:	Scaling
Option B:	Shear
Option C:	Scaling followed by rotation
Option D:	Kotation
16	Which of the following is not a property of Bezier curve
Option Δ	Bezier curves are multivalued
Option R:	A Bezier curve is independent of the coordinate system used to measure the
option D.	location of control points.
Option C:	Bezier curves provide global control.
Option D:	Bezier curves are not variation diminishing
•	
17.	Which of the following statement does not define computer graphics
Option A:	The technology that deals with designs and pictures on computers.
Option B:	Visual images or designs on some surface such as wall, paper to inform, illustrate
	or entertain.
Option C:	Almost everything on computer that is not text or sound.
Option D:	It is an art of drawing pictures on a computer screen with the help of
	programming.
10	Einst meflest a maint about a serie than a sefermer a second and a sharing metation of
18.	First reflect a point about x-axis, then perform a counter clock wise rotation of 00^0 this is equivalent to
Option A:	Reflection about a line X–V
Option R:	Reflection about a line $X = Y$
Option C:	Rotation about a line $X=Y$
Option D:	Rotation about a line X=-Y
opuonizi	
19.	What is the length of Koch curve after second Approximation
Option A:	16/9
Option B:	24/9
Option C:	8/6
Option D:	64/27
20.	Let N be the normal vector of the plane surface with N=(A,B,C). For a plane to be
	a back face
Option A:	C <= 0

Option B:	C >= 0
Option C:	C < 0
Option D:	C > 0

Q.2 A	Solve any Two 5 marks each
i.	What is computer graphics? Discuss application areas in computer graphics
ii.	Write a boundary fill procedure to fill a polygon using 8-connected
	approach.
iii.	Derive the composite matrix to scale an object with respect to a fixed point
Q.2 B	Solve any One 10 marks each
i.	Given radius $r = 12$ and center coordinates (50,50), compute the
	coordinates of points lying on the circle using Mid point circle algorithm
ii.	Derive transformation matrix for perspective projection.

Q.3 A	Solve any Two	5 marks each
i.	What is aliasing and explain any one antialiasing technique.	
ii.	Prove that 2D rotations are additive	
iii.	Define the following terms with suitable example/diagram	
	a. Variation diminishing property	
	b. Order of continuity	
Q.3 B	Solve any One	10 marks each
i.	Define window, viewport and derive the equations for windo	ow to viewport
	transformation	
ii.	What is keyframing and explain character and facial animati-	on

University of Mumbai Examination 2021 under cluster __ (Lead College: _) Examinations Commencing from 10th April to 17th April 2021 Program: Computer Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III Course Code: CSC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace Transform of <i>e</i> ^{2t} <i>cos</i> 2 <i>t</i> is
Option A:	s-2
	$s^2 - 2s + 8$
Option B:	$\frac{s+2}{2}$
Ontion C.	$\frac{s^2 - 2s + 8}{s - 2}$
option c.	$\frac{1}{s^2 + 2s + 8}$
Option D:	s-2
	$s^2 + 2s + 4$
2.	If $f(x) = \frac{1}{2}(\pi - x), 0 < x < 2\pi$ then a_0 is
Option A:	2
	$\frac{1}{\pi}$
Option B:	0
Option C:	$\frac{\pi}{-}$
Ontion Di	2
Option D.	
	π
3.	If $f(z) = u + iv$ is analytic then
Option A:	u is harmonic but v may or may not be harmonic.
Option B:	v is harmonic but u may or may not be harmonic.
Option C:	u and v both need not be harmonic.
Option D:	<i>u</i> and <i>v</i> both are harmonic.
4.	If $Var(X) = 4$ then $Var(3x+4)$ is
Option A:	12
Option B:	20
Option C:	26
Option D:	36
5.	If $f(x)$ is an even function in the interval $(-l, l)$ then the Fourier coefficients are

Option A:	$a_n = 0, b_n = 0.$
Option B:	$a_n = 0, a_0 = 0.$
Option C:	$b_n = 0$
Option D:	$a_0 = 0, b_n = 0$
•	
6.	Find $L^{-1}\left(\frac{s+2}{s^2+4s+13}\right)$
Option A:	$e^{2t}cos3t$
Option B:	$e^{2t}sin3t$
Option C:	$e^{-2t}cos3t$
Option D:	cos3t
7.	Find an analytic function whose real part is $u = x^3 - 6x^2y^2 + y^3$
Option A:	$f(z) = z^3 + c$
Option B:	$3z^{3} + c$
Option C:	$-z^3+c$
Option D:	$3z^2 + c$
8.	Find $L^{-1}\left(\frac{1}{3s-7}\right)$
Option A:	$\left \frac{1}{3}(e^{(7/3)t})\right $
Option B:	$\left \frac{-1}{3}(e^{(5/3)t})\right $
Option C:	$\frac{1}{3}(e^{(-7/3)t})$
Option D:	$\frac{1}{3}(e^{(5/3)t})$
9.	A variate x has the following probability distribution
	x : -3 6 9
	P(x): 1/6 1/2 1/3
	Find E(X).
Option A:	1/2
Option B:	11/2
Option C:	3/2
Option D:	15/2
10	If $h = 0.7764$, $h = 1.2221$ then coefficient of some lattice
	If $p_{yx} = 0.7/64$, $p_{xy} = 1.2321$ then coefficient of correlation
Option A:	0.9/81
Option B:	1.2207
Option D:	0.0022
	0.0025
11.	Find the Laplace Transform of $\frac{cos_2t-cos_3t}{t}$
Option A:	$\frac{1}{2}\log\left(\frac{s^2+9}{s^2+4}\right)$
Option B:	$\frac{1}{2}\log\left(\frac{s^2+4}{s^2+9}\right)$

Option D: $\frac{1}{2} log \left(\frac{s^2 - 4}{s^2 + 9}\right)$ 12. If two variables oppose each other then the correlation will be Option A: Positive correlation Option D: Zero correlation Option D: Negative correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option B: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option C: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option C: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 1.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function f(x) = kx^2, 0 \le x \le 2, then the value of k is Option A: $\frac{1}{4}$ Option B: 3/8 Option B: 3/8 Option D: $\frac{1}{7}$ If $x^2 = \frac{\pi^2}{4} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ the a_n and b_n are Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option C:	$\frac{1}{2}\log\left(\frac{s^2-4}{s^2-9}\right)$
12.If two variables oppose each other then the correlation will beOption A:Positive correlationOption B:Zero correlationOption C:Perfect correlationOption D:Negative correlation13.Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option B: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option C: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2d} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2d} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ I4.The limits for coefficient of correlation areOption A: $-1 \le r \le 0.$ Option D: $0 \le r \le 1.$ I5.The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ isOption A: $\frac{1}{4}$ Option B:0Option C: $\frac{2}{3}$ Option B:0Option C: $\frac{2}{3}$ Option B:0Option B:0Option B: 3^{28} Option B: 3^{28} Option B: 3^{28} Option D: $5'3$ 17.If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then $a_n = 0$	Option D:	$\frac{1}{2}\log\left(\frac{s^2-4}{s^2+9}\right)$
12. If two variables oppose each other then the correlation will be Option A: Positive correlation Option B: Zero correlation Option D: Negative correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option B: $\frac{1}{2l} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option C: $\frac{1}{2l} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2r} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2r} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2$. Option B: $-1 \le r \le 0$. Option B: $-1 \le r \le 1$. 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $8/3$ Option B: $3/8$ Option B: $3/8$ Option C: 1 Option D: $5/3$ 17. If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n are Option A: $a_n = 4 \sum (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$		
Option A: Positive correlation Option B: Zero correlation Option C: Perfect correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option B: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option C: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2$. Option B: $-1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $8/3$ Option B: $3/8$ Option D: $5/3$ 17. If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4 \sum_{0}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	12.	If two variables oppose each other then the correlation will be
Option B: Zero correlation Option C: Perfect correlation Option D: Negative correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} f(x) ^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option B: $\frac{1}{2l} \int_{c}^{c+2\pi} f(x) ^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option C: $\frac{1}{2t} \int_{c}^{c+2\pi} f(x) ^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2\pi} \int_{c}^{c+2\pi} f(x) ^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2$. Option B: $-1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 2. 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8/3}{3}$ Option D: $5/3$ 17. If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are	Option A:	Positive correlation
Option C: Perfect correlation Option D: Negative correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option B: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option C: $\frac{1}{2r} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$. 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2$. Option B: $-1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option B: 0 Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8/3}{3}$ Option B: $\frac{1}{2}$ 17. If $x^2 = \frac{\pi^2}{2} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n are Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option B:	Zero correlation
Option D: Negative correlation 13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option B: $\frac{1}{2t} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2t} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 0.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $8/3$ Option B: $3/8$ Option B: 1 17. If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n} = 0$	Option C:	Perfect correlation
13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c+2l} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option B: $\frac{1}{2l} \int_{c}^{c+2r} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option D: $\frac{1}{2n} \int_{c}^{c+2r} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option D: $\frac{1}{2\pi} \int_{c}^{c+2r} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 2.$ Option D: $0 \le r \le 1.$ Option D: $0 \le r \le 1.$ Option A: $-1 \le r \le 2.$ Option A: $-1 \le r \le 1.$ Option A: $-1 \le r \le 1.$ Option A: $\frac{1}{4}$ Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{1}{2}$ Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option A: $8/3$ Option B: $3/8$ Option D: $\frac{1}{2}$ 17. If $x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then a_{n} and b_{n} are Option A: $a_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$, $b_{n} = 0$	Option D:	Negative correlation
13. Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$ Option A: $\int_{c}^{c^{+2l}} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option B: $\frac{1}{2l} \int_{c}^{c^{+2l}} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option C: $\frac{1}{2l} \int_{c}^{c^{+2l}} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option D: $\frac{1}{2\pi} \int_{c}^{c^{+2\pi}} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 1.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^{2}) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option A: $\frac{8/3}{3}$ Option D: $\frac{1}{2}$ 17. If $x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then $a_{n}and b_{n} are$ Option A: $a_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then $a_{n}and b_{n} are$		
Option A: $ \int_{c}^{c+21} f(x) ^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}). $ Option B: $ \frac{1}{2l} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}). $ Option D: $ \frac{1}{2n} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}). $ Option D: $ \frac{1}{2n} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}). $ Option A: $ \frac{1}{2n} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}). $ I4. The limits for coefficient of correlation are Option A: $ -1 \le r \le 2. $ Option B: $ -1 \le r \le 1. $ Option D: $ 0 \le r \le 1. $ I5. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^{2}) dt$ is Option A: $ \frac{1}{4} $ Option B: 0 Option C: $ \frac{2}{3} $ Option D: $ \frac{1}{2} $ I6. A continuous random variable X has the following probability mass function $ f(x) = kx^{2}, 0 \le x \le 2, \text{ then the value of } k \text{ is} $ Option A: $ \frac{8/3}{3} $ Option D: $ \frac{1}{7}. $ If $x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{\pi^{2}} \text{ then } a_{n} and \ b_{n} \ are$ Option A: $ a_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{\pi^{2}} + b_{n} = 0 $	13.	Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$
Option B: $\frac{1}{2l} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option C: $\frac{1}{2l} \int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ Option D: $\frac{1}{2n} \int_{c}^{c+2r} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 1.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^2) dt$ is Option A: $\frac{1}{4}$ Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2, \text{ then the value of } k \text{ is}$ Option B: $\frac{3/8}{0ption C:}$ 17. If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2} \text{ then } a_n and b_n are$ Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n} + b_n = 0$	Option A:	$\int_{c}^{c+2l} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$
Option C: $\frac{1}{2L} \int_{c}^{c+2l} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ Option D: $\frac{1}{2\pi} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 1.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^{2}) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2,$ then the value of k is Option A: $\frac{8/3}{3}$ Option C: 1 Option D: $\frac{1}{2}$ 17. If $x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then $a_{n} and b_{n} are$ Option A: $a_{n} = 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$	Option B:	$\frac{1}{2l}\int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
Option D: $\frac{1}{2\pi} \int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$ 14. The limits for coefficient of correlation are Option A: $-1 \le r \le 2.$ Option B: $-1 \le r \le 1.$ Option D: $0 \le r \le 1.$ 15. The value of $\int_{0}^{\infty} e^{-2t} (1 - t^{2}) dt$ is Option A: $\frac{1}{4}$ Option A: $\frac{1}{4}$ Option B: 0 Option D: $\frac{1}{2}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option B: $3/8$ Option C: 1 Option D: $\frac{1}{2}$ 17. If $x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then $a_{n}and b_{n} are$ Option A: $a_{n} = 4 \sum_{n=1}^{\infty} (cosnx)$	Option C:	$\Big \frac{1}{2l} \int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
14.The limits for coefficient of correlation areOption A: $-1 \le r \le 2$.Option B: $-1 \le r \le 1$.Option C: $-1 \le r \le 1$.Option D: $0 \le r \le 1$.15.The value of $\int_0^\infty e^{-2t}(1-t^2)dt$ isOption A: $\frac{1}{4}$ Option B:0Option D: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16.A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k isOption A: $\frac{8/3}{3}$ Option B: $\frac{3}{8}$ Option D:116.f(x) = kx^2, 0 \le x \le 2, then the value of k isOption D: $\frac{1}{2}$ 17.If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option D:	$\frac{1}{2\pi}\int_{c}^{c+2\pi} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2}\sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$
Option A: $-1 \le r \le 2$. Option B: $-1 \le r \le 2$. Option D: $0 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_0^{\infty} e^{-2t} (1-t^2) dt$ is Option A: $\frac{1}{4}$ Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option C: 1 Option C	1/1	The limits for coefficient of correlation are
Option B: $-1 \le r \le 0$. Option C: $-1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_0^\infty e^{-2t}(1-t^2)dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option B: $3/8$ Option B: $3/8$ Option D: $5/3$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option A:	-1 < r < 2
Option D: $1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_0^\infty e^{-2t} (1-t^2) dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option B: $3/8$ Option B: $3/8$ Option D: $5/3$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$ then $a_n and b_n are$ Option A: $a_n = 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option B:	-1 < r < 0
Option D: $1 \le r \le 1$. Option D: $0 \le r \le 1$. 15. The value of $\int_0^\infty e^{-2t}(1-t^2)dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option D: $\frac{1}{2}$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^\infty (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option C:	-1 < r < 1
15. The value of $\int_{0}^{\infty} e^{-2t}(1-t^{2})dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option D: $\frac{1}{2}$ 17. If $x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$ then $a_{n}and b_{n} are$ Option A: $a_{n} = 4\sum_{n=1}^{\infty} (-1)^{n} \frac{cosnx}{n^{2}}$, $b_{n} = 0$	Option D:	0 < r < 1.
15. The value of $\int_{0}^{\infty} e^{-2t}(1-t^{2})dt$ is Option A: $\frac{1}{4}$ Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option C: 1 Option D: $\frac{5}{3}$ $\frac{17.}{11}$ If $x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty}(-1)^{n}\frac{cosnx}{n^{2}}$ then $a_{n}and b_{n} are$ Option A: $a_{n} = 4\sum_{n=1}^{\infty}(-1)^{n}\frac{cosnx}{n^{2}}$, $b_{n} = 0$	1	
Option A: $ \frac{1}{4} $ Option B: Option C: $ \frac{2}{3} $ Option D: $ \frac{1}{2} $ 16. A continuous random variable X has the following probability mass function $ f(x) = kx^2, 0 \le x \le 2, \text{ then the value of } k \text{ is} $ Option A: $ \frac{8/3}{3} $ Option B: $ \frac{3/8}{3} $ Option C: 1 Option D: $ \frac{5/3}{3} $ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2} \text{ then } a_n and \ b_n \ are$ Option A: $ a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{2}, \ b_n = 0 $	15.	The value of $\int_0^\infty e^{-2t}(1-t^2)dt$ is
Option B: 0 Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option D: $\frac{5}{3}$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$	Option A:	$\frac{1}{4}$
Option C: $\frac{2}{3}$ Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option D: $\frac{5}{3}$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$	Option B:	0
Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option D: $\frac{5}{3}$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	Option C:	2
Option D: $\frac{1}{2}$ 16. A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is Option A: $\frac{8}{3}$ Option B: $\frac{3}{8}$ Option C: 1 Option D: $\frac{5}{3}$ 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$		3
16. A continuous random variable X has the following probability mass function $f(x) = kx^{2}, 0 \le x \le 2$, then the value of k is Option A: 8/3 Option B: 3/8 Option D: 5/3 17. If $x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{n^{2}}$ then a_{n} and b_{n} are Option A: $a_{n} = 4\sum_{n=1}^{\infty} (-1)^{n} \frac{\cos nx}{n}$, $b_{n} = 0$	Option D:	1
16.A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k isOption A: $8/3$ Option B: $3/8$ Option C:1Option D: $5/3$ 17.If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n areOption A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$		2
Option A:8/3Option B:3/8Option C:1Option D:5/317.If $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$ then a_n and b_n areOption A: $a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{cosnx}{n^2}$, $b_n = 0$	16.	A continuous random variable X has the following probability mass function $f(x) = kx^2, 0 \le x \le 2$, then the value of k is
Option B: 3/8 Option C: 1 Option D: 5/3 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$	Option A:	8/3
Option C: 1 Option D: 5/3 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2} + b_n = 0$	Option B:	3/8
Option D: 5/3 17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$	Option C:	1
17. If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2} + b_n = 0$	Option D:	5/3
$\frac{1}{1} \text{ If } x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2} \text{ then } a_n \text{ and } b_n \text{ are}$ Option A: $a_n = 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2} + b_n = 0$	17	-2
Option A: $a_n = 4 \sum_{n=0}^{\infty} (-1)^n \frac{\cos nx}{\cos n}$, $b_n = 0$	17.	If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are
$\sum_{n=1}^{\infty} n^2$	Option A:	$a_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, $b_n = 0$

Option B:	$a_n = 0, b_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$
Option C:	$a_n = 0b_n = \frac{\pi^2}{3}$
Option D:	$a_n = \frac{\pi^2}{3}, \ b_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$
18.	Find $L^{-1}\left[log\left(\frac{s+1}{s+3}\right)\right]$.
Option A:	$\frac{-1}{t}(e^{-t}-e^{-3t}).$
Option B:	$\frac{-1}{2t}(e^{-t}-e^{-3t}).$
Option C:	$\frac{-1}{t}(e^t - e^{-3t}).$
Option D:	$\frac{1}{t}(e^{-t}-e^{-5t}).$
	<i>h</i>
19.	Find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$
Option A:	$\frac{1}{4}(1-\cos 2t)$
Option B:	(1 + cos2t)
Option C:	$\frac{1}{4}(1-\sin 2t)$
Option D:	$\frac{1}{4}(1+cost)$
20.	Find the constant 'a' if $f(z) = ax^2y - y^3 + i(3xy^2 - x^3)$ is analytic
Option A:	a = 0
Option B:	<i>a</i> = 3
Option C:	a = 6
Option D:	a = 2

Q2.	Solve any Four out of Six5 marks each
(20 Marks)	
А	Fit a straight line to the following data
	(X,Y) = (1,-5),(1,1),(2,4),(3,7),(4,10)
В	Find half range cosine series for $f(x) = x(\pi - x)$, $0 < x < \pi$
С	Find $L^{-1}\left[\frac{1}{(s+3)(s-4)^2}\right]$ using convolution theorem.
D	Find the orthogonal trajectories of the family of curves $3x^2y + 2x^2 - y^3 - 2y^2 = c$

Е	A discrete random variable has p.d.f. given below X : -2 -1 0 1 2 3 P(X=x): 0.2 k 0.1 2k 0.1 2k Find k and $(P(X \ge 1)$
F	Evaluate $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} dt$

Q3 . (20 Marks)	Solve any Four out of Six5 marks each
А	Show that $u = 3x^2y - y^3$ is harmonic. Find the corresponding analytic function.
В	Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$
С	Find the Fourier series for $f(x) = x^3$, in $(-\pi, \pi)$
D	Find the expectation and M.G.F. of the following distribution $X:$ -2 3 1 P(X=x): 1/3 1/2 1/6
Е	Compute Spearman's rank correlation coefficient from the following data X : 16, 18, 25, 30, 12 Y : 38, 21, 38, 16, 50
F	Find Laplace transform of $te^{-t} \cos t$

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (For Direct Second Year-DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	What is a negation of the following statement "8 is even & -11 is negative"?
Option A:	8 is even & -11 is not negative
Option B:	8 is odd & -11 is not negative
Option C:	8 is even or -11 is not negative
Option D:	8 is odd or -11 is not negative
2.	The number of elements in the $P(X)$ of $X = \{\{a\}, \{b\}, \{c,d\}, \{e,f\}\}$ is
Option A:	12
Option B:	8
Option C:	9
Option D:	16
3.	If two sets A and B have no common elements between them, then such sets
	are known as ?
Option A:	Disjoint
Option B:	Intersection
Option C:	Complement
Option D:	Union
4.	Which of the following is not the example of a partial order relation?
Option A:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$
Option B:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a/b \in \mathbb{Z}\}$
Option C:	$R = \{(a,b) \mid a,b \in P(X), a \subseteq b\}$
Option D:	$R=\{(a,b) a,b \in \mathbb{Z}, a < b\}$
5.	Let a set $S = \{1, 2, 3, 4, 6, 9, 12, 18, 24\}$ and R be the partial order relation of
	divisibility. Number of edges in its Hasse diagram are
Option A:	10
Option B:	11
Option C:	9
Option D:	8
6.	Domain for which the functions defined by $f(x) = 2x^2-1$ & $g(x) = 5-x$ are equal to
Option A:	{2, 3/2}
Option B:	{-2, -3/2}

Option C:	{2, 3/2}
Option D:	{-2, 3/2}
-	
7.	Let G be a simple undirected graph. There are some odd degree vertices. If a node
	x is added to G and made it adjacent to each odd degree vertex of G, then the
	resultant graph will be
Option A:	regular
Option B:	Euler
Option C:	Complete
Option D:	Hamiltonian
8.	A sufficient condition that a triangle T be a right triangle is that $a^2 + b^2 = c^2$. An
	equivalent statement is
Option A:	T is a right triangle unless $a^2 + b^2 = c^2$.
Option B:	If T is a right triangle then $a^2 + b^2 = c^2$.
Option C:	If $a^2 + b^2 = c^2$ then T is a right triangle
Option D:	T is a right triangle only if $a^2 + b^2 = c^2$.
0	
<u>9.</u>	How many strings of length 8 either begin with 2 zeros or end with 4 ones?
Option A:	80
Option B:	42
Option D:	70 64
Option D.	
10	Let $\Delta - \{a, b, c, d\}$
10.	$R = \{(a, a), (b, c), (c, b), (d, a)\} \& S = \{(a, d), (c, b), (b, a), (c, d)\}$
	What is the composition of relations RoS^{9}
Option A:	$\{(a,a), (a,b), (c,c), (a,c)\}$
Option B:	$\{(a,a), (b,a), (c,c), (c,a)\}$
Option C:	$\{(a,d), (b,b), (c,a), (b,d), (d,d)\}$
Option D:	$\{(a,d), (b,b), (c,a), (d,d)\}$
•	
11.	What is a length of the walk of a graph?
Option A:	Total number of edges in a graph
Option B:	The number of edges in a walk
Option C:	Total number of vertices in a graph
Option D:	The number of vertices in walk
12.	Which of the following statement is not a tautology?
Option A:	$p \rightarrow (p \vee q)$
Option B:	$(p\land q) \rightarrow (p \rightarrow q)$
Option C:	$(\mathbf{p} \rightarrow \mathbf{q}) \rightarrow \mathbf{q}$
Option D:	$(p\land q) \rightarrow (p\lor q)$
10	
13.	which of the following Poset is a Distributed Lattice?
Option A:	D ₅₀
Option B:	
Option C:	
Option D:	
1	

14.	Which of the following functions f: $Z X Z \rightarrow Z$ is not onto?
Option A:	f(a, b) = a - b
Option B:	f(a, b) = a + b
Option C:	$\mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{b} $
Option D:	f(a, b) = a
15.	Let $A = \{0, 1, 2, 3, 4, 5\}$ a group under the operation of addition modulo 6 i.e. +6.
	What is a subgroup generated by the element 2?
Option A:	{0,1,2,3,4,5,6}
Option B:	{0,2,4}
Option C:	{0,1,4,6}
Option D:	{2,4}
16.	If there are 25 rooms in a girls' hostel, what is the minimum number of girls
	required so that at least 5 are living in one room?
Option A:	85
Option B:	101
Option C:	100
Option D:	90
-	
17.	What is the identity element In the group $G = \{2, 4, 6, 8\}$ under multiplication
	modulo 10?
Option A:	5
Option B:	6
Option C:	12
Option D:	9
18.	Determine the number of edges in a graph with 6 nodes which contains 2 of
	degree 5, 2 of degree 3 & 2 of degree 2.
Option A:	12
Option B:	10
Option C:	9
Option D:	11
19.	For which of the following, hasse diagram is drawn?
Option A:	lattice
Option B:	partially ordered set.
Option C:	sublattice
Option D:	boolean algebra
-	
20.	If 35 books in a Department contain total 56351 pages, then one of the books has
	atleast pages.
Option A:	1611
Option B:	1610
Option C:	1598
Option D:	1612
Option D:	1012

Q2.	Solve any Four questions out of Six.5 marks each
(20 Marks)	
А	Let A={i, j, k, l, m} $MR = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ Find the transitive closure of it using Warshall's algorithm.
В	Prove by mathematical induction that $2+5+8+\ldots+(3n-1)=n(3n+1)/2$
С	Explain a distributive lattice with the suitable example. Prove that in a distributive lattice, the complement of any element is unique.
D	What is a bijective function? Find inverse of the following bijection: f: $R \rightarrow R$ defined by $f(x) = (1-2x)/3$
Е	Verify whether $((PVQ) \Lambda_{\neg} (P \Lambda_{\neg} Q V_{\neg} R))V(_{\neg} P \Lambda_{\neg} Q)V(_{\neg} P \Lambda_{\neg} R)$ is tautology.
F	Determine whether following graphs are isomorphic. Justify your answer. $ \begin{array}{c} $

Q3.	Solve any Two Questions out of Three . 10 marks each
(20 Marks)	
A	 Explain the following terms with the suitable example. i) Hamming Distance ii) Monoid iii) Cyclic Group iv) group code v) Ring
В	 i) What is an adjacency matrix & incidence matrix? Explain both with the suitable example. ii) What is Eulerian path & a circuit? Determine which of the following graphs consist of Eulerian path and/or a circuit.

	5 1 1 1 1 1 1 1 1 1 1
С	 What is a group? Let S={0,3,6,9,12} i) Prepare the composition table w.r.t. the operation of addition modulo 15. ii) Show that it is an abelian group. iii) Find the inverses of all the elements. iv) Whether it is a cyclic group?

University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE) Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester: III(for Direct Second Year-DSE) Course Code: CSC303 and Course Name: Data Structure

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	Which among the following is not a linear data structure?
1. Ontion A.	Steel
Option R.	Oueue
Option D:	Trac
Option C:	A man
Option D:	Аптау
2.	Using division method, in a given hash table of size 114, the key 131 will be placed at position.
Option A:	31
Option B:	17
Option C:	14
Option D:	16
3.	For the implementation of parentheses balancing program using stack. What is the maximum number of parentheses that will remain on the stack [({{ (} })}] [[] { ([]) } ?
Option A:	0
Option B:	1
Option C:	2
Option D:	3
4.	Which of the following data structure is based on LIFO principle?
Option A:	Tree
Option B:	Graph
Option C:	Queue
Option D:	Stack
5.	If we insert the values 25, 14, 9, 18 and 37 in the Binary Search Tree then degree
	of root node will be
Option A:	0
Option B:	1
Option C:	2
Option D:	3
6.	Given the following input (22, 34, 71, 79, 89, 51, 73, 99) and the hash function x mod 10, which of the following statements are true? i) 79, 89, 99 hash to the same value

	ii) 71, 51 hash to the same value
	iii) All elements hash to the same value
	iv) Each element hashes to a different value
Option A:	i only
Option B:	ii only
Option C:	i and ii
Option D:	iii or iv
7.	What will be the front and rear of an initially empty queue after the following operations on it? enqueue(12), enqueue(10), enqueue(3), dequeue(), enqueue(18), dequeue(), enqueue(15), enqueue(15), dequeue()
Option A:	12, 15
Option B:	15, 18
Option C:	18, 15
Option D:	15, 15
•	
8.	In a Doubly linked list which statement is correct for dynamically allocating a memory for the node? <pre>struct node {</pre>
	struct node *prev; char data;
	struct node *next;
	};
	typdef struct node NODE; NODE *ptr;
Option A:	<pre>ptr=(NODE*)malloc(sizeof(NODE));</pre>
Option B:	ptr=(NODE*)malloc(NODE);
Option C:	<pre>ptr=(NODE*)malloc(sizeof(NODE*));</pre>
Option D:	ptr=(NODE)malloc(sizeof(NODE));
•	
9.	Which node pointers should be updated if a node B present between node A and node C of a doubly linked list is to be deleted.
Option A:	NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C and PREVIOUS pointer of C
Option B:	NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of C and PREVIOUS pointer of C
Option C:	NEXT pointer of A, PREVIOUS pointer of C
Option D:	PREVIOUS pointer of A, NEXT pointer of C
10.	Consider the Binary Search Tree given below and find the result of in-order traversal sequence.

Option A:	60 30 14 78 72 80
Option R:	14 30 72 80 78 60
Option C:	60 30 78 14 72 80
Option D:	
Option D.	
11	You are given a stack with elements 2, 5, 8, 3, 0, 10 where 10 is the top of the stack
11.	The elements are popped one-by-one and enqueued into a queue until the stack.
	becomes empty. The elements are again dequeued from the queue one-by-one and
	pushed into the stack. What is the final arrangement of elements in the stack (from
	top to bottom)?
Option A:	10, 9, 3, 8, 5, 2
Option B:	2, 5, 8, 3, 9, 10
Option C:	2, 3, 5, 8, 9, 10
Option D:	10, 9, 8, 5, 3, 2
12.	Which of the following is false about a doubly linked list?
Option A:	We can navigate in both the directions
Option B:	It requires more space than a singly linked list
Option C:	The insertion and deletion of a node take a bit longer
Option D:	Implementing a doubly linked list is easier than singly linked list
13.	The Data structure used in the standard implementation of Breadth First Search is?
Option A:	Tree
Option B:	Linked List
Option C:	Queue
Option D:	Stack
14.	In the linked list implementation of a queue, where does a new element get
	inserted?
Option A:	At the head of the linked list
Option B:	At the tail of the linked list
Option C:	At the centre position in the linked list
Option D:	After the specified position in a linked list
15.	Which type of linked list begins with a pointer to the first node and each node
	contains a pointer to the next node, and the pointer in the last node points back to
	the first node?
Option A:	Singly linked list
Option B:	Doubly linked list
Option C:	Circular singly linked list
Option D:	Circular doubly linked list
16.	What will be the topological ordering for the below graph.

Option A:	123456
Option B:	123465
Option C:	1 3 2 4 5 6
Option D:	124536
17.	Deletion and Insertion operation in Queue and Stack are known as?
Option A:	Enqueue and Dequeue, Push and Pop
Option B:	Push and Pop, Enqueue and Dequeue
Option C:	Pop and Push, Dequeue and Enqueue
Option D:	Dequeue and Enqueue, Pop and Push
•	
	After adding a felt child to the hode 13 in an AVL Tree below, now many hodes will be unbalanced?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
19.	Degree of a leaf node is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
20.	When the left sub-tree of the tree is one level higher than that of the right sub-tree, then the balance factor is
Option A:	0

Option B:	1
Option C:	-1
Option D:	2

Q2	Solve any Four out of Six 5 marks each
А	What is Data Structure? List different data structures along with applications.
В	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
С	 Write functions in 'C' for the following operations of Input Restricted Deque. i) insert_right() ii) delete_left() iii) delete_right()
D	Make a comparison between linked list and linear array. Which one will you prefer to use and when?
Е	Construct Huffman tree and determine the code for each symbol in the string "SUCCESSFUL".
F	Show Depth First Search traversal for the following graph with all the steps.

Q3	Solve any Two Questions out of Three	10 marks each
	Write a program to perform the following operations on doubly linked list:	
A	i) Insert a node in the beginning	
	ii) Delete a node from the end	
	iii) Search for a given element in the list	
	iv) Display the list	
D	Insert the following elements in an AVL tree: 25, 44, 58, 15, 19, 11, 37, 32. I	Explain different
D	rotations that can be used.	
	Using modulo division method, hash the following elements in a table of size	ze 10. Use
C	Linear probing and Quadratic probing to resolve the collisions. 28, 55, 71	l, 67, 11, 10,
	90, 44	

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering in Computer Engineering

Curriculum Scheme: Rev2019

Examination: DSE SemesterIII

Course Code: **CSC304** and Course Name: **Digital Logic & Computer Architecture**

Time: 2 hour

Max. Marks: 80

Q1.	Choose the compulsory	correct o and carry	ption for v equal ma	[,] followii arks.	ng questi	ons. All t	he Quest	tions are
1		C 11 '			1		1. 0	
1.	Which of the following options represents the correct matching?							
	Addressing Mode Description							
	1. Immedia	ate	A. the ad	adress ti	eld refers	to the add	aress of a	a word
			addre	e memo	operand	in m-turn	contain	sule
	2. Direct		B. the a	ddress fi	eld conta	ins the ac	ldress (ir	n main
			memo	ory) whe	re the ope	erand is st	ored	
	3. Indirect		C. opera	nd value	e is prese	nt in the i	nstruction	n itself
			(addr	ess field)			
	4. Registe	r Direct	D. the a	ddress fi	eld of the	operand i	s a regist	er
Option A:	1->A; 2->D; 3->C; 4->B;							
Option B:	1->C; 2->B; 3->D; 4->A;							
Option C:	1->C; 2->B;	3->A; 4-	->D;					
Option D:	1->A; 2->D;	3->B; 4	->C;					
2.	Consider an example of memory organization as shown in the figure below. Which value will be loaded into the accumulator when the							
	instruction "	LOAD D	IRECT 3	" is exec	cuted?			
	Memory	0 1	2	3	4	5	6	7
	Location							
	address							
	Content	10 23	25	20	12	3	1	2
Option A:	3							
Option B:	25							
Option C:	12							
Option D:	20							
2	For a 0 addr	ace insta	uction for	not who	t would 1	na tha tan	alamont	of the
Э.	stack follow ADD; SUB;	ing seque	ences of in 0; MULT	nat, what istructio	ns? PUSI	H 20; PUS	SH 5; PU	SH 5;

Option A:	100
Option B:	200
Option C:	10
Option D:	5
4.	What is the value of n in Booth's multiplication of 110* 1000?
Option A:	2
Option B:	3
Option C:	4
Option D:	0
5.	In restoring division algorithm, after performing operations (1) left shift
	operation on A,Q and (2) A=A-M, if magnitude of $A > 0$ then ?
Option A:	Q0=0, A=A+M
Option B:	A=A+M
Option C:	Q0=1
Option D:	A=A-M
6.	In non-restoring division algorithm, after performing left shift operation on
	A, Qregisters, if magnitude of $A < 0$ then?
Option A:	Q0=0, A=A+M
Option B:	A=A+M
Option C:	Q0=1
Option D:	A=A-M
7.	In single precision, IEEE754 floating point standard exponent represent by
	bits and mantissa represent by bits.
Option A:	8, 23
Option B:	7, 24
Option C:	7, 23
Option D:	8, 24
8.	How many bits of opcode is required to implement a CPU with 10
	arithmetic and logical instructions, 2 control instructions, and 5 data
	transfer instructions?
Option A:	2
Option B:	3
Option C:	4
Option D:	5
9.	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as
Option A:	D flip flop
Option P	S R flip flop
Option C:	T flip flop
Option D:	S K flip flop
Option D:	א וווף-ווטף

10.	The instruction read from memory is then placed in the and
	contents of program counter is so that it contains the address
	of instruction in the program.
Option A:	Program counter, incremented and next
Option B:	Instruction register, incremented and previous
Option C:	Instruction register, incremented and next
Option D:	Address register, decremented and next
•	
11.	Which is the simplest method of implementing hardwired control unit?
Option A:	State Table Method
Option B:	Delay Element Method
Option C:	Sequence Counter Method
Option D:	Using combinational Circuits
12.	Which instruction does the following set of micro-operations refer to:
	Steps Action
	1 PCout, MARin, Read, Select4, Add, Zin
	2 Zout, PCin, Yin, WMFC 2 MDRout, IRin
	4 R1out Yin
	5 R2out, SelectY, Add, Zin
	6 Zout, R1in, End
Option A:	ADD R2, R1
Option B:	ADD R1, R2
Option C:	MOVE R1, R2
Option D:	MOVE R2, R1
•	
13.	Which of the following statements is false?
Option A:	Diagonal micro-instructions encoding requires multiple decoders.
Option B:	In vertical micro-instructions encoding, more than one control signals
1	cannot be activated at a time.
Option C:	Horizontal micro-instructions encoding has a lower cost of
•	implementation.
Option D:	On one end of a spectrum, a vertical microinstruction is highly encoded
-	and may look like a simple macroinstruction containing a single opcode
	field and one or two operand specifiers.
14.	In mapping, the data can be mapped anywhere in the Cache
	Memory.
Option A:	Associative
Option B:	Direct
Option C:	Set Associative
Option D:	Indirect
15.	A second factor in locality of reference is the presence of loops in
	programs. Instructions in a loop, even when they are far apart in spatial
	terms, are executed repeatedly, resulting in a high frequency of reference
	to their addresses. This characteristic is referred to as

Option A:	Spatial locality.
Option B:	temporal locality
Option C:	branch locality.
Option D:	Equidistant locality
16.	consists essentially of internal flip-flops that store the binary information.
Option A:	Static RAM
Option B:	Dynamic RAM
Option C:	PROM
Option D:	EEPROM
17.	SIMD represents an organization that
Option A:	refers to a computer system capable of processing several programs at the
	same time.
Option B:	represents organization of single computer containing a control unit,
	processor unit and a memory unit.
Option C:	includes many processing units under the supervision of a common control
	unit.
Option D:	similar to Von Neumann architecture.
18.	In parallelization, if P is the proportion of a system or program that can be
	made parallel, and 1-P is the proportion that remains serial, then the
	maximum speedup that can be achieved using N number of processors is
	in the spectrum in the car of a sing it in the of the processors is
	1/((1P)+(P/N)). This law is called
Option A:	1/((1P)+(P/N). This law is called Newton's law
Option A: Option B:	Initial initial spectral function of the control of the control of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law
Option A: Option B: Option C:	Initialities Special processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law
Option A: Option B: Option C: Option D:	Initiality spectral function of the call of the
Option A: Option B: Option C: Option D:	Initialities specially that can be define ted using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law
Option A: Option B: Option C: Option D: 19.	Initial in special point can be define the using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use
Option A: Option B: Option C: Option D: 19. Option A:	Initial in special point can be define year ability in future of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS
Option A: Option B: Option C: Option D: 19. Option A: Option B:	Initial in special point can be define the using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C:	Initiality spectral function of the constraint of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D:	Initial in special point can be define year using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D:	Initial spectral of the call of define ved using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20.	Initial initial spectral for the following. Initial initial spectral for the following. Initial initinitial initinitial initial initial initial initial ini
Option A: Option B: Option C: Option D: 19. Option A: Option A: Option C: Option D: 20. Option A:	Indicating the case of the second of the case of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: Option D: 20. Option A:	Initial and specially that call of a define for a bing fit function of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller
Option A: Option B: Option C: Option D: 19. Option A: Option A: Option C: Option D: 20. Option A: Option A:	Initial and specially that can be defined a ong it hander of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller
Option A: Option B: Option C: Option D: 19. Option A: Option B: Option C: 20. Option A: Option A: Option B: Option C:	Initial and specific that can be define ted asing it mandet of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller Select true statement from the following. USB is a parallel mode of transmission of data and this enables for the fast speeds of data transfers. In USB the devices can communicate with each other. The type/s of packets sent by the USB is/are Data.
Option A: Option B: Option C: Option D: 19. Option A: Option A: Option C: Option D: 20. Option A: Option A: Option B: Option B: Option C: Option D:	Initial and special plant can be define the using it number of processors is 1/((1P)+(P/N). This law is called Newton's law Ohms law Amdahl's law Flynn's law To resolve the clash over the access of the system BUS we use Multiple BUS BUS arbitrator Priority access DMA controller

Q.2 Solve any Four out of Six.

a)	Briefly describe the Von Neumann Model computer architecture.	5
b)	Write a short note on Interleaved and Associative Memory.	5
c)	Differentiate between hardwired control unit and Microprogrammed Control unit.	5
d)	What is meaning of delayed branch and branch prediction? Write a difference between them.	5
e)	Draw and explain instruction cycle state diagram.	5
f)	Multiply (-10) and (-8) using Booth's algorithm.	5

Q.3 Solve any Two out of Three.

- a) Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using 10 this Algorithm.
- b) Explain with suitable diagrams Flynn's Classification of Computer 10 Architecture.
- c) Consider a Cache memory of 16 words. Each block consists of 4 words. Size 10 of the main memory is 128 bytes. Draw the Associative Mapping and Calculate the TAG and WORD size.

Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III(for Direct Second Year-DSE)

Course Code: CSC305 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which one of the following is the primarily used input device?
Option A:	Keyboard
Option B:	Scanner
Option C:	Monitor
Option D:	Speaker
2.	The midpoint ellipse drawing algorithm uses to find the pixel points along the ellipse path
Option A:	8-way symmetry
Option B:	4-way symmetry
Option C:	2- way symmetry
Option D:	6 – way symmetry
3.	Quality of the picture is
Option A:	directly proportional to the density of pixels on the screen.
Option B:	dependent on the size of a screen
Option C:	not proportional to the density of pixels on the screen
Option D:	not dependent on the number of pixels
4.	The aliasing effect can be minimized by
Option A:	decreasing resolution of the raster display
Option B:	By increasing slope of the line
Option C:	increasing resolution of the raster display.
Option D:	By decreasing slope of the line
5.	In DDA algorithm, if slope of the line is less than or equal to one $(m \le 1)$ then the
	next pixel point along the line path is calculated by
Option A:	Taking unit steps along the positive x direction and adding slope value to the
	previous y coordinate value
Option B:	Adding and subtracting slope value from the previous x and y coordinate value
Option C:	Taking unit steps along the positive x direction and y direction
Option D:	Taking unit steps along the positive x direction and subtracting slope value to the
	previous y coordinate value
6.	Which of the following is the correct representation to define 2D point using
	homogeneous coordinate [Hint: - (Xw, Yw, w)]
Option A:	(0,0,0)
Option B:	(4,4,0)

Option C:	(0,0,1)
Option D:	(1.5,1.8,0)
7.	If the scaling factors values of Sx and $Sy = 1$ then
Option A:	Size of an object remains same
Option B:	Size of an object is increased
Option C:	Size of an object is reduced
Option D:	It slants the shape of an object
8.	The negative values of ' θ ' gives
Option A:	Anticlockwise Rotation
Option B:	Clockwise Rotation
Option C:	Shearing Transformation
Option D:	Reflection
9.	When the 3D point (x, y, z) is reflected about the XY plane then new coordinates
	of the point are given by
Option A:	(-x, -y, z)
Option B:	(x, -y, z)
Option C:	(y, x, z)
Option D:	(x, y, -z)
10.	In Cohen Sutherland line clipping algorithm, if Bit code for two endpoints of the
	line segment is 0101 and 1001 respectively then line is
Option A:	Partially visible
Option B:	Completely visible
Option C:	Completely Inside the clipping boundary
Option D:	Completely Outside the clipping boundary
11.	is known as generalized line clipping algorithm
Option A:	Liang Barsky line clipping algorithm
Option B:	Cohen Sutherland line clipping algorithm
Option C:	Digital Differential Analyzer algorithm
Option D:	Bresenham's line drawing algorithm
12	
12.	defines where the object will be displayed on computer
Ontion A.	Window
Option R:	Viewport
Option C:	Frame buffer
Option D:	World coordinate system
Option D.	
13	It is the process of changing position of an object along the circular path from one
15.	coordinate location to other
Option A.	Translation
Option B:	Rotation
Option C:	Scaling
Option D:	Reflection

14.	In 3 D translation, translation factors Tx, Ty, Tz are in to the original
	coordinates of the polygon
Option A:	Added
Option B:	Subtracted
Option C:	Multiplied
Option D:	Divided
15.	In 3D rotation about z- axis, the value of the z coordinate of new object
Option A:	is doubled
Option B:	zero
Option C:	remains same
Option D:	decreases
16.	The Surfaces of an object which are oriented away from the viewer are called as
Option A:	Back surfaces
Option B:	Front surfaces
Option C:	Top surfaces
Option D:	Side surfaces
17.	Consider equation of the plane, $Ax + By + Cz + D = 0$
	If $Ax + By + Cz + D > 0$, then point (x, y, z)
Option A:	lies in the background
Option B:	lies in the foreground
Option C:	lies anywhere
Option D:	lies on the plane
18.	In Z buffer algorithmis used
	I. Z buffer
	II. Frame buffer
	III. Vector refresh buffer
Option A:	Only I
Option B:	Only II
Option C:	Only III
Option D:	Both I and II
10	
19.	figures are manipulated to appear as moving images
Option A:	Animation
Option B:	Rotation
Option C:	Translation
Option D:	Scaling
20	It is seen that are explicitly the enimetion evolution and do not make
20.	It is a process that are applied in the animation evaluation and do not make
	permanent changes to the original object
Option A:	Facial animation
Option B:	Motion capture
Option C:	Deformation
Option D:	Character animation

Q2. (20 Marks)		
A	Solve any Two 5 marks ea	ich
i.	Rasterize the line segment using DDA line drawing algorithm. The two	
	endpoint coordinates of the line segment are $P1(0,0)$ and $P2(5, 2)$	
ii.	Scale the square ABCD with coordinates A (0,0), B (5,0), C (5,5), D (0,	,5)
	by 3 units in x direction and 4 units in y direction	
iii.	Define the following terms with example	
	a) Scan Conversion	
	b) Frame buffer	
В	Solve any One 10 mark ea	ıch
i.	Clip the line segment using Cohen Sutherland Line clipping Algorithm,	
	The Coordinates of the line segment are P1(-1, 5) and P2(3, 8) and	
	coordinates of the window boundaries are $(Xwmin, Ywmin) = (-3, 1)$ are	ıd
	(Xwmax, Ywmax) = (2, 6)	
ii.	What is visible surface detection? Explain Area subdivision method wit	h
	example	

Q3. (20 Marks)	
A	Solve any Two 5 marks each
i.	What is homogeneous transformation matrix for 2D. Write homogeneous
	transformation matrix for Translation, Rotation and Scaling in terms of
	P'=P*T (Where P= Original object matrix, and P'=New object matrix and
	T=2D transformation matrix)
ii.	What is an Animation? Write and explain principles of animation?
iii.	A point has coordinates in the x, y, z direction i.e., P (4, 5, 6). The
	translation is done in the x-direction and y direction by 2 units and 5 units
	in the z- direction. Shift the point and find the new coordinates of the point.
В	Solve any One 10 mark each
i.	What is World Coordinate System (WCS) and Physical Device Coordinate
	System (PDCS)? Obtain viewing transformation matrix to map WCS on to
	PDSCS
ii.	Derive and explain midpoint ellipse drawing algorithm