2022

Campus Environmental Audit-Saraswati College of Engineering Kharghar Navi Mumbai

Navy Blue Energy NavyBlue Resources Integration and Solutions Pvt Ltd

ABBREVIATION

A-Ampere

AC- Air conditioner

- ASHRAE American Society of Heating, Refrigeration, and Air conditioning
- BEE Bureau of Energy Efficiency
- BMS Building Management System
- CFL Compact Fluorescent Lamp
- CFM Cubic feet per minute
- DB Distribution Board balance
- DBT Dry bulb temperature
- DG Diesel Generator
- ECO Energy Conservation Opportunities
- EER- Energy Efficiency Ratio
- HT- High Tension
- IEEE- Institute of Electrical and Electronic Engineers
- IT Information Technology
- KW Kilowatt
- KVA Kilo Volt Ampere
- LED Light Emitting Diode
- LPD Lighting Power Density
- LT Low tension
- NBC- National Building Code
- ODU Outdoor units
- PAC Precision Air Conditioning
- PDU Power Distribution Board
- PF Power factor
- PSI- Pound per square inch
- TR Tonne of refrigeration
- UoM Unit of Measurement
- UPS Uninterrupted power supply
- V Voltage
- VFD Variable frequency drive
- VRV Variable Refrigerant volume
- WBT Wet Bulb Temperature

TABLE OF CONTENTS

Abbreviation		1
Acknowledgeme	nt	4
Introduction		6
Audit Study Tear	n Members	7
Instruments used	d for Measurements and Analysis	7
Executive Summ	nary	8
	1. Energy Audit	8
	Water Audit	9
	Waste Disposal Audit	9
	Greenery	9
	Carbon Footprint	9
Objective of Aud	it	10
Scope of Work		10
	Energy Audit:	10
	Water Audit:	10
	Waste Disposal Audit:	10
	Environmental Quality Audit:	10
	Renewable Energy Feasibility	10
	Carbon accounting:	10
Goals of the Coll	eqe	11
Energy Audit	с 	12
	Billing Analysis	12
	Power factor Improvement suggestions	13
	Energy Conservation Potential by Improving the Power Factor	13
	Monetary savings potential by reducing the contract demand	14
	Energy Balance	15
	Energy Conservation Measures	16
By Improvin	a numning system efficiency	16
Epergy Cor	servation Opportunity by replacing existing Ceiling fan by BLDC f	10 2n
		17
Energy Ger	neration Opportunity by Installing Solar Power plant	18
0,	Lux level	19
Water audit		20
	Water balance	21
	Pumping and energy tariff	21
	Water Conservation Opportunities	22

Water saving Opportunity by Conventional Tap Replacement with new efficient taps	22
Water conservation potential By Making STP Plant Functional	23
Greenery Survey	24
Waste Disposal Audit	26
Carbon Accounting / Foot Print	28

List of tables

Table 1 Audit Team Members	7
Table 2 Executive Summary	8
Table 3 Water Conservation Measures	9
Table 4 Billing Analysis	. 12
Table 5 Power Factor Improvement Energy savings Potential	. 13
Table 6 Cost savings by reducing the demand	. 14
Table 7 Energy Balance	. 15
Table 8 pump 1 performance and energy savings potential calculations	. 16
Table 9 pump 2 energy performance and energy savings calculations	. 17
Table 10 Energy Savings Calculations by replacing fan with BLDC Fans	. 17
Table 11 Solar PV Feasibility	. 18
Table 12 Water Consumption	. 20
Table 13 Water Balance	. 21
Table 14 Water conservation opportunities by replacing taps	. 22
Table 15 Water conservation opportunity by making STP Plant Operational	. 23
Table 16 Campus Greenery Survey	. 24
Table 17 Waste Disposal Practice in the Campus	. 27

ACKNOWLEDGEMENT

Energy Audit team of M/s. Navy Blue Resources Integration & Solutions Pvt Ltd (NBRI) conducted Campus Environmental Audit of Saraswati College of Engineering–30th March 2022- 31st March 2022

We would like to thank Hon. Principal and Management for providing us an opportunity to carry out Campus Environmental Audit at your Facility and would also like to thank all other staff of facility for providing all the support during audit and report preparations.

The purpose of this assessment is to conduct a complete energy performance assessment Mechanical & Electrical Equipment, Water Audit, Renewable Energy Feasibility, Waste Management and Green Audit within the said site to identify whether the existing systems can sufficiently handle the loads required by your operations and seeking improved workplace efficiently.

CERTIFICATE

We here by certify that we carried out Green Audit in the Saraswati College of Engineering, between 30th to 31st March 2022.

The Management is pro-active towards Green Initiative by Harvesting, Solar Energy project planning, Planting Trees, Better water conservation, Waste Management, Carbon Foot Print; A continual improvement in Green Initiative is appreciated. We appreciate the efforts of the campus management this regard.

Pravin J. Awatade BEE-CEM/CEA EA-28824

INTRODUCTION

The Saraswati College of engineering is the leading engineering institution in Navi Mumbai established in 2004. We aspire to be a leading research organization with a dream and vision of creating a knowledgeable society. SCOE is provided with spacious buildings to accommodate reception, auditorium, office, classrooms, staff rooms, drawing halls, laboratories, workshop, library, computer center, conference halls, examination hall, recreation centre, sports rooms, canteen, and placement cell. These facilities count us one of the Top Engineering colleges In Navi Mumbai.

Facility gets HT power supply from MSEDCL (State gov Electricity Distribution Company). In case of emergency or power failure facility having dedicated DG backup of 250 kVA set.

AUDIT STUDY TEAM MEMBERS

The Audit team comprised of following members from Navy Blue Energy.

	Table 1 Audit Team Members							
Sr. No	Name of Members	Designation						
1	Pravin Awatade CEA-28824	Team Leader-Energy Auditor						
2	Harun Sutar – CEA- 28328	Energy Manager						
3.	Nehal Gupta	Energy Engineer						

Table 1 Audit Team Members

INSTRUMENTS USED FOR MEASUREMENTS AND ANALYSIS-

- 1. Three Phase Load Manager- With CT, PT
- 2. Ultrasonic Flowmeter
- 3. Single phase Instantaneous power Meters
- 4. Lux Meter
- 5. Psychrometer

EXECUTIVE SUMMARY

1. ENERGY AUDIT

Navy Blue Energy Audit team observed some energy conservation opportunity in the premises. Facility can minimize its energy consumption by executing following Energy Conservation measures.

Energy Conservation Measures (ECM)	Estimated Energy Saving	Estimated Monetary Saving	Estimated Investment	Simple Payback Period	Priority
	kWh/Year	Rs/Year	Rs	Month	
Energy Savings Potential by Improving the power factor	9787	100391	50000	5.98	High
Monetary savings potential by reducing the contract demand		1036800		Immediate	Very High
Energy Conservation Measure by Improving Pumping Performance	1982	20330	25000	14.8	Medium
Energy Conservation Measure by Improving Pumping Performance	1446	14827	20000	16.2	Medium
Energy Conservation Opportunity by replacing existing Ceiling fan by BLDC fan	7762	79613	346500	52.2	Low
TOTAL saving Opportunity	20976	1251962	441500	-	-
Energy Generation Opportunity by Installing Solar Power plant	70062	718654	2627340	43.9	Low

Table 2 Executive Summary

Navy Blue Energy Audit team has thoroughly assessed the complete facility Performance, Team has been observed that there will be around **23.95%** of Energy Savings Can be Achieved further by implementing the above-mentioned ECM's.

WATER AUDIT

Table 3 Water Conservation Measures					
Water Conservation Measures	water Savings Potential kl/Year	Monetary Savings potential Rs/Year			
Water conservation opportunity by replacing conventional taps with water efficient Taps	1098.1	61480			
Water conservation potential By Making STP Plant Functional	2196.1	122960			
Total	3294.2	184440			

Navy Blue Water Audit team has thoroughly assessed the complete facility Performance, Team has been observed that there will be around **45%** of Water Savings Can be Achieved further by implementing the above-mentioned WCM's.

WASTE DISPOSAL AUDIT

Presently institute is practicing the zero waste and waste segregation on site onlygood practice.

GREENERY-

Presently the campus has greenery is around the boundary, need to add some more in available areas.

CARBON FOOTPRINT-

Total 2630 kg of CO2 getting emitted by the campus per day.

OBJECTIVE OF AUDIT -

- 1. The objective of carrying out Green Audit is securing the environment and cut down the threats posed to human health.
- 2. To make sure that rules and regulations are taken care of
- 3. To avoid the interruptions in environment that are more difficult to handle and their correction requires high cost.
- 4. To suggest the best protocols for adding to sustainable development.

SCOPE OF WORK-

Scope of Green Audit shall consider following steps;

ENERGY AUDIT:

It deals with the energy conservation and methods to reduce its consumption and the related pollution. The auditor targets at the energy consuming methods adopted and find whether these methods are using the energy in a conservative way or not.

WATER AUDIT:

Evaluating the facilities of raw water intake and determining the facilities for water treatment. Water

harvesting is one of the best techniques that can be adopted by simply storing the water and using it at the time of scarcity. The concerned auditor investigates the relevant method that can be adopted and implemented to balance the demand and supply of water

WASTE DISPOSAL AUDIT:

The waste clearance measures associated to hazardous wastes and recycling are reviewed. The auditor diagnoses the prevailing waste disposal policies and suggests the best way to combat the problems.

ENVIRONMENTAL QUALITY AUDIT:

It analyses the air quality, noise level and the programs undertaken by the institute for plantation. The Green Belt should be maintained to reduce the pollution level by decreasing the Carbon dioxide level.

RENEWABLE ENERGY FEASIBILITY

Resources which can be replenished should be used such as rain, sunlight, wind, tides, etc. These resources are more advantageous as they cause least pollution. The importance of these resources is explained by the Audit team.

CARBON ACCOUNTING:

It undertakes the measure of bulk of carbon dioxide equivalents exhaled by the organization through which the carbon accounting is done. It is necessary to know how much the organization is contributing towards the sustainable development. The auditor considers several efforts practiced by the institute to lower the Green House Gases in the atmosphere in order to make the campus more environmentally friendly.

GOALS OF THE COLLEGE

In the effort to Enhancing an environmentally literate campus where students can learn the idea of protection of environment and stay healthy. The college Management is proactively working on the several facets of "Green Campus" including Plantation of more trees, Water Conservation, Efficient water usage by eliminating leaking water taps, Installation of ETP, Water Harvesting Pits and interconnecting them to Recharge the Ground Water table. Effective Waste Management which includes Food Waste, Plastic, Paper, Metal Work, Renewable Energy, carbon footprints etc.

- 1. To create a green campus with focus on above concepts
- 2. To Harness Solar Power
- 3. To Conserve Water by eliminating the water leakages, wastage, Rain Water Harvesting
- 4. To Reduce Waste management through reduction of Food waste generation, Plastic/Paper/Metal waste generation and effective disposal
- 5. To Reduce the Carbon Foot print
- 6. Enhancement of college profile

ENERGY AUDIT

BILLING ANALYSIS-

Month	kWh	kVAh	MD (kVA)	bill deman d kVA	PF	Demand Charges	Energy Charges	Total Amount	Basic Energy Charge s	Gross Energy Charge s
Jan-22	6965	7895	55	300	0.88 2	129600	72713	252790	10.4	36.3
Dec-21	7635	8510	29	300	0.89 7	129600	78377	2,60,66 0	10.3	34.1
Nov-21	7115	7775	50	300	0.91 5	129600	71608	2,51,74 0	10.1	35.4
Oct-21	6895	7615	34	300	0.90 5	129600	70134	2,49,76 0	10.2	36.2
Sep-21	6960	7820	49	300	0.89	129600	72022	2,52,67 0	10.3	36.3
Aug-21	6005	6875	25	300	0.87 3	129600	63319	2,40,70 0	10.5	40.1
Jul-21	6675	7520	36	300	0.88 7	129600	69259	2,48,66 0	10.4	37.3
Jun-21	7298	8115	40	300	0.89 3	129600	72000	2,46,40 0	9.9	33.8
May-21	6640	7430	29	300	0.89 3	129600	68430	2,47,39 0	10.3	37.3
Apr-21	6650	7520	32	300	0.88 4	129600	69259	2,33,32 0	10.4	35.1
Mar-21	8385	9275	65	275	0.90 4	113025	87927	2,52,33 0	10.5	30.1
Feb-21	1035 5	1102 5	76	300	0.93 9	129600	101540	2,92,31 0	9.8	28.2
Averag e	7298. 2	8115	43. 3	297. 9	0.9	128219	74715. 7	252790. 0	10.3	35.0
Total	8757 8	9737 5	-	-	-	1 <u>5386</u> 2 5	8,96,58 9	303348 0	-	-

Table 4 Billing Analysis

Audit team have done billing analysis and plotted the following graph.

Graph 1 Facility Yearly Energy Consumption

- 1. It is observed that the average facility energy consumption is around 7298 Units of Active energy and 8115 of total energy per month.
- 2. The actual maximum demand (average) is 43 kVA only whereas the billed demand is 300 kVA which is higher side than the actual demand.

POWER FACTOR IMPROVEMENT SUGGESTIONS

Observation- it is observed that the average power factor of the facility is less than the unity.

ENERGY CONSERVATION POTENTIAL BY IMPROVING THE POWER FACTOR

Table 5 Power Factor Improvement Energy savings Potential						
Parameter	UoM	Value				
Average Present Power Factor	Factor	0.897				
Difference Between Active and Apparent Energy	kWh/Month	816.42				
Expected Power factor	Factor	0.999				
Expected Difference between Active and Apparent Energy	kWh/Month	815.6				
Energy Saving Potential	kWh/Year	9787.2				
Monetary Savings potential	Rs./Year	100391				

Estimated Investment	Rs.	50000
Simple Payback Period	Months	6.0

Above calculations mentioned the cost benefit analysis of the power factor system improvement.

MONETARY SAVINGS POTENTIAL BY REDUCING THE CONTRACT DEMAND

It is observed that the facility having excess demand than the actual demand of the facility.

Energy audit team have evaluated the summarised the cost benefit analysis by reducing the excess demand and applicable charges.

Parameter	UoM	Value
Present Actual Average Demand	kVA	43.3
Present Billed demand	kVA	300.0
Proposed New Billed Demand	kVA	100.00
Net Reduction in the billed demand	kVA	200.0
Demand Charges	Rs./kVA	432
Net Monetary Savings potential	Rs./month	86400
Net Monetary Savings potential	Rs./Year	1036800
Estimated Investment	Rs.	0
Simple Payback	Months	Immediate

Table 6 Cost savings by reducing the demand

ENERGY BALANCE

Table 7 Energy Balance						
Parameter /Load	Rated Capacity	Quant ity	Total Load	Operation Time	Usage Diversity	Total Energy
	Wattage/k W	Nos.	kW	Hrs./day	%	kWh/Day
Ceiling Fans	60	231	13.86	8	50%	55.44
Lighting	20	264	5.28	8	50%	21.12
Computers	120	550	66	6	10%	39.6
Photo Copier	600	3	1.8	6	10%	1.08
Machine						
Printers	150	80	12	6	10%	7.2
AC	1.8	25	45	7	15%	47.25
Pump 1	7.47	1	7.47	2	80%	11.952
Pump 2	4.06	1	4.06	3	80%	9.744
Street Lights	60	30	1.8	8	80%	11.52
Water Cooler	450	10	4.5	8	50%	18
Lobby Passage Lights	20	72	1.44	8	20%	2.304
Unaccounted (Other)						15.36
Total						241

Audit team prepared the energy balance of the facility.

The major energy is consumed by fans followed by AC computers and lighting.

Chart 1 Energy Balance

ENERGY CONSERVATION MEASURES

BY IMPROVING PUMPING SYSTEM EFFICIENCY

It observed that he presently installed pumps are not efficient and we are recommending to replace the pumps with new energy efficient pumps Here is the cost benefit analysis of the same.

PUMP1- MAIN TANK TO OVERHEAD TANK PUMPING

Table 8 pump 1 performance and energy savings potential calculations

Parameter	UoM	Value
Actual Flow	m3/hr	13.5
Head	meter	30
Hydraulic Power	kW	1.10
Power Drawn by Motor	kW	4.88
System Efficiency	%	23%
Proposed System Efficiency	%	70%
Proposed Power Requirement	kW	1.58
Operating Time	hrs/day	2
Power Reducing Potential	kW	3.30
Total Energy Conservation potential	kWh./Year	1982
Monetary Savings potential	Rs./Year	20330
New pump replacement cost	Rs.	25000
Simple Payback Period	months	14.76

PUMP 2- CIDCO WATER TANK

Table 5 pump 2 energy performance and energy savings calculations			
Parameter	UoM	Value	
Actual Flow	m3/hr	7.46	
Head	meter	20	
Hydraulic Power	kW	0.41	
Power Drawn by Motor	kW	2.99	
System Efficiency	%	14%	
Proposed System Efficiency	%	70%	
Proposed Power Requirement	kW	0.58	
Operating Time	hrs/day	2	
Power Reducing Potential	kW	2.41	
Total Energy Conservation potential	kWh./Year	1446	
Monetary Savings potential	Rs./Year	14827	
New pump replacement cost	Rs.	20000	
Simple Payback Period	months	16.19	

Table 9 pump 2 energy performance and energy savings calculations

ENERGY CONSERVATION OPPORTUNITY BY REPLACING EXISTING CEILING FAN BY BLDC FAN

Presently Facility having conventional fans, it is recommended to replace these fans with new BLDC Energy Efficient fans, here is the cost benefit analysis.

Table 10 Energy Savings Calculations by replacing fan with BLDC Fans

Parameter	UoM	Value
Existing Fan Capacity	W	60
Proposed Fan Capacity	W	28
Present Energy Consumption by Fans	kWh/Day	55.44
Proposed Fan Energy Consumption	kWh/Day	25.872
Energy Savings Potential	kWh/Year	7761.6
Monetary Savings potential	Rs./Year	79613
Estimated Investment for replacing 50% fans	Rs.	346500
Simple Payback Period	Months	52.23

ENERGY GENERATION OPPORTUNITY BY INSTALLING SOLAR POWER PLANT

It is proposing to install a 69 kWp Solar Grid tied rooftop system to get green energy from solar.

Here is the cost benefit analysis of the same.

Parameter	UoM	Value	
Annual Consumption (A B and C Zone)	kWh	82200	
Estimated Replaceable units by Solar project	kWh	82200	
Estimated Min. Solar Plant Annual Generation	kWh/kWp/Annum	1200	
Estimated Solar Capacity	kWp	69	
Energy Rate	Rs/kWh	10.26	
Estimated Monetary Saving	Rs/Year	843154	
Estimated Investment	Rs	30,82,500	
Simple Payback Period	Month	43.87	

Table 11 Solar PV Feasibility

Site photograph 1 Available Rooftop Area for Solar Installations

LUX LEVEL

Area	Avg Lux
Office Ground Floor	49.00
Pump House	16.00
Outdoor Lighting	15.75
5th Floor Lecture Hall	62.75
2nd Floor Hall	35.33
Sample Toilet	32.25
Sample Toilet	21.67

WATER AUDIT

Campus Consuming around 21m3/day water.

610	m3/month
21	m3/day
7290	m3/year

Table 12 Water Consumption			
Month	Water Unit	Bill Amount	
Feb-March 2021	598	26910	
April-May 2021	610	27450	
Jun-July 2021	610	27450	
Aug-sept 2021	610	27450	
Oct-Nov 2021	610	28822	
Dec-Jan 2021	620	27900	

WATER BALANCE

Table 13 Water Balance		
Area	Water kL per day	
Toilets and wash basins	14.64	
Drinking Water	4	
Other	2.5	
Total	21.14	

The major water is got consumed by toilets and Wash Basins.

PUMPING AND ENERGY TARIFF

Parameter	UoM	Value
Water tariff	Rs./kL	45
Electricity Tariff	Rs./kWh	10.26
Pumping Energy	kWh/Kl	1.071
Pumping Cost	Rs/KL	10.99

This cost shall be considered for all the cost benefit analysis in water audit report.

WATER CONSERVATION OPPORTUNITIES

WATER SAVING OPPORTUNITY BY CONVENTIONAL TAP REPLACEMENT WITH NEW EFFICIENT TAPS

Convectional water taps consume more water than the new water efficient taps, it is recommending to replace conventional taps with new taps. Here are the savings calculations.

Table 14 Water conservation opportunities by replacing taps		
Parameter	UoM	Value
Present Tap Water Consumption	kl/day	7.32
proposed water consumption	kl/day	3.66
Yearly Water Savings Potential	kl/Year	1098.1
Monetary Savings Potential	Rs./Year	61480

Table 14 Water conservation opportunities by replacing taps

Site photograph 3 Water efficient taps

WATER CONSERVATION POTENTIAL BY MAKING STP PLANT FUNCTIONAL

Presently Installed STP is not in operation, by making it operation we can save considerable amount of fresh water.

Table 15 Water conservation opportunity by making STP Plant Operational

Parameter	UoM	Value
Present Toilet Water consumption	kl/day	7.32
proposed water consumption	kl/day	0.00
Yearly Water Savings Potential	kl/Year	2196.1
Monetary Savings Potential	Rs./Year	122960
Site photograph 4 STP Plant		

GREENERY SURVEY

Campus having verities of plants majorly near the boundary and container gardening.

Container gardening near main building area
Mango Trees
Coconut tree in the campus- end boundary area
Greenery Around Campus
Pipal Tree near diploma College

Table 16 Campus Greenery Survey

WASTE DISPOSAL AUDIT

Waste Management:

- 1. **Bio Waste** Mostly Food Waste is generated from the cooked food at the campus in the canteen. It is proposed to install Bio Gas plant in the campus to generate Bio Gas from the food waste, which can be used in the Food Cooking. The Procurement is in process and is installed shortly.
- 2. Non-Bio Waste Plastic Bottles / Waste Paper / Cardboards/ Batteries etc

Non- biodegradable waste, which cannot be decomposed by biological processes, is called non- biodegradable waste. These are of two types - Recyclable: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e g. Plastic, paper, old cloth etc. Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermo coal, tetra packs etc. Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non-biodegradable waste on the environment and also focus on its safe disposal for sustainable environment. Present Status: Dust bins were provided for the waste disposal the same is collected daily once and handed over the Municipal corporation.

3. E Waste Management

Waste Electrical and Electronic Equipment (WEEE) or E-waste is one of the fastest growing waste streams in the world. In developed countries, it equals 1% of total solid waste on an average. In developing countries, it ranges from 0.01% to 1% of the total municipal solid waste generation. In countries like China and India, though annual generation per capita is less than 1 kg, it is growing at an exponential pace.

Campus admitted a good practice of waste disposal from segregation stage, campus having dedicated bin to collect the dry, wet and electronics waste.

 Table 17 Waste Disposal Practice in the Campus

Waste Management System at Campus

CARBON ACCOUNTING / FOOT PRINT

Emission Source	Quantity	CO2 Emission Factor	total Emission per Day (kg)
Teaching and Non-teaching	200	700 gram/person/day	140
Two Wheelers	100	5 gram/km	25
Students	2500	700 gram/person/day	1750
Four-Wheeler	30	130 gram/km	195
Buses and other	8	1.3 kg/km	520
Total kg/Day			2630

Note: Assume each member travel a distance of 25 kms to college and 25 kms return to home.

Mode of Transit	CO₂ released (per km driven per person)	CO ₂ released during production of vehicle
Car	271 g	313 g
Bus	101 g	
Bicycle	16 g (This is from the fuel of the rider – food)	16 g

	Pounds CO2	Kilograms CO2	Pound	Kilogram		
	-		s CO2	s CO2		
Carbon Dioxide (CO ₂)	Per Unit of	Volume or Mass	Million	Million		
Factors:	Volume or Mass		Btu	Btu		
FOR HOMES AND BUSINESSES						
Propane	12.70/gallon	5.76/gallon	139.05	63.07		
Butane	14.80/gallon	6.71/gallon	143.2	64.95		
Butane/Propane Mix	13.70/gallon	6.21/gallon	141.12	64.01		
Home Heating and Diesel Fuel (Distillate)	22.40/gallon	10.16/gallon	161.3	73.16		
Kerosene	21.50/gallon	9.75/gallon	159.4	72.3		
		2,100.82/short				
Coal (All types)	4,631.50/short ton	ton	210.2	95.35		
Natural Gas	117.10/thousand	53.12/thousand	117	53.07		
	cubic feet	cubic feet	117	55.07		
Gasoline	19.60/gallon	8.89/gallon	157.2	71.3		
Residual Heating Fuel	26.00/gallon	11 79/gallon	173 7	78 79		
(Businesses only)	20.00/941011	11.70/941011	170.7	70.75		
OTHER TRANSPORTATION FUELS						
Jet Fuel	21.10/gallon	9.57/gallon	156.3	70.9		
Aviation Gas	18.40/gallon	8.35/gallon	152.6	69.2		
INDUSTRIAL FUELS AND OTHERS NOT LISTED ABOVE						
Flared natural gas	120.70/thousand	54.75/thousand	120.6	547		
	cubic feet	cubic feet	120.0	54.7		
Petroleum coke	32.40/gallon	14.70/gallon	225.1	102.1		
Other petroleum &	22.09/gallon	10.02/gallon	160.1	72.62		
miscellaneous	5	5				

NONFUEL USES						
Asphalt and Road Oil	26.34/gallon	11.95/gallon	166.7	75.61		
Lubricants	23.62/gallon	10.72/gallon	163.6	74.21		
Petrochemical Feedstocks	24.74/gallon	11.22/gallon	156.6	71.03		
Special Naphthas						
(solvents)	20.05/gallon	9.10/gallon	160.5	72.8		
Waxes	21.11/gallon	9.57/gallon	160.1	72.62		
COAL BY TYPE						
		2,578.68/short				
Anthracite	5,685.00/short ton	ton	228.6	103.7		
		2,236.80/short				
Bituminous	4,931.30/short ton	ton	205.7	93.3		
		1,685.51/short				
Subbituminous	3,715.90/short ton	ton	214.3	97.2		
		1,266.25/short				
Lignite	2,791.60/short ton	ton	215.4	97.7		
		2,830.27/short				
Coke	6,239.68/short ton	ton	251.6	114.12		
OTHER FUELS						
Geothermal (average all	NA	NA	16.99	7.71		
generation)		0.047.00/1				
		2,617.68/short		44.00		
Municipal Solid Waste	5,771.00/short ton	ton	91.9	41.69		
	0.400.00/1	2,794.13/short	400 54	05.07		
lire-derived fuel	6,160.00/short ton	ton	189.54	85.97		
Waste oil	924.0/barrel	419.12/barrel	210	95.25		
Source: U.S. Energy Information Administration estimates.						
Note: To convert to carbon equivalents multiply by 12/44. Coefficients may vary slightly						
with estimation method and across time.						
Carbon Dioxide Emissions Coefficients by Fuel						
Detailed factors (discontinued)						

Report Complied By: Energy Audit Team, M/s. Navy Blue Resources Integration and Solutions Pvt Ltd. 003 | plot Number 24 | Sector 05 | Ghansoli Navi Mumbai- 400701. www.nbri.in | sales@nbri.in | +91-9764047776.