University of Mumbai Examination Second Half 2022

Program: **BE EXTC**Curriculum Scheme: Rev2016
Examination: TE Semester V

Paper Code: 32202 Course Code: ECC 501 and Course Name: Digital Communication

Time: 2hour 30 minutes Max. Marks: 80

Q1(20 Choose the correct option for following questions. All the Que			
Marks)	compulsory and carry equal marks		
1.	What is the range of values that entropy of a source can take? Assume that the source can transmit N possible messages.		
Option A:	[0, 1],		
Option B:			
Option C:	[1, logN + 1],		
Option D:	(0, logN)		
2.	Consider 16-QPSK modulation system. How many bits per symbol and number of symbols exist, respectively, in this system?		
Option A:	16,4		
Option B:	4, 16		
Option C:			
Option D:	2, 16		
3.	What is the relationship between the PDF and CDF of any random variable?		
Option A:	PDF is the integral of CDF		
Option B:	PDF is the derivative of CDF		
Option C:	PDF is CDF multiplied by a constant		
Option D:	PDF is CDF raised to a constant		
4.	Consider a (7, 4) cyclic code with the generator polynomial $G(x) = x^3 + x^2 + 1$. Determine the systematic cyclic codeword for the data 1110.		
Option A:	1110010		
Option B:	1101110		
Option C:			
Option D:	1110101 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
2222	20000000000000000000000000000000000000		
85000	By grouping longer sequences and proper source coding, it is possible to		
Option A:	Reduce delay in the transmission		
Option B:	Increase code efficiency		
Option C:	Equate entropy with channel capacity.		
Option D:	Reduce transmission errors.		
6.	For the (n, k) systematic cyclic code, how many bits are present in the syndrome at the receiver?		
Option A:			
Option B:			
Option C:	n-k		
Option D:	n-k+1		
	The phase difference between symbols for a ODSV modulator is		
\$3.470\S	The phase difference between symbols for a QPSK modulator is		
Option A:	0 degree		

Option C:	90 degrees	
Option D:	180 degrees	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
8.	In the eye diagram, what does the squinted (i.e. asymmetric) eye pattern represent?	
Option A:	linear distortion	
Option B:	fading	
Option C:	non-linear distortion	
Option D:	no distortion	
	4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	
9.	What is the expression for the maximum SNR of the matched filter, where E is the symbol	
	energy and N0 is the noise PSD?	
Option A:	E/N0,	
Option B:	2E/N0,	
Option C:	E/(2N0),	
Option D:	4E/N0	
10.	Which of the following inequalities is used to determine the maximum SNR for the	
	matched filter?	
Option A:	Cauchy	
Option B:	Cauchy-Schwarz Cauchy-Schwarz	
Option C:	Schwarz 2747467488888888888	
Option D:	Euclidean	

<b>Q2 (20 Marks)</b>		\$\Z\\$\Z\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$
A SSS	Solve any Two	5 marks each
i.	Define QAM. Explain the relationship between the minimum bandwidth required and the bitrate for 16-QAM system.	
ii.	Define channel capacity. What are the key factors which effect the channel capacity?	
oiii.	Distinguish between continuous and discrete random variables.	
B	Solve any One	10 marks each
	Differentiate QPSK and OQPSK. Sketch the QPSK wave form for the sequence 0110100.	
		mials, $g_{1(x)} = 1 + x + x^2$ , and $g_{2(x)} = 1 + x^2$ , le for the data sequence 101011.

Q3 (20 Marks)		
12 2 2 A 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Solve any Two	5 marks each
	What is matched filter? State its important properties.	
7 7 7 3 <b>ii.</b> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	What is the difference between source coding, line coding and error control coding?	
A A Siii	Write a brief note on Inter Symbol Interference (ISI).	
$B^{\circ}$	Solve any One 10 marks each	
i	Justify that probability of error in matched filter does not depend upon shape of input signal. Derive the relevant expression.	
ii.	Describe the coherent detection method of binary FSK signal. Also draw power spectra for BFSK modulated signal.	

Q4 (20 Marks)		\$\$\$\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
A	Solve any Two	5 mark each
i.	Explain the steps involved in digital transmission of analog signal.	
ii.	State Central Limit Theorem. What is the significance of Central Limit Theorem?	
iii.	Define entropy and state its properties,	
В	Solve any One	10 mark each
i.	Design a cyclic code encoder using shift registers using the generator polynomial $g(x) = 1 + x + x^2 + x^4$	
ii.	<ul> <li>Consider an alphabet of DMS having five different source symbols with their respective probabilities as 0.1,0.2,0.4,0.1 and 0.2</li> <li>a) Create a Huffman tree by placing the combined probability lower than that of other similar probability in the reduced list.</li> <li>b) Tabulate the codeword and the length of codeword for each source symbols.</li> <li>c) Determine the average codeword length of specified DMS.</li> <li>d) Comment on the results obtained.</li> </ul>	

## University of Mumbai Examination First Half 2022

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: (R- 16) (C Scheme)

Examination: TE Semester V

Course Code: ECC504 and Course Name: Discrete Time Signal Processing

Time: 2 hour 30 minutes Max. Marks: 80

Choose the correct option for following questions. All the Questions are 01. compulsory and carry equal marks 1. Consider two real sequences  $x_1(n)$  and  $x_2(n)$  with their DFTs  $X_1[k]$  &  $X_2[K]$ respectively. If  $x[n]=ax_1[n]+bx_2[n]$  then what is X(k)Option A:  $[X_1(k) + X_2(k)]$ Option B:  $[aX_1(k) + bX_2(k)]$ Option C:  $[X_1(k)/a + X_2(k)/b]$ Option D:  $[aX_1(k)-bX_2(k)]$ 2. Find the IDFT of the given sequence  $X(k) = \{10.-2+2i, -2, -2-2i\}$ Option A: [1,2,3,4] Option B: [3,4,2,1] Option C: [4,3,2,1] Option D: [0,1,0,3] 3. For mapping from analog domain to digital domain i. e.  $s=\sigma+i\Omega$  and  $z=re^{i\omega}$ , then what is the condition on  $\sigma$  if r>1? Option A:  $\sigma > 0$ Option B:  $\sigma < 0$ Option C:  $\sigma > 1$ Option D:  $\sigma > 1$ The nonlinear relation between the analog and digital frequencies is called 4. Option A: Aliasing Option B: Anti- aliasing Option C: Frequency Warping Option D: Mapping 5. The number of complex additions that we need to perform in the linear filtering of any sequence using the FFT algorithm would be: Option A:  $Nlog_2N$ Option B:  $(N/2)\log_2 N$ Option C: 2Nlog₂N Option D: (N/2)logN

will result into DFT of x1[n] is  $X1(k) = \{-2, -2-2i, 10, -2+2i\}$ ?

6.

Option A:

Option B:

Time Reversal

Complex Conjugate

If DFT of  $x[n] = \{1, 2, 3, 4\}$  is  $X(k) = \{10, -2+2i, -2, -2-2i\}$ . Which property of DFT

Option C:	Frequency shifting	
Option D:	Time shifting	
7.	The location of compulsory zero in a Type II linear phase FIR filter is at	
	and in Type IV is at	
Option A:	z = -1, z = +1	
Option B:	z = +1, z = -1	
Option C:	$z = \pm 1$ , No compulsory zeros	
Option D:	No compulsory zeros, $z = \pm 1$	
8.	is a method where the speech signal is subdivided into several frequency	
	bands and each band is digitally encoded separately with different number of bits.	
Option A:	Quantization	
Option B:	Sub band Coding	
Option C:	Filtering	
Option D:	Truncation	
9.	Why rounding is preferred than truncation for quantization.	
Option A:	Quantization error will be more in rounding than in truncation	
Option B:	Quantization error will be less in rounding than in truncation	
Option C:	Rounding is easy	
Option D:	Rounding required less time.	
	99998998888888888888888	
10.	In the cascaded form of realization, the polynomials are factored into	
Option A:	a product of 1st-order and 2nd-order polynomials	
Option B:	a product of 2nd-order and 3rd-order polynomials	
Option C:	sum of 1st-order and 2nd-order polynomials	
Option D:	sum of 2nd-order and 3rd-order polynomials	
	\$\X\X\X\Z\Z\Z\Z\X\Z\X\Z\X\Z\X\Z\X\Z\X\Z\	
	(20	

## For Q2 to Q4 Each 20 Marks, Use any of the Following Format

Q2	Solve any Four out of Six 5 marks each	
A	Determine circular convolution of the sequences $x_1(n)$ and $x_2(n)$ using DFT/IDFT only $x_1(n) = [1, 2, 3, 1]$ and $x_2(n) = [4, 3, 2, 2]$	
$\mathbf{B}$	What are linear phase filters? What conditions are to be satisfied by the impulse response in order to have LP? Define phase delay and group delay.	
	For the analog transfer function H(S), Determine H(z) using impulse invariance $H(s) = \frac{1}{(s+1)+(s+2)}$ method. Assume T=1sec.	
D	For the given transfer function of discrete time causal system $H(z) = \frac{1-z^{-1}}{1-0.2z^{-1}-0.15z^{-2}}$ Draw cascade and parallel realization.	
E	Explain Application of DSP for ECG signals analysis.	
F	Short note on finite word length effect in digital filters.	

Q3	Solve any One Questions out of Two	10 marks each
A	Find linear convolution using overlap add and over	lap-save method $x(n)=[1,2,-$
	1,2,3,-2,-3,-1,1,1,1,2,1] and $h(n)=[1,2,3]$ .	
В	Determine the filter coefficient hd(n) for the desired pass filter given by $H(e^{jw}) = e^{-3jw}$ $= 0$	If frequency response of low $\frac{-\pi}{2} \le w \le \frac{\pi}{2}$ $\frac{\pi}{2} \le w \le \pi$
	Also find transfer function using hanning window.	

Q4 A	Solve any One Questions out of Two 10 marks each	
	Find the order and cut off frequency of Butterworth digital filter with	
i	$0.8 \le  H(e^{jw})  \le 1$ $0 \le w \le 0.2\pi$	
	$\begin{aligned} 0.8 &\leq  H(e^{jw})  \leq 1 & 0 \leq w \leq 0.2\pi \\  H(e^{jw})  &\leq 0.2 & 0.6\pi \leq w \leq \pi \end{aligned}$	
	using IIM and BLT method.	
ii	<ul> <li>An eight-point sequence x₁(n)= [1,2,3,4,5,6,7,8]</li> <li>a) Find the DFT of x₁(n) i.e. X₁(k) using DIT FFT technique.</li> <li>b) Let x₂(n)=[5,6,7,8,1,2,3,4] using appropriate DFT property and answer of part a determine X₂(k).</li> </ul>	
Q4 B	Solve any Two Questions out of Three 5 Marks each	
i	One of the zeros of causal LP FIR filter is at $0.5e^{j\pi/3}$ . Show the locations of other zeros and hence find the transfer function and impulse response of the filter.	
ii	A cascade realization of two first order digital filters are $H_1(z) = \frac{1}{1 - 0.9z^{-1}}$ and $H_1(z) = \frac{1}{1 - 0.8z^{-1}}$ . Determine the overall o/p noise power.	
iii	Write a short note on frequency sampling realization of FIR filters.	