(Time: 3 Hours) Max. Marks: 80 N.B. (1) Question No. 1 is compulsory. (2) Answer any three questions from Q.2 to Q.6. (3) Use of Statistical Tables permitted. (4) Figures to the right indicate full marks Q1. [5] (a) Find the Laplace transform of (b) Find k such that f(z) = $\frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \frac{kx}{y}$ [5] is analytic (c) Calculate the Spearman's rank correlation coefficient R : 10, 12, 18, 18, 15, 40. Y : 12, 18, 25, 25, 50, 25. (d) Find the inverse Laplace transform of $\log \left(\frac{s^2 + a^2}{s^2 + b^2} \right)$. Q2. (a) A continuous random variable has probability density function $f(x) = k(x - x^2), 0 \le x \le 1.$ f(x) = 0otherwise Find k, mean and variance. [6] (b) Find the Laplace transform of $e^{-3t} \int_0^t u \sin 3u \ du$. [6] (c) Obtain the Fourier series to represent f (x) = x^2 in (0, 2π) Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots$ [8] Q3. (a) If the imaginary part of the analytic function w = u + i v = f(z) is $V = x^2 - y^2 + \frac{x}{x^2 + y^2}$, then show that $u = -2xy + \frac{y}{x^2 + y^2}$. [6] (b) Find inverse Laplace transform of $\frac{2s^2 - 6s + 5}{(s^3 - 6s^2 + 11s - 6)}$ [6] (c) Fit a second-degree parabolic curve and estimate y when x = 10: 1, 2, 3, 4, 5, 6, 7, 8, 9, : 2, 6, 7, 8, 10, 11, 11, 10, 9. [8] Q4. Obtain the Fourier series to represent f (x) = x^3 in ($-\pi$, π). [6] (b) Find (i) the equation of the lines of Regression (ii) coefficient of correlation for the following data 65, 66, 67, 67, 68, 69, 70, 72. 67, 68, 65, 66, 72, 72, 69, 71. [6] (c) Prove that $\int_0^\infty e^{-\sqrt{2}t} \frac{\sin t \sin ht}{t} dt = \frac{\pi}{8}$. [8] 37856 # Paper / Subject Code: 50921 / Engineering Mathematics-III Q5. - (a) Find the orthogonal trajectories of the family of curves $x^3y xy^3 = c$. [6] - (b) Find the moment generating function of the distribution X : -2 3 1 P(X = x) : $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{6}$ hence find first four central moments . [6] - (c) Obtain the half range cosine series of f(x) = x in (0, 2)Hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4}$ - Q6.(a) Using convolution theorem Find the inverse Laplace transform of $\left[\frac{S^2}{(S^2+2^2)^2}\right]$ [6] - (b) The probability density function of a random variable X is X: 1 2 3 4 5 6 7 P(X=x): k 2k 3k k^2 $k^2 + k$ 2 k^2 4 k^2 Find k, p(X < 5), P(X > 5) .(c) If $v = 3x^2y + 6xy - y^3$, show that v is harmonic function And find the corresponding analytic function . [8] **Time: 3 Hours** Total Marks: 80 1. Question No. 1 is compulsory 2. Attempt any 3 from remaining questions. 3. Assume any suitable data if necessary and justify the assumptions. Q.1 Attempt any Four 1. Compare DDA and BRESENHAM line drawing algorithm. 2. Give application of computer graphics. 3. Explain with neat diagram rasterization. 4. Give fractal dimension of KOCH curve. 5. Define Projection, Describe perspective projection with neat diagram. Q.2 1. Given a triangle ABC where A(0,0), B(10,10) and C(20,0), scale the given triangle ABC 2unit in X direction and 0.5-unit in Y direction. Find out the new coordinate of triangle ABC after scaling. 2. Explain with neat diagram Sutherland and Hodgman polygon clipping algorithm in detail. Q.3 20 1. Derive window to viewport coordinate transformation 2. Give properties of Bezier curve. Q.4 20 1. Derive Mid-point circle generation algorithm. 2. Give principles of animation Q.5 20 1. Explain with neat diagram Area Sub division (Warnock's) algorithm to remove hidden surfaces. 2. Derive matrix for 2D rotation transformation. Q.6 Attempt any Four 20 1. Explain point clipping algorithm. 2. Give pseudo code for 4-connect Boundary fill algorithm. 3. Give transformation matrix for 3D – Translation, Scaling, Rotation (about x, y, z axis) 4. Explain with neat diagram composite transformation for scaling. ******* 5. Given a line AB where A(0,0) and B(1,3) find out all the coordinate of line AB using DDA 37894 algorithm. ### Page 1 of 1 Time: 3 Hours Total Marks: 80 #### N.B. - 1) Q.1 is compulsory. - 2) Solve any 3 questions out of remaining 5 questions. - 3) Assumptions made should be clearly stated. - 4) Draw the figures wherever required. ### Q.1 Solve any four of the following questions. - a) Prove using Mathematical Induction that $2 + 5 + 8 + \dots + (3n-1) = n(3n+1)/2$ 5 - b) Explain the term poset. Consider a set D₁₆₅. Find the elements of this set & draw the hasse diagram for this poset. - c) How many strings of length 7 either begin with 2 zeros or end with 3 ones? 5 - d) Explain the term partition set with suitable example. - e) State the Pigeonhole principle and show that If there are 10 marbles in the jar & you have a jar filled with red, green, and blue marbles, you'll always have at least two marbles of the same colour. 5 Q.2 a) 10 Let $A = \{0, 1, 2, 3, 4, 5\}$ - i) Explain the term group. - ii) Prepare the composition table for the above set w.r.t. the operation of addition modulo 6. - iii) Determine whether it is a group. - iv)Whether elements of set A are invertible? If yes, then find the inverses of these elements. - v) Determine whether it is a cyclic group. b Let $A = \{a_1, a_2, a_3, a_4, a_5\}$ and let R be a relation on A whose matrix is: $$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$ Find out transitive closure of R using Warshall's algorithm. 0.3 a) A large software development company employs 100 computer programmers. Of them, 45 are proficient in Java, 30 in C#, 20 in Python, six in C# and Java, one in Java and Python, five in C# and Python, and just one programmer is proficient in all three languages above. ### Paper / Subject Code: 50922 / Discrete Structures & Graph Theory Determine the number of computer programmers that are not proficient in any of these three languages. - b) Explain the terms Conjunctive & Disjunctive Normal Form with suitable examples. Determine the sequence b_n whose recurrence relation is $b_n = 2b_{n-1} + 1$ with initial condition $b_1 = 7$. **Q.4** a) What is a lattice? Determine whether following hasse diagram represents a lattice. b) S S S S S S 6 Consider (3, 8) an encoding function $e: B^3 \to B^8$ defined as - e(000) = 00000000 - e (001) = 10111000 - e(010) = 00101101 - e(011) = 10010101 - e(100) = 10100100 - e(101) = 10001001 - e(110) = 00011100 - e(111) = 00110001 How many errors can 'e' detect & correct? c) What are the necessary conditions for the isomorphism between 2 graphs? Determine whether following 2 graphs are isomorphic. 0.5 a) If the addition & multiplication modulo 10 is defined on a set of integers A={0, 2, 4, 6, 8}. Then determine whether this algebraic system is a ring. 8 # Paper / Subject Code: 50922 / Discrete Structures & Graph Theory b) A function $f: R \to R$ is defined by $f(x) = x^2$ - Is it i) injective - ii) surjective - iii) bijective - c) Define the terms Euler path & a circuit. Determine whether following graphs have Euler path or a circuit. b) **Q.6** a) Explain the following terms with suitable example (any 4) - i) Hamiltonian path & circuit - ii) Bipartite graph - iii) Adjacency matrix - iv) Equivalence relation - v) Cartesian product - Solve the following using the laws of logic 8 $$p \lor q \lor (\sim p \land \sim q \land r) \leftrightarrow p \lor q \lor r$$ $f: R \to R$ is defined by $f(x) = x^3$ $g: R \rightarrow R$ is defined by $g(x) = 4x^2 + 1$ $h: R \rightarrow R$ is defined by h(x) = 7x - 2 Find the rule defining - fog - ii) gof - iii) (goh)of - iv) go(hof) Duration: 3 Hours Total Marks: 80 - N.B: (1) Question No. 1 is compulsory. - (2) Attempt any three questions out of the remaining five questions. - (3) Figures to the right indicate full marks. - (4) Make suitable assumptions wherever necessary with proper justifications. - Q.1. A) Define ADT with an example. [05] - B) Evaluate the postfix expression "94*28+-" using stack ADT. Show the process stepwise. [05] - C) Justify the statement with suitable example: "Circular queue overcomes the disadvantage of linear queue". [05] - D) Differentiate between linear search and binary search. [05] - Q.2. A) Construct Huffman tree and determine the code for each symbol in the string "BCAADDDCCACACAC". [10] - B) Discuss the cases of deleting a node from Binary Search Tree with suitable [10] example. - Q.3. A) Write a program in C to implement queue ADT using linked list. [10] - B) Construct an AVL tree by inserting the following elements in the given [10] order. Apply necessary rotations wherever required. 54, 12, 24, 68, 85, 99, 42, 27, 87, 80 - Q.4. A) Write C function for BFS graph traversal. Show the stepwise BFS traversal [10] with the help of data structures for the following graph: - B) Write functions in C to perform the following operations on the Doubly [10] Linked List: - i) Delete a node after given node. - ii) Find node with smallest data value. - iii) Display the list. - iv) Insert a node at the end of the list. - Q.5. A) Build a Binary Search Tree, given the following sequences: [05] Inorder: 35, 41, 48, 52, 57, 72, 79, 85, 86, 90 Preorder: 57, 41, 35, 52, 48, 90, 72, 85, 79, 86 B) What is topological sort? Explain Topological Sorting with an example. [05] # Paper / Subject Code: 50923 / Data Structure - What is collision? Using linear probing, insert the following values in the hash table of size 11 & count the no. of collisions: 83, 53, 64, 25, 39, 96, 12,71. - Q.6. A) Write short note on Priority Queue. [05] - B) Write a function in C to count the number of nodes in Singly Linked List. [05] - C) Create a B-tree of order 3 by inserting 87,94,59,98,63,7,27. [10] ********* | Time: | 3 H | ours | | | | OX | | Max. Marks: 80 | 0 | | |------------|---|---|--------------------------------------|---|---------------------------|-------------------------------|---------------------------|---------------------------------|-----|--| | Instru | ıctio | ns: | | | | 6 | | | 2 | | | 1) | | | Number 1 | is compuls | orv. | | | | A V | | | 2) | _ | | | | | five question | ns. | | | | | 3) | Solve any three questions out of remaining five questions. Each Question carry 20 marks. | | | | | | | | | | | 4) | | | _ | | sketches w | herever nece | essary. | | | | | 5) | | Figures to the right indicate full marks. | | | | | | | | | | 6) | Assume suitable additional data, if necessary and clearly state it. | | | | | | | | | | | 7) | All | sub-qu | estions of t | the same qu | estion shou | ld be groupe | d together. | | | | | | | | | | | 18 T | | | | | | | | | | ROY. | 0, | | | To the | | | | Q.1 | (a) | i.) | | the Boolea | h' - | on: A AND (| B OR (C | AND D)) using | 03 | | | | | ii.) | Create a | truth table | for the follo | wing circuit: | : A AND (I | BORC). | 02 | | | | (b) | Conve | | | /\ Y | representation | | 18h | 05 | | | | | | | | - 1 | 00 to its deci | | lent. | | | | | (c) | | | | | | | ovide the truth | 05 | | | | Y | | | B Decoder. | | | | | 2 | | | | (d) | | | | truction sec | uencing orga | anization | | 05 | | | | (u) | Sian | ина схрии | in whereins | ir detroit seq | denenig orge | amzation. | | 0.5 | | | Q.2 | (a) | four b | olock sets.
ins 256 eig
How ma | The main rather than the state of | nemory cons. required for | nsists of 16,3 | 384 blocks
the main me | emory? ET and WORD | 10 | | | | (b) | What | is bus arbi | tration? Ex | plain any tv | vo technique | s of bus arb | itration? | 10 | | | Q.3 | (a) | | | | | a Master-S
fer from a re | | Flip-Flop with lip-flop? | 10 | | | | (b) | Expla
a hard | in the cond | cept of a m | icroprogranescribe the | nmed contro | l unit and c | compare it with ntages of using | 10 | | | Q.4 | (a) | - | | | | used as a uni
lement other | _ | c gate. Provide | 10 | | | A THE | (b) | How 1 (-7) ₁₀ | Booth's mu j binary i | ultiplication
numbers. S | algorithm
Show the | can be used t | to multiply
e steps in | $(-10)_{10}$ and volved in the | 10 | | | Q.5 | (a) | Perform the following binary arithmetic operations and show the | 10 | | | | | | | | |-----|------------|---|----|--|--|--|--|--|--|--| | | | intermediate steps and the final result. | | | | | | | | | | | | i.) Add the following Binary Coded Decimal (BCD) numbers: (0101) + (1001). | D | | | | | | | | | | | ii.) Subtract the following binary numbers using 2's complement representation: (10101) - (01110). | S, | | | | | | | | | | | iii.) Multiply the following binary numbers using 1's complement representation: (1101) * (1010). | | | | | | | | | | | | iv.) Divide the following binary numbers using 2's complement representation: (101101) / (110). | | | | | | | | | | | | v.) Perform addition in hexadecimal for the numbers: (2A) + (1B). | | | | | | | | | | | (b) | What is Pipeline Hazard? Give the types of pipeline hazards. Write a difference between delayed branch and branch prediction. | | | | | | | | | | Q.6 | (a) | Draw instruction cycle state diagram with interrupt. | | | | | | | | | | | (b) | What is State Table Method used for design Hardwired Control unit? | | | | | | | | | | | (c) | Compare with suitable parameters SRAM with DRAM. | | | | | | | | | | | (d) | Draw the neat block diagram for Flynn's classification. | | | | | | | | |