University of Mumbai Examination Second Half 2022 Program: **BE EXTC**Curriculum Scheme: Rev2016 Examination: TE Semester V Paper Code: 32202 Course Code: ECC 501 and Course Name: Digital Communication Time: 2hour 30 minutes Max. Marks: 80 | Q1(20 Choose the correct option for following questions. All the Que | | | | |--|--|--|--| | Marks) | compulsory and carry equal marks | | | | 1. | What is the range of values that entropy of a source can take? Assume that the source can transmit N possible messages. | | | | Option A: | [0, 1], | | | | Option B: | | | | | Option C: | [1, logN + 1], | | | | Option D: | (0, logN) | | | | 2. | Consider 16-QPSK modulation system. How many bits per symbol and number of symbols exist, respectively, in this system? | | | | Option A: | 16,4 | | | | Option B: | 4, 16 | | | | Option C: | | | | | Option D: | 2, 16 | | | | 3. | What is the relationship between the PDF and CDF of any random variable? | | | | Option A: | PDF is the integral of CDF | | | | Option B: | PDF is the derivative of CDF | | | | Option C: | PDF is CDF multiplied by a constant | | | | Option D: | PDF is CDF raised to a constant | | | | 4. | Consider a (7, 4) cyclic code with the generator polynomial $G(x) = x^3 + x^2 + 1$. Determine the systematic cyclic codeword for the data 1110. | | | | Option A: | 1110010 | | | | Option B: | 1101110 | | | | Option C: | | | | | Option D: | 1110101 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | 2222 | 20000000000000000000000000000000000000 | | | | 85000 | By grouping longer sequences and proper source coding, it is possible to | | | | Option A: | Reduce delay in the transmission | | | | Option B: | Increase code efficiency | | | | Option C: | Equate entropy with channel capacity. | | | | Option D: | Reduce transmission errors. | | | | 6. | For the (n, k) systematic cyclic code, how many bits are present in the syndrome at the receiver? | | | | Option A: | | | | | Option B: | | | | | Option C: | n-k | | | | Option D: | n-k+1 | | | | | The phase difference between symbols for a ODSV modulator is | | | | \$3.470\S | The phase difference between symbols for a QPSK modulator is | | | | Option A: | 0 degree | | | | Option C: | 90 degrees | | |-----------|---|--| | Option D: | 180 degrees | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | 8. | In the eye diagram, what does the squinted (i.e. asymmetric) eye pattern represent? | | | Option A: | linear distortion | | | Option B: | fading | | | Option C: | non-linear distortion | | | Option D: | no distortion | | | | 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | 9. | What is the expression for the maximum SNR of the matched filter, where E is the symbol | | | | energy and N0 is the noise PSD? | | | Option A: | E/N0, | | | Option B: | 2E/N0, | | | Option C: | E/(2N0), | | | Option D: | 4E/N0 | | | | | | | 10. | Which of the following inequalities is used to determine the maximum SNR for the | | | | matched filter? | | | Option A: | Cauchy | | | Option B: | Cauchy-Schwarz Cauchy-Schwarz | | | Option C: | Schwarz 2747467488888888888 | | | Option D: | Euclidean | | | Q2 (20 Marks) | | \$\Z\\$\Z\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$ | |----------------------|--|---| | A SSS | Solve any Two | 5 marks each | | i. | Define QAM. Explain the relationship between the minimum bandwidth required and the bitrate for 16-QAM system. | | | ii. | Define channel capacity. What are the key factors which effect the channel capacity? | | | oiii. | Distinguish between continuous and discrete random variables. | | | B | Solve any One | 10 marks each | | | Differentiate QPSK and OQPSK. Sketch the QPSK wave form for the sequence 0110100. | | | | | mials, $g_{1(x)} = 1 + x + x^2$, and $g_{2(x)} = 1 + x^2$, le for the data sequence 101011. | | Q3 (20 Marks) | | | |--|---|--------------| | 12 2 2 A 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | Solve any Two | 5 marks each | | | What is matched filter? State its important properties. | | | 7 7 7 3 ii. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | What is the difference between source coding, line coding and error control coding? | | | A A Siii | Write a brief note on Inter Symbol Interference (ISI). | | | B° | Solve any One 10 marks each | | | i | Justify that probability of error in matched filter does not depend upon shape of input signal. Derive the relevant expression. | | | ii. | Describe the coherent detection method of binary FSK signal. Also draw power spectra for BFSK modulated signal. | | | Q4 (20 Marks) | | \$\$\$\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | |---------------|--|---| | A | Solve any Two | 5 mark each | | i. | Explain the steps involved in digital transmission of analog signal. | | | ii. | State Central Limit Theorem. What is the significance of Central Limit Theorem? | | | iii. | Define entropy and state its properties, | | | В | Solve any One | 10 mark each | | i. | Design a cyclic code encoder using shift registers using the generator polynomial $g(x) = 1 + x + x^2 + x^4$ | | | ii. | Consider an alphabet of DMS having five different source symbols with their respective probabilities as 0.1,0.2,0.4,0.1 and 0.2 a) Create a Huffman tree by placing the combined probability lower than that of other similar probability in the reduced list. b) Tabulate the codeword and the length of codeword for each source symbols. c) Determine the average codeword length of specified DMS. d) Comment on the results obtained. | | ## University of Mumbai Examination First Half 2022 Program: Electronics and Telecommunication Engineering Curriculum Scheme: (R- 16) (C Scheme) Examination: TE Semester V Course Code: ECC504 and Course Name: Discrete Time Signal Processing Time: 2 hour 30 minutes Max. Marks: 80 Choose the correct option for following questions. All the Questions are 01. compulsory and carry equal marks 1. Consider two real sequences $x_1(n)$ and $x_2(n)$ with their DFTs $X_1[k]$ & $X_2[K]$ respectively. If $x[n]=ax_1[n]+bx_2[n]$ then what is X(k)Option A: $[X_1(k) + X_2(k)]$ Option B: $[aX_1(k) + bX_2(k)]$ Option C: $[X_1(k)/a + X_2(k)/b]$ Option D: $[aX_1(k)-bX_2(k)]$ 2. Find the IDFT of the given sequence $X(k) = \{10.-2+2i, -2, -2-2i\}$ Option A: [1,2,3,4] Option B: [3,4,2,1] Option C: [4,3,2,1] Option D: [0,1,0,3] 3. For mapping from analog domain to digital domain i. e. $s=\sigma+i\Omega$ and $z=re^{i\omega}$, then what is the condition on σ if r>1? Option A: $\sigma > 0$ Option B: $\sigma < 0$ Option C: $\sigma > 1$ Option D: $\sigma > 1$ The nonlinear relation between the analog and digital frequencies is called 4. Option A: Aliasing Option B: Anti- aliasing Option C: Frequency Warping Option D: Mapping 5. The number of complex additions that we need to perform in the linear filtering of any sequence using the FFT algorithm would be: Option A: $Nlog_2N$ Option B: $(N/2)\log_2 N$ Option C: 2Nlog₂N Option D: (N/2)logN will result into DFT of x1[n] is $X1(k) = \{-2, -2-2i, 10, -2+2i\}$? 6. Option A: Option B: Time Reversal Complex Conjugate If DFT of $x[n] = \{1, 2, 3, 4\}$ is $X(k) = \{10, -2+2i, -2, -2-2i\}$. Which property of DFT | Option C: | Frequency shifting | | |-----------|--|--| | Option D: | Time shifting | | | | | | | 7. | The location of compulsory zero in a Type II linear phase FIR filter is at | | | | and in Type IV is at | | | Option A: | z = -1, z = +1 | | | Option B: | z = +1, z = -1 | | | Option C: | $z = \pm 1$, No compulsory zeros | | | Option D: | No compulsory zeros, $z = \pm 1$ | | | | | | | 8. | is a method where the speech signal is subdivided into several frequency | | | | bands and each band is digitally encoded separately with different number of bits. | | | Option A: | Quantization | | | Option B: | Sub band Coding | | | Option C: | Filtering | | | Option D: | Truncation | | | | | | | 9. | Why rounding is preferred than truncation for quantization. | | | Option A: | Quantization error will be more in rounding than in truncation | | | Option B: | Quantization error will be less in rounding than in truncation | | | Option C: | Rounding is easy | | | Option D: | Rounding required less time. | | | | 99998998888888888888888 | | | 10. | In the cascaded form of realization, the polynomials are factored into | | | Option A: | a product of 1st-order and 2nd-order polynomials | | | Option B: | a product of 2nd-order and 3rd-order polynomials | | | Option C: | sum of 1st-order and 2nd-order polynomials | | | Option D: | sum of 2nd-order and 3rd-order polynomials | | | | \$\X\X\X\Z\Z\Z\Z\X\Z\X\Z\X\Z\X\Z\X\Z\X\Z\ | | | | (20 | | ## For Q2 to Q4 Each 20 Marks, Use any of the Following Format | Q2 | Solve any Four out of Six 5 marks each | | |--------------|--|--| | A | Determine circular convolution of the sequences $x_1(n)$ and $x_2(n)$ using DFT/IDFT only $x_1(n) = [1, 2, 3, 1]$ and $x_2(n) = [4, 3, 2, 2]$ | | | \mathbf{B} | What are linear phase filters? What conditions are to be satisfied by the impulse response in order to have LP? Define phase delay and group delay. | | | | For the analog transfer function H(S), Determine H(z) using impulse invariance $H(s) = \frac{1}{(s+1)+(s+2)}$ method. Assume T=1sec. | | | D | For the given transfer function of discrete time causal system $H(z) = \frac{1-z^{-1}}{1-0.2z^{-1}-0.15z^{-2}}$ Draw cascade and parallel realization. | | | E | Explain Application of DSP for ECG signals analysis. | | | F | Short note on finite word length effect in digital filters. | | | Q3 | Solve any One Questions out of Two | 10 marks each | |----|--|---| | A | Find linear convolution using overlap add and over | lap-save method $x(n)=[1,2,-$ | | | 1,2,3,-2,-3,-1,1,1,1,2,1] and $h(n)=[1,2,3]$. | | | В | Determine the filter coefficient hd(n) for the desired pass filter given by $H(e^{jw}) = e^{-3jw}$ $= 0$ | If frequency response of low $\frac{-\pi}{2} \le w \le \frac{\pi}{2}$ $\frac{\pi}{2} \le w \le \pi$ | | | Also find transfer function using hanning window. | | | Q4 A | Solve any One Questions out of Two 10 marks each | | |------|--|--| | | Find the order and cut off frequency of Butterworth digital filter with | | | i | $0.8 \le H(e^{jw}) \le 1$ $0 \le w \le 0.2\pi$ | | | | $\begin{aligned} 0.8 &\leq H(e^{jw}) \leq 1 & 0 \leq w \leq 0.2\pi \\ H(e^{jw}) &\leq 0.2 & 0.6\pi \leq w \leq \pi \end{aligned}$ | | | | using IIM and BLT method. | | | ii | An eight-point sequence x₁(n)= [1,2,3,4,5,6,7,8] a) Find the DFT of x₁(n) i.e. X₁(k) using DIT FFT technique. b) Let x₂(n)=[5,6,7,8,1,2,3,4] using appropriate DFT property and answer of part a determine X₂(k). | | | Q4 B | Solve any Two Questions out of Three 5 Marks each | | | i | One of the zeros of causal LP FIR filter is at $0.5e^{j\pi/3}$. Show the locations of other zeros and hence find the transfer function and impulse response of the filter. | | | ii | A cascade realization of two first order digital filters are $H_1(z) = \frac{1}{1 - 0.9z^{-1}}$ and $H_1(z) = \frac{1}{1 - 0.8z^{-1}}$. Determine the overall o/p noise power. | | | iii | Write a short note on frequency sampling realization of FIR filters. | |