(3 Hours) [Total Marks: 80] N.B.: (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume Suitable data, if required and state it clearly. 1. Attempt any Four:-(a) Define Probability. Explain CDF and PDF. 05 (b) Explain linearity and cyclic properties of a cyclic code. (c) Derive an expression for Entropy. When is entropy maximum? 05 (d) Compare: Binary phase shift keying and binary frequency shift keying. 05 (e) Write a short note on ISI equalizers. 05 2. (a) A discrete memoryless source has an alphabet of seven symbols with probabilities for its output as described in Table Symbol S_0 S_1 S_2 S_3 S_4 S_5 **Probability** 0.3 0.25 0.15 0.12 0.10 0.08 1. Generate Huffman code. 2. Determine its average word length. 3. Find entropy of the source. 4. Determine its efficiency and redundancy. (b) Explain the necessity of line codes for data transmission. State different types of line codes. **10** 3. (a) Draw and explain the block diagram of QPSK transmitter and receiver and Sketch the waveform. 10 (b) Calculate the error probability of the matched filter. 10 (a) Explain 16-ary QASK transmitter and receiver and draw the signal space representation and calculate the Euclidean distance between two symbols. 10 b) The parity check matrix of a (7,4) linear block code is given by: 10

- 1. Find the generator matrix (G).
- 2. List all code vectors.
- 3. What is the minimum distance between the code vectors?
- 4. How many errors can be detected? How many errors can be corrected?

Paper / Subject Code: 32202 / Digital Communication

5. (a) Encode the message 101 in systematic form using polynomial division and the generator polynomial g(X) = 1 + X + X² + X⁴
(b) Generator vectors for a rate 1/3 convolutional encoder are g₁ = (100), g₂ = (101), g₃ = (111)
i) Draw the encoder diagram
ii) Draw the trellis diagram.
iii) Using trellis find code vector if message vector is (101100)
6. (a) Explain the central limit theorem for random variables
(b) Draw and explain the block diagram of BFSK transmitter and receiver
10

Time:	3 ho	urs							Max. Mark	s: 80
N.B.	. :1) (Question no. 1 is compul 2) Answer any 3 question		om rema	aining	five qu	estions			
Q1	Ans	wer any four questions						C.X.	, Co	A.
	a.	What are the three axio	ms of	probab	ility?					05
	b.	Define central limit the				_				05
	c.	A continuous random v = 5 has a density functi					•		en x = 2 and x	05
	d.	Define SSS process. He	_	•	. ,	. ,		(21 1)		05
	e.	Define autocorrelation								05
Q2	a.	In a binary Symmetric as '0' is 0.9 and the protability that a '0 i) The probability that a ii) The probability that iii) Error probability	babili o' is tra a '1'w	ty that ansmitt as trans	a trans ed is 0 smitted	mitted .55, fin l given	'1' is red d that a '1	ceived as	s '1'is 0.95. If ceived.	10
	b.	i. Three balls are containing 2 white balls draw joint probability	nite, 3 vn and distri	red and Y dendering the state of the state o	d 4 bla otes th of (X,	ick ball e numb	ls. If X	denotes t	the number of	05
000		ii. State and Prove	Z >) -			· · ·	, ŝ	5	A C	05
Q3	a.	The joint pdf of two dir				_	= :			10
1			f	(x, y) =	$= x^2 + \frac{1}{2}$	$\frac{xy}{3}$; $0 \le$	$x \leq 1, 0$	$\leq y \leq 2$. Find	
Y	T	i. P(Y<0.5/X				,0				
		ii. Are x and y	indep	endent	randoı	n varia	bles?			
	b.	State and prove Chebys	shev in	nequalit	ty.	87				10
Q4	a.	Derive the moment gen								10
		moment generating fun	ction,	derive	the me	an and	varianc	e of Pois	sson	10
	b.	distribution If the joint pdf of (X,Y) U=XY) is giv	ven by	f (x,y)=	=x+y ;	$0 \le x,y$	≤ 1 , find	the pdf of	10
Q5	a.	If the joint pdf of (X,Y)) is giv	ven by	f (x,y)=	=24y(1	$-x$), $0 \le y$	$y \le x \le 1$,	Find E(XY)	10
	b.	Given a random proces Θ is a random variable (t) is a WSS process or	with							10
Q6	a.	Discuss the properties of								10
	b.	Find linear regression e output when input x=7.								10
		Sper Tegg,	X	2	4	6	8			
			y	3	7	5	10			

Ī	X	2 4		6	8	
×(1)×	у	3	7	5	10	

		(3 Hours) [Total Marks : 80	J
N	I.В.:	 Question No 1 is Compulsory. Attempt any three questions out of the remaining five. All questions carry equal marks. Assume suitable data, if required and state it clearly. 	
1		Attempt any FOUR	[20]
	a	What is modulation? What are the types of modulation?	
	b	Explain different error control systems	2 013.
	c	Compare BASK, BPSK, BFSK, 4-ary FSK and 8-ary PS in terms of bandwidth	
	d	Calculate 4-bits checksum for the data 110011111011	
	e	Calculate CRC bits for the data 10000 using $g(x) = x^8 + x^2 + x + 1$	
2	a	Explain Shannon-Hartley Theorem and determine the channel capacity if the bandwidth is infinite	[10]
	b	Write the algorithms for determining Huffman code and Shannon-Fano code and	[10]
		select a suitable example to show the code generation	
3	a	What is line code? What are the parameters need to be considered for selecting a	[10]
		line code for a specific allocation.	
	b	Draw the shift register circuit for $(7,4)$ systematic cyclic code encoder with $g(x)$	[10]
		$= x^3 + x^2 + 1$ and generate parity bits for the data 1000 and 1010	
4 /	a	Explain error detection and correction procedure for systematic linear block code	[10]
	b	Derive the PSD of QPSK signal, draw the power spectrum and find the	[10]
		bandwidth	
5	a	Sketch the signal space diagram of MSK and determine the error probability	[10]
	b	Explain 16-ary QASK modulator and demodulator with suitable equations	[10]
6	a	Show that the performances of matched filter and correlator are identical	[10]
	b	Explain Viterbi's decoding algorithm with a suitable example	[10]

Duration: 3hrs [Max Marks:80]

- N.B.: (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.
- 1 Attempt any **FOUR**

[20]

- a If $x(n) = \{2,3,4,5\}$
 - i) Find DFT of x(n) using DIT-FFT
 - ii) If y(n) = x(n-1) Find DFT of y(n) using property not otherwise.
- b A digital filter is described by the following difference equation

$$y(n) = 0.9y(n-1) + bx(n)$$

- i) Determine b such that |H(0)| = 1
- ii) Identify the filter type based on pass band.
- c Obtain computational complexity of FFT algorithm.
- d Define group delay and phase delay.
- e Explain the frequency warping in bilinear transformation.
- 2 a Design digital FIR filter for the following specification. Use hanning window [10] and assume M = 7.

- b Compute circular convolution of the following sequence using DITFFT-IFFT $x1(n) = \{1, 2, 1, 2\}$ and $x2(n) = \{1, 2, 1\}$.
- a Compute the DFT of the sequence x (n) = {1, 2, 3, 4, 4, 3, 2, 1} using DIF-FFT algorithm. Compare the computational complexity of the above algorithm with DFT.
 - b For the second order IIR filter

[10]

$$H(z) = \frac{1}{(1 - 0.5z^{-1})(1 - 0.45z^{-1})}$$

Study the effect of shift in pole location with a 3-bit coefficient.

- 4 a Determine the zeros of the following FIR systems and identify whether the following system is minimum phase, maximum phase, mixed phase. Also comment on stability.
 - (i) $H_1(z) = 6 + z^{-1} + 6z^{-2}$
 - (ii) $H_2(z) = 1 z^{-1} 6z^{-2}$
 - (iii) $H_3(z) = 1 \frac{5}{2}z^{-1} \frac{3}{2}z^{-2}$

29768

Paper / Subject Code: 32222 / Discrete Time Signal Processing

- b Write a note on frequency sampling realization of FIR filer. [10]
- 5 a Design a digital Butterworth low pass filter that satisfies the following constraint using impulse invariant transformation method. Assume $T = 1 \, sec$

$$0.707 \le |H(w)| \le 1$$
; for $0 < \omega < 0.3\pi$
 $|H(w)| \le 0.2$; for $0.75\pi < \omega < \pi$

- b Explain overlap and save method for data filtering. Using this method find output of a system with impulse response $h(n) = \{1, 2, 1\}$ and input $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$
- 6 a Explain application of DSP for Echo cancellation. [10]
 - b The transfer function of discrete time causal system is given by [10]

$$H(z) = \frac{1 - z^{-1}}{1 - 0.2z^{-1} - 0.15z^{-2}}$$

Draw cascade and parallel realization.

Duration: 3hrs

[Max Marks:80] N.B.: (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume suitable data, if required and state it clearly. 1 Attempt any FOUR Differentiate between IIR & FIR filters Explain the concept of pipelining in DSP processor What is the condition for linear phase in FIR filters? Give examples for four of linear phase FIR filters. d Explain product quantization error and input quantization error Find the DFT of $x[n] = \{1, 2, 1, 0\}$. Using this result, find the DFT of $y[n]=x((n-2))_4$ Find the number of complex additions and complex multiplications required to 2 [5] find the DFT for 32 point signal. Compare them with the number of computations required, if FFT algorithm is used State and prove the Parseval's theorem for the sequence $x[n] = \{1, 2, 1, 0\}$ [5] An FIR digital filter has the unit impulse response sequence, $x[n] = \{2, 2, 1\}$. [10] Determine the output sequence in response to the input sequence $x[n] = \{3, 0, -1\}$ 2,0, 2, 1, 0,-2,-1,0} by Overlap and add method Compute the DFT of the sequence $x[n]=\sin(n\pi/2)$ for N=4 by DIT-FFT [5] algorithm Explain the frequency warping in Bilinear transformation [5] A Low pass filter has following specifications: [10] $0.8 \le \left| H\left(e^{j\omega}\right) \right| \le 1 \text{ for } 0 \le \omega \le 0.2\pi$ $|H(e^{j\omega})| \le 0.2 \text{ for } 0.6\pi \le \omega \le \pi$ Find the filter order and analog cut-off frequency by both Bilinear transform & Impulse Invariance methods, for a Butterworth filter Explain Limit cycle oscillations [5] Compute the DFT of the sequence $x[n]=\sin(n\pi/2)$ for N=4 by DIT-FFT [5] algorithm Draw the neat architecture of TMS 320C67XX DSP processor and explain [10] each block

Paper / Subject Code: 32204 / Discrete Time Signal Processing

5	a	A second order Chebyshev Type-I LPF has a magnitude response of 0.9 at zero [5]
		frequency. Find the squared magnitude response function
	b	Show the pole locations of a normalized Butterworth filter of 3 rd order [5]
	c	Design a high pass linear phase FIR filter for the following specifications, [10]
		Stop band edge = 2KHz; Pass band edge = 9.5KHz; Sampling frequency =
		25KHz;
		Stop band attenuation ≥ 40dB and pass band attenuation < 1dB. Use Hanning
		window.
6	a	Write short notes on (i)Sub-band coding (ii) Application of DSP in ECG analysis [10]
	b	Explain the addressing modes of TMS320C667XX processor [10]
