(3 Hours) Total Marks: 80

N.B.: 1) Question No. 1 is compulsory.

- 2) Attempt any three questions out of remaining five questions.
- 3) Assume suitable data if required.

Q1 Solve any 4 [Each 5 Marks]

- i) Explain with neat sketch the Finite Element methods.
- ii) What is Boundary Condition? Explain its type in brief?
- iii) Derive the shape function for One Dimensional Linear Element in Natural Coordinates.
- iv) What are the sources of Errors in FEA?
- v) Explain in brief Jacobian Matrix in FEA.
- vi)Write in brief about Consistent and Lumped mass matrix.

Q2 a) Solve the following differential equation using Galerkin Method. [12]

$$\frac{d^2u}{dx^2} + 5 = 0$$
; For $0 < x < 1$

Boundary Conditions are x = 0 and u = 0 and at x = 1; $\frac{du}{dx} + u = 0$

Find u(0.2) = ?

- b) What is Convergence in FEA? Explain its types in brief.
- [04]
- c) Explain the Principle of minimum total potential with suitable example. [04]
- Q3 a) Find the temperature at interfaces and heat transfer per unit area through the wall. [10]

$$T_L = 110^{\circ}C$$
, $h_L = 155 \text{ W/m}^{\circ}C$, $h_R = 25 \text{ W/m}^{\circ}C$, $L_A = 50 \text{mm}$, $L_C = 50 \text{mm}$, $L_C = 50 \text{mm}$, $L_C = 50 \text{mm}$

Where K- denotes thermal conductivity, h- denotes heat transfer coefficient and T-temperature. Where f is the weight of the bar. Consider one end of the bar to be fixed and other end free.

LA

 L_{B}

LC

b) Develop the finite element equation for the most general element using Rayleigh Ritz Method for vertical bar with axial loading. The governing differential equation is given below [10]

$$\frac{d}{dx}\left(EA\frac{du}{dx}\right) + f = 0 \qquad ; 0 \le x \le L$$

Q4 a) Analyze the truss for displacement Shown in fig Take E = 200 GPa and $Area=100 \text{ mm}^2$

[12]

b) For the triangular element shown in figure below fig

$$U_1 = 2$$
, $U_2 = 3$, $U_3 = 5$,

$$V_1 = 1$$
, $V_2 = 2$, $V_3 = 3$

Where U, V are displacement is x and y at node 1, 2, 3 respectively.

Obtain the displacement of point P.

[08]

Q5 a) For 2D loaded plat shown in below figure below. Determine the displacements of nodes 1 and 2 and the element stresses using the plane stress conditions. Assume thickness as 12 mm, E = 235 GPa and poisons ratio = 0.20, All Dim are in mm [12]

b) A three spring system with stiffness (k) and loads (p) are shown in figure. Calculate the displacement at nodal points.

Q6 a) Find natural frequency of axial vibration of a bar of uniform cross section of 20 mm2 and length 1 m. Take E = 210 GPa and density = 8000 kg/m3. Assuming mass to be uniformly distributed across the element. [8]

b) A beam having cross sectional of radius 10 mm and length of 100 mm, with young's modulus 2.5 x 10⁵ N/mm² and poison's ratio 0.3 is fixed at one end, and a transverse load of 100 N is applied at the other end. Calculate the displacement at various node points. [12]

	[Time: 3 Hours] [Total ma	arks: 80]
N.B.		
1)	Question No.1 is compulsory	
2)	attempt any three out of remaining questions	
3)	Draw neat sketches to illustrate your answers	
4)	Figures to the right indicate full marks.	
5)	Use of Standard Data Book is permitted	
٦)	Ose of Standard Data Book is permitted	
Q1 A	Answer any four of the following	20
a)	Explain the use of preferred numbers in engineering design.	
b)	What is cotter? Why taper is provided on the cotter.	
c)	Discuss various types of threads used for power screw.	
d)	Explain Notch sensitivity and Endurance limit related to design of machine	
٥)	elements subjected to variable loads.	4.
e)	List and explain the important factors that influence the magnitude of factor of safe	ety v
Q2	Design a knuckle joint to withstand a tensile load of 25kN, if the permissib	le 15
a)	stresses are 56MPa in tension, 40MPa in shear and 70MPa in compression	
b)	Explain the nipping of the leaf spring with neat sketch	05
,		
Q3	Designs and incurrent active time flower countings to the same it 151-VV at 000-maps for	12
a)	Design a cast iron protective type flange coupling to transmit 15kW at 900rpm fro an electric motor to compressor. The service factor may be assumed as 1.35 , the	III
	permissible stresses are as follows: allowable shear stress for shaft, bolt and key	
	materials 40MPa; allowable crushing stress for bolt and key 80N/mm ² and allowable	ole
	shear stress for cast iron 8N/mm ² .	
b)	Design a helical valve spring for an operating load range of 600N to 1200N. The	08
	compression at the maximum load is 30mm . Take the spring index 6 and	
	permissible endurance shear stress for spring material as 480Mpa and yield	
	stress in shear is 960 Mpa and $G = 80$ kN/mm ²	
	Suress III Suresi III Suresi III Suresi III Suresi II Su	
O4		_ 14
a)	A horizontal nickel steel shaft rests on two bearings, A at the left and B at the right	ght
	end and carries two gears C and D located at distances of 250mm and 400mm	
	respectively from the centre line of the left and right bearings. The pitch diameter of the gear C is 600mm and that of gear D is 200mm . The distance between the	
	centre line of the bearings is 2400mm . The shaft transmits 20kW at 120 r.p.m . The	e.
	power isdelivered to the shaft at gear C and is taken out at gear D in such a manner	
39'	that the tooth pressure F_{tC} of the gear C and F_{tD} of the gear D act vertically	
	downwards. Find the diameter of the shaft, if the working stress is 100MPa in	
	tension and 56MPa in shear. The gears C and D weigh 950N and 350N respectivel	•
	The combined shock and fatigue factors for bending and torsion may be taken as 1.	5
St.	and 1.2 respectively.	c
b)	Define stress concentration and discuss the various methods to reduce the effect	of 06
	stress concentration.	

Paper / Subject Code: 31423 / Machine Design

Q5 a)	Determine the size of the circular bar using soderberg equation with FoS=2.5. if it is subjected to tensile force varying 300kN to 550kN. It is made of carbon steel 35C8 with σ_{vt} =320N/mm ² and σ_{ut} =600N/mm ² .	10
b)	A solid circular shaft of 30mm diameter is welded to a vertical plate by fillet weld all around. It carries a vertical load 10kN at a distance 100mm from the plane. Determine the size of the weld is permissible shear stress for the weld is 90N/mm² .	10
Q6 a)	Design a pair of helical gears for transmitting 22 kW. The speed of the driver gear is 1800 r.p.m. and that of driven gear is 600 r.p.m. The helix angle is 30° and profile is corresponding to 20° full depth system. The driver gear has 24 teeth. Both the gears are made of cast steel with allowable static stress as 50MPa. Assume the face width parallel to axis as 4 times the circular pitch and the overhang for each gear as 150 mm. The allowable shear stress for the shaft material may be taken as 50 MPa. The form factor may be taken as 0.154–0.912/T _E , where T _E is the equivalent number of teeth. The velocity factor may be taken as, 350/(350+v) where v is pitch line velocity in m/min. The gears are required to be designed only against bending failure of the teeth under dynamic condition.	15
b)	Compare the weight, strength and stiffness of a hollow shaft of the same external diameter as that of solid shaft. The inside diameter of the hollow shaft being half the external diameter. Both the shafts have the same material and length	05

27988 Page 2 of 2

		(3 Hours)	[Total Mark: 8	0]
NΒ	(1)	Question No. 1 is compulsory		
и.р.		Attempt any Three Question from Q. No. 2 to Q. No.6		
		Make suitable assumption if required		
		Illustrate answers with sketches wherever required		
	(1)	indistrate answers with sketches wherever required		
Q1		Attempt any Four Questions		20
	a)	Explain modes of heat transfer with suitable example.		
	b)	Explain steady, unsteady and lump system.		
	c)	Explain the concept of overall heat transfer coefficient.		
	d)	State and explain Wien's displacement law.		
	e)	Explain Hydrodynamic and Thermal Boundary Layer in ac Prandtl Number.	cordance with	
	f)	Explain the function of fins and its effectiveness.		
Q2	a)	Derive the relation for heat transfer through fin with insulated assumptions clearly.	d tip. State the	10
	b)	An insulated steam pipe of 160mm inner diameter & 180mm or		10
		covered with First layer of insulation 40mm thickness & se		
		insulation 20 mm thick carries steam At 200°C, K(pipe)=32		
	Y A	insulation) = 0.23 W/m°C, K(second insulation)= 0.3W/mK h		
		ho=23.2 W/m ² .°C. If the temp.of the air surrounding the pipe is 2		
		the rate of heat loss from the pipe of 5m length. Also fine	i the interface	
		temperature.		
Q3	a)	A longitudinal copper fin (k=380W/m°C) 600mm long and 5r) nm diameter is	10
QJ	4)	exposed to air stream at 20°C. The convective heat transfer		10
		20W/m ² °C. If the fin base temperature is 150°C. Determin		
		transferred and, (ii) the efficiency of the fin. Assume that fin is		
		tip.		
	b)	An egg with mean diameter of 45mm and at 18°C is placed in	a boiling water	10
	20	pan for 4.5 min and found to be boiled to consumer's taste. I	_	
		similar egg for the same consumer should be boiled taken from		
		4°C. Take the following properties for egg. Verify whether the		
		capacity analysis can be used or not.	-	
		$k=10W/m^{\circ}C$, $\rho=1200kg/m^{3}$, $C_{p}=2kJ/kg^{\circ}C$, and $h=100W/m^{2}{\circ}C$.		
Q4	(a)	Air at atmospheric pressure and 40°C flows with a velocity of	U=5m/s over a	10
)	2m long flat plate whose surface is kept at a uniform tempera		
		Determine the average heat transfer coefficient over the 2m leng		
		Also find out the rate of heat transfer between the plate and the a	-	
		of the plate. (Take air at 1atm. and 80°C, $v = 2.107 \times$	$10^{-5} \text{m}^2/\text{s}, \text{ k} =$	
	Ax	0.03025W/m.K, Pr = 0.6965 .)		
	b)	Derive the relationship between effectiveness and the number of	of transfer units	10
		for a parallel flow heat exchanger.		

Paper / Subject Code: 31403 / Heat Transfer

Q5	a)	Determine the radiant heat exchanger in W/m ² between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperatures of 1000K and 500K	10
		respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use σ =5.67×10 ⁻⁸ W/m ² .K ⁴ .	
	b)	i)Differentiate between the mechanism of filmwise and dropwise condensation.	05
		ii) Define : Radiosity and Irradiation	05
Q6	a)	In a certain double pipe heat exchanger hot water flows at a rate of 5000 kg/h	10
		and gets cooled from 95°C to 65°C. At the same time 50000 kg/h of cooling water at 30°C enters the heat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at 2270W/m ² .K. Determine the heat transfer area required and the effectiveness, assuming two streams are in	
		parallel flow. Assume for the both the streams, C _p =4.2 kJ/kg.K.	
	b)	Write short note on any two of the following i) Heat Pipe.	10
		ii) NTU-effectiveness and LMTD methods	
		iii) Heisler Charts	

[Total Marks: 80]

[2] [3] [4]	Questi Answe Assum Answe	cion No.1 is compulsory. er any three from the remaining five questions. ene suitable data whenever required with proper justification. ers to questions should be grouped and written together. es to the right indicate full marks.	
Q.1		Attempt any four of the following. All sub-questions carry equal marks	20
	(a)	Define carburetor and factor affecting carburetion	
	(b)	Give a brief account of Exhaust Oxygen sensor	
	(c)	Write note on: Turbo charging v/s supercharging	
	(d)	Explain the main functions of fuel supply system in CI Engines.	
	(e)	Explain assumptions in Air standard cycles and explain the deviations of fuel air cycle with reference to it.	
	(f)	Describe briefly engine pollution and the Norms	
Q.2	(a)	In a test of an oil engine under full load condition the following results were obtained. ip = 33 kW brake power = 27 kW Fuel used = 8 kg/h Rate of flow of water through gas calorimeter = 12 kg/min Cooling water flow rate = 7 kg/min Calorific value of fuel = 43 MJ/kg Inlet temperature of cooling water = 15 °C Outlet temperature of ooling water = 75 °C Inlet temperature of water to exhaust gas calorimeter = 15 °C Outlet temperature of water to exhaust gas calorimeter = 55 °C Final temperature of the exhaust gases = 80 °C Room temperature = 17 °C Air-fuel ratio on mass basis = 20 Mean specific heat of exhaust gas = 1 kJ/kg K Specific heat of water = 4.18 J/kg K Draw up a heat balance sheet and estimate the thermal and mechanical efficiencies.	15
	(b)	Write short note on: Thermosyphon cooling system	05

Page 1 of 2

Duration: 3 Hours

Paper / Subject Code: 31422 / Internal Combustion Engines

Q.3	(a)	Explain in detail various stages of combustion in S I engine.	10
	(b)	Explain Battery Ignition system. Why capacitor is required to connect across the breaker point? What is the effect on intensity of spark as speed increases?	10
Q.4	(a)	"A good CI engine fuel is bad SI engine fuel and vice versa", Discuss the validity of the above statements in light of eight factors tendency to reduce knocking in SI and CI engines.	10
	(b)	The following details were noted in a test on a four-cylinder, four-stroke engine, diameter = 100 mm; stroke = 120 mm; speed of the engine = 1600 rpm; fuel consumption = 0.2 kg/min; calorific value of fuel is 44000 kJ/kg; difference in tension on either side of the brake pulley = 40 kg; brake circumference is 300 cm. If the mechanical efficiency is 80%, calculate (i) brake thermal efficiency (ii) indicated thermal efficiency (iii) indicated mean effective pressure and (iv) brake specific fuel consumption	10
Q.5	(a)	Write Short notes on: 1) Hydrogen as an alternative fuel for I C Engine 2) Atkinson Cycle	10
	(b)	What are the different functions of lubricating system? State the different lubricating systems used for I C Engines. Explain any one of them.	10
Q.6	(a)	With neat sketch explain compression induced swirl and divided combustion chamber. Also state its advantages and disadvantages.	10
	(b)	With neat sketch explain the various types of fuel nozzle used in CI engine injection systems.	10

Time: 3 Hours Total Marks: 8

N.B: 1) Question No. 1 is compulsory.

- 2) Attempt any THREE questions out of remaining FIVE questions.
- 3) Assume suitable data wherever necessary.
- 4) Use of Graph paper is allowed.
- 5) Figures to the right indicate full marks.
- 1. Answer of the following questions(any Four).

20

- i) Define wavelength standard and state the significance of using it.
- ii) Explain different types of fits with suitable examples and sketches
- iii) Differentiate between roughness and waviness.
- iv) Define and explain i) Resolution; ii) Threshold; iii) Hysteresis
- v) Briefly explain the construction and working of a strain gauge load cell.
- vi) Using Routh's criterion examine the stability of a control system whose characteristic equation is $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 15 = 0$
- 2. (A) Define Interferometry. Explain Laser Interferometer with neat sketch.

10

(B) Reduce the given block diagram to a it's canonical form and hence obtain equivalent 10 transfer function, $\frac{C(s)}{R(s)}$.

- **3.** (A) Explain generalized measurement system elements with block diagram. Describe 10 functions with suitable examples.
 - (B) A unity feedback system has $G(s) = \frac{K}{S(2+S)(4+S)}$
 - a. If $r_{(t)}$ = 2t and K= 4, find steady state error.
 - b. If it is desired to have steady state error to be 0.4, find corresponding value of "K"
 - c. Find steady state error if input is changed to 2+6t, and value of K to 10.

Explain principle, construction and working of Parkinson Gear Tester

(B) Draw the root locus and comment on the stability of the control system having open loop transfer function as follows:

$$G(s)H(s) = \frac{K}{s^2(s+1)}$$

What are encoders? With a neat sketch, explain the working of an incremental and absolute optical encoder. Give examples of their use.

10 (B) Design a general type of Go and No Go plug gauge for inspecting a hole 25 d8. Given

 $i = 0.40 D^{1/3} + 0.001D$ micron

Tolerance for hole = 25 i

Fundamental deviation of the hole= 16 D 0.44

Wear allowance 10% of gauge design

Write short note on (any Four)

20

- Floating Carriage Micrometer i)
- Repeatability and Reproducibility ii)
- Ultrasonic Flow Meter iii)
- Capacitive Pressure Transducer iv)
- Types of Measurement System Inputs
- Frequency Domain specifications