|            |        |                                                                                                                                                                                                                                                                |                                          | (3Hours)                                    |                                                  |                              | N           | Iax Marks                | s=80 |  |
|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------------|------------------------------|-------------|--------------------------|------|--|
| Note       | 2. At  | nestion 1 is compulson<br>tempt any 4 out of six<br>sume any suitable da                                                                                                                                                                                       | questio                                  |                                             | ired                                             | A Datio                      |             |                          |      |  |
| Q.1        | a.     | Attempt any <b>four</b> The mass of a chunk of moist soil is 20kg and its volume is 0.011m3. After drying in an oven the mass reduces to 16.5kg. Determine the water content, the density of moist soil, the dry density, void ratio and degree of saturation. |                                          |                                             |                                                  |                              |             |                          |      |  |
|            | b.     |                                                                                                                                                                                                                                                                |                                          |                                             |                                                  |                              |             |                          |      |  |
|            | c.     | A horizontal stratification 4, and 12m respect $52x10^{-4}$ cm/sec, and deposit in the horizon                                                                                                                                                                 | ed soil de<br>tively. T<br>d 6x 10       | eposit const<br>he permeat<br>of cm/sec. Fi | ists of three upilities of the and the effection | se layers a                  | are 8x10    | cm/sec,                  | 05   |  |
|            | d.     | Explain light compact                                                                                                                                                                                                                                          |                                          | ^ ~                                         |                                                  | Ax.                          |             |                          | 05   |  |
|            | e.     | Compute the area rainside diameter = 94                                                                                                                                                                                                                        | mm. In w                                 | hat types of                                | f soil can this                                  | tube be use                  |             |                          | 05   |  |
| <b>Q.2</b> | a.     | What are different ty                                                                                                                                                                                                                                          |                                          | ay soil mine                                | erals? Describ                                   | e in brief.                  |             |                          | 05   |  |
|            | b. (   | Write a note on soil                                                                                                                                                                                                                                           |                                          |                                             |                                                  |                              | 1 Av        | VOP.                     | 05   |  |
|            | (C.S.) | The following are th soil:                                                                                                                                                                                                                                     | e results                                | of standard                                 |                                                  | Sy -                         | D.          | X                        | 10   |  |
|            |        | Water content, %                                                                                                                                                                                                                                               | 12                                       | 14                                          | 16                                               | 18                           | 20          | 22                       |      |  |
| AIT        |        | Bulk density,<br>gm/cc                                                                                                                                                                                                                                         | 1.77                                     | 1.95                                        | 2.01                                             | 1.97                         | 1.97        | 1.95                     | X    |  |
|            |        | Plot compaction curcontent. Calculate the maximum density, a mould 950ml.                                                                                                                                                                                      | e water co                               | ontent neces                                | ssary to compl                                   | letely satur                 | ate the sai | mple at its              |      |  |
| Q.3        | a.     | A soil has a liquid limit of 25% and a flow index of 12.5%. If the plastic limit is 15% determine the plasticity index and the toughness index.                                                                                                                |                                          |                                             |                                                  |                              |             |                          |      |  |
|            | b.     | How would you determine permeability of a soil deposit consisting of layers of fine grained soil. Discuss in detail with neat diagram.                                                                                                                         |                                          |                                             |                                                  |                              |             |                          |      |  |
| 93£19      | c.     | A sand deposit is 10 $^{\circ}$ 3m below the ground of saturation of 45% pressure, pore water and take G = 2.65.                                                                                                                                               | d surface<br>, determi                   | If the sand ne and con                      | l above the gr<br>struct pressure                | ound water<br>e distribution | table has   | s a degree<br>m of total | 10   |  |
| Q.4        | a.     | Explain various meth                                                                                                                                                                                                                                           | ods to de                                | etermine wa                                 | iter content of                                  | the soil.                    |             |                          | 05   |  |
| 45         | b.     | Explain Casagrande method of determination of liquid limit of soil.                                                                                                                                                                                            |                                          |                                             |                                                  |                              |             |                          |      |  |
|            | c.     | Define soil thixotr<br>moisture content= 15<br>index, Liquidity Inde                                                                                                                                                                                           | %. Calcu                                 |                                             |                                                  |                              |             |                          | 10   |  |
| Q.5        | a.     | Define soil transmis<br>soil sample of 4cm of<br>20minutes. If the cr<br>coefficient of permea                                                                                                                                                                 | sibility. I<br>liameter a<br>oss-section | and 18cm le                                 | ength. The he                                    | ad fell fron                 | n 1.0m to   | 0.40m in                 | 10   |  |
|            | b.S    | A sand deposit consi<br>gm/cc and the botton<br>water table is at a de                                                                                                                                                                                         | sts of two                               | 3.5m thick                                  | with saturate                                    | ed density                   | of 2.06 g   | m/cc. The                | 10   |  |

## Paper / Subject Code: 31823 / Geotechnological Engineering -I

- is 1m above the water table. Draw the diagram showing the variation of total stress, neutral stress and effective stress.
- Q.6 a. What are the purposes of site exploration. A sample of clay has liquid limit of 63% and plasticity index 30%. (a) What is the state of consistency of the soil if the soil has its natural water content of 34%. (b) Calculate the shrinkage limit if the void ratio of the sample at the shrinkage limit is 0.70. Assume G = 2.70
  - b. The soil has a following characteristics % passing 75micron = 8%, percentage retained on 4.75mm sieve = 35, coefficient of curvature = 2.5 coefficient of uniformity = 7. The fine fraction gave the following results Plasticity index = 3, liquid limit = 15%. Classify the soil.

| Time :                                  | 3 Hrs. Total Marks:                                                                                                                                                                                                                                                                                                                                                                                                       | 80 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Note:                                   | Question no. 1 is compulsory.  Solve any 3 questions out of remaining questions.  Assume suitable data, if required.  Draw neat sketches wherever required.                                                                                                                                                                                                                                                               |    |
| 1                                       | Salva any four questions out of following                                                                                                                                                                                                                                                                                                                                                                                 | 20 |
| 1.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 |
| 1.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| t                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| C                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           | ¥  |
| Ċ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| e                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           | A  |
| f                                       | Write a note on Characteristic curves of Turbine                                                                                                                                                                                                                                                                                                                                                                          | E  |
| 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           | 6  |
| 2. a                                    | A jet of water is moving at 60 m/s and is deflected by a vane moving at 25 m/s in a direction at 30° to the direction of the jet. The water leaves the blades with no velocity component in the direction of motion of the vane. Determine the inlet and outlet angles of the vanes for no shock at entry or exit. Take the outlet velocity of water relative to the blades to be 0.85 of the relative velocity at entry. | 10 |
| b t                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 3. a                                    | The inlet & outlet diameters of an inward flow reaction turbine are 3.50 m and 2.50 m, the width at inlet as well as outlet being 550 mm. The guide blade angle is 22°. The inlet vane angle is 94°. The turbine runs at 160 rpm. Find the discharge of the turbine, the runner power developed and the vane angle at outlet. Assume that the turbine is discharging radially at outlet                                   | 10 |
| 2007110                                 | Determine the dimensions of a trapezoidal channel of best section whose sides have a slope of 3H to 2 V. The proposed lining for the channel has a roughness coefficient $N=0.012$ . The bed slope of the channel is 1 in 5000, and the channel must discharge 10 m <sup>3</sup> /s of water.                                                                                                                             | 10 |
| 4                                       | . Find the slope of the free water surface in a rectangular channel of width 20                                                                                                                                                                                                                                                                                                                                           | 10 |
|                                         | m, having depth of flow 5 m. the discharge through the channel is 50 m <sup>3</sup> /s. The bed of the channel is having a slope of 1 in 4000. Take the value of Chezy's constant C=60.                                                                                                                                                                                                                                   | 10 |
| Sold Sold Sold Sold Sold Sold Sold Sold | A 100 mm diameter jet discharging 0.45 m³/s impinges on a series of curved vanes moving at 20 m/s. The direction of the jet and the direction of motion of the vane are the same at inlet. Each vane is so shaped that if stationary it would deflect the jet by 165°. Calculate (a) The force exerted in the direction of motion of the vane, (b) The power developed and (c) The hydraulic efficiency.                  | 10 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

## Paper / Subject Code: 31822 / Applied Hydraulics

- 5. a. The turbine is to operate under a head of 25 m at 200 rpm. The discharge is 9 m<sup>3</sup>/s. If the efficiency is 90%, determine (a) specific speed of the turbine, (b) power generated, (c) Unit speed, unit discharge and unit power when working under a head of 20 m.
  - b. The draft tube fixed to a Francis turbine has an inlet diameter of 3.25 m and an outlet area of 25 m<sup>2</sup>. The inlet of the draft tube is 5.5 m above the tail water level. The outlet level of the draft tube is at tail water level. Velocity of water at inlet to the draft tube is 5 m/s. the loss of head in the draft tube may be taken as 0.5 times the kinetic head at outlet. Find (a) Pressure head at inlet of the draft tube, (b) Total head at the inlet of draft tube, (c) Power at outlet of runner, (d) Power at outlet of draft tube (e) Power lost in draft tube.
- 6. a. Derive the condition for most economical Circular section for condition of maximum velocity
  - b. A centrifugal pump running at 100 rpm has an outlet vane angle of 60°. The velocity of flow through the impeller is constant at 3 m/s. the manometric head is 24 m and the manometric efficiency is 75 %. The diameter is twice the inlet diameter. Assuming that water enters without whirl, find (a) the inlet & outlet diameter of the impeller (b) Inlet vane angle

30920 Page 2 of 2

## Paper / Subject Code: 31824 / Transpotation Engineering

[Total Marks: 80

(3 Hours)

|     | <ul><li>B.</li><li>C.</li><li>D.</li><li>E.</li><li>F.</li></ul>                                                                                                                                                                                                                                                                                    | Explain the basic requi<br>Write note on Passenge<br>Discuss on Lane distrib<br>Discuss on highway dr<br>Explain various rigid p                                                                                                                                                       | er Car Unit (PCU<br>oution factor.<br>ainage. | D. 1000                                         | nment.   | A THOCK AND THOCK | 20195 LAND 195 LAND   | J. R. ST. |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------|-------------------|-----------------------|-----------|--|--|--|
| 2.  | A.                                                                                                                                                                                                                                                                                                                                                  | What is safe stopping distance? find out the SSD required for a single lane 2-way road on a leveled ground, if the design speed is 50 kmph when gradient is 5% and break efficiency is 50%.                                                                                            |                                               |                                                 |          |                   |                       |           |  |  |  |
|     | B.                                                                                                                                                                                                                                                                                                                                                  | Discuss on Negative S<br>an opposite direction in<br>if maximum speed per                                                                                                                                                                                                              | uper-elevation. As a layout of B.G            | Also, if 8 <sup>0</sup> curv<br>yard, calculate | e track  | diverges from     | n main curve of 50 in | (10 M)    |  |  |  |
| 3.  | A.                                                                                                                                                                                                                                                                                                                                                  | Find msa for construct directions. Rate of grow is 15 years.                                                                                                                                                                                                                           |                                               |                                                 |          |                   |                       | (10 M)    |  |  |  |
|     | B.                                                                                                                                                                                                                                                                                                                                                  | Draw and show all the                                                                                                                                                                                                                                                                  | pavement layers                               | of flexible pa                                  | vement   | with their fun    | ction                 | (10  M)   |  |  |  |
| 4.  | A.                                                                                                                                                                                                                                                                                                                                                  | Explain any one test pe                                                                                                                                                                                                                                                                | erformed on Agg                               | regate in labor                                 | atory ir | n detail.         | B T                   | (10  M)   |  |  |  |
|     | В.                                                                                                                                                                                                                                                                                                                                                  | The runway length requas an elevation of 270 runway length.                                                                                                                                                                                                                            |                                               |                                                 |          |                   |                       | (10 M)    |  |  |  |
| 5.  | A. Design a rigid pavement for wheel load of 7000 kg, tyre pressure 7.5 kg/cm <sup>2</sup> , spacing between longitudinal joints is 3.75 m & spacing between contraction joints is 4.2 m. Take $E = 3 \times 10^5 \text{ kg/cm}^2$ , $\mu = 0.15$ , $e = 1 \times 10^{-5}$ , $k = 30 \text{ kg/cm}^3$ , flexural strength = 45 kg/cm <sup>2</sup> . |                                                                                                                                                                                                                                                                                        |                                               |                                                 |          |                   |                       |           |  |  |  |
| (5) |                                                                                                                                                                                                                                                                                                                                                     | Thickness (cm)                                                                                                                                                                                                                                                                         | 22                                            | 24                                              | 3        | 26                | 30                    |           |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                     | Temp. Difference                                                                                                                                                                                                                                                                       | 14.8                                          | 15.6                                            | 200      | 16.2              | 16.8                  |           |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                     | $\overline{FOS} = 1.1 \text{ to } 1.2. \text{ ta}$                                                                                                                                                                                                                                     | ake $Cx = Cy = 1$ .                           |                                                 | 3        | 262               |                       |           |  |  |  |
|     | В.                                                                                                                                                                                                                                                                                                                                                  | Compare different type                                                                                                                                                                                                                                                                 | es of road signs.                             | Draw three exa                                  | imples   | of each.          |                       | (10  M)   |  |  |  |
| 6.  | A.                                                                                                                                                                                                                                                                                                                                                  | Determine characteristic deflection for the following readings taken on a road having traffic 1800 (10 I cvpd. 1.48, 1.62, 1.40, 1.28, 1.32, 1.71, 1.63, 1.22, 1.13, 1.53.  Also, if temperature of pavement = 29°C, and the moisture correction factor is 1.2, find the corrected Dc. |                                               |                                                 |          |                   | (10 M)                |           |  |  |  |
|     | В.                                                                                                                                                                                                                                                                                                                                                  | Explain Superelevation 100 kmph.                                                                                                                                                                                                                                                       | n. Also, design S                             | uperelevation t                                 | for a cu | rve having rad    | lius 500 m & speed is | (10 M)    |  |  |  |

**Note:** 

1.

i. Q. No. 1 is compulsory

Solve any four

ii. Attempt any 3 out of remaining 5

A. Compare various modes of transportation.

iii. Support all theory and numerical with neat sketch

|    |              | Time: 5-nour Wax. Warks: 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Pleas        | e Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    | 1.           | All questions carry <b>equal</b> marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|    | 2.           | Question one is compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | 3.           | Attempt any <b>three</b> out of remaining questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|    | 4.           | Use of <b>IS codes</b> is permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|    | 5.           | Assume suitable data if required and state it clearly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 01 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
| Q1 |              | Attempt any four of the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 |
|    | ۵)           | What is doubly reinforced beam. Under what conditions doubly reinforced beam is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    | a)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |              | provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|    | b)           | Design a singly reinforced beam 5 m span and carrying a udl of 25 kN/m. Take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | U)           | width of the section two third of the effective depth. (USE LSM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |              | (Materials: M20 concrete and Mild steel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    | <b>c</b> ) / | Write a short note on 'Slab Beam Type of Footing'. Draw a neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|    | 9            | A short DCC solumn of 500 mm v 500 mm is mainformed with 4 hors of 16 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    | (d)          | A short RCC column of 500 mm × 500 mm is reinforced with 4 bars of 16 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    |              | diameter. The effective length of the column is 2.9 m. find the ultimate load for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|    |              | column. (Materials: M20 concrete and Mild steel) (USE LSM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | 6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    | (e)          | Draw neat sketches of following reinforcements in RC members.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|    |              | i. Longitudinal steel and Lateral tie in circular column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    |              | ii. Reinforcement in two way slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|    |              | iii. Reinforcement in singly reinforced beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | B            | Evelois various limit states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | (1)          | Explain various limit states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Q2 | a)           | A simply supported one way slab of a room has clear span of 2.8 m. Design the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 |
| Q2 | a)           | slab and check for shear. (other checks not needed) Live load = $3 \text{ kN/m}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 |
|    |              | (Materials: M20 concrete and Fe 415 steel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    |              | Show the reinforcement details. (USE LSM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|    |              | Silving the residence from the control of the contr |    |
| J. | b)           | Design a singly reinforced beam 6 m span and carrying a udl of 30 kN/m. Take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05 |
|    | 0)           | width of the section two third of the effective depth. (USE WSM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |              | (Materials: M20 concrete and Fe 415 steel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|    | c)           | Explain the terms: Axial Bending, Uniaxial Bending and Biaxial Bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05 |
|    | -,           | D'I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| Q3 | a)       | A column of 600 mm* 600 mm is carrying an axial load of 1000 kN. Design the square footing for the column. The safe bearing capacity of the soil is 150 kN/m <sup>2</sup> . (check for two way shear not required) (Materials: M20 concrete and Fe 415 steel) Show the reinforcement details. (USE LSM)                                                               | 10       |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |          | Show the remoteement details. (OSE LSW)                                                                                                                                                                                                                                                                                                                               |          |
|    | b)       | Design a rectangular beam subjected to bending moment of 50 kNm, a shear force of 30 KN and a torsion of 25 kNm. Use M20 concrete and Fe 415 steel. (Materials: M20 concrete and Fe 415 steel) (USE LSM)                                                                                                                                                              | 10       |
|    |          |                                                                                                                                                                                                                                                                                                                                                                       |          |
| Q4 | a)       | A reinforced concrete beam is 300 mm wide. Effective depth of the beam is 450 mm. It is reinforced with four bars of 16 mm diameter as compression steel and four bars of 25 mm as tension steel. Cover to centre of compression steel is 50 mm. Determine moment of resistance of beam using <b>Working Stress Method</b> (Materials: M20 concrete and Fe 415 steel) | 10       |
|    | b)       | Design a cantilever slab to carry a live load of 2 kN/m². The overhang of the slab is 0.8 m. (Materials: M25 concrete and Fe 415 steel) Draw reinforcement details.(USE LSM)                                                                                                                                                                                          | 10       |
|    |          |                                                                                                                                                                                                                                                                                                                                                                       |          |
| Q5 | a)       | A simply supported RC beam is 250mm wide and 500 mm effective depth is reinforced with 4 bars of 16 mm diameter. Design the shear reinforcement if the beam is subjected to factored shear force of 150 kN. Provide bent up bar to resist shear. Draw reinforcement details.  (Materials: M20 concrete and Fe 415 steel) (USE LSM)                                    | 12       |
|    |          |                                                                                                                                                                                                                                                                                                                                                                       |          |
|    | b)<br>c) | Write a note on 'Raft Foundations'.  Explain balanced section in WSM and LSM.                                                                                                                                                                                                                                                                                         | 04<br>04 |
| Q6 | a)       | A reinforced concrete column has an effective length of 2.75 m. it carries an axial load of 1500 kN. Design the column and draw reinforcement details. (Materials: M25 concrete and Fe 415 steel)(USE LSM)                                                                                                                                                            | 14       |
|    | b)       | A simply supported two way slab of size 4m*6 m is provided 10 mm bars@ 200 mm c/c in both directions. Design torsion reinforcement at corner and draw a neat sketch. (Materials: M20 concrete and Fe 415 steel)(USE LSM)                                                                                                                                              | 06       |
|    |          |                                                                                                                                                                                                                                                                                                                                                                       |          |