University of Mumbai Examination 2021 under cluster __ (Lead College: _) Examinations Commencing from 10th April to 17th April 2021 Program: Computer Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester III Course Code: CSC301 and Course Name: Engineering Mathematics III

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace Transform of $e^{2t}cos2t$ is $s-2$
Option A:	
	$\frac{\overline{s^2 - 2s + 8}}{s + 2}$
Option B:	
	$\frac{\overline{s^2 - 2s + 8}}{s - 2}$
Option C:	
Option D:	$\frac{\overline{s^2 + 2s + 8}}{s - 2}$
Option D.	$\frac{5}{s^2 + 2s + 4}$
2.	If $f(x) = \frac{1}{2}(\pi - x), 0 < x < 2\pi$ then a_0 is
Option A:	2
	$\frac{1}{\pi}$
Option B:	0
Option C:	$\frac{\pi}{2}$
Option D:	
Option D.	$\frac{\sqrt{2}}{\pi}$
	π
3.	If $f(z) = u + iv$ is analytic then
Option A:	u is harmonic but v may or may not be harmonic.
Option B:	v is harmonic but u may or may not be harmonic.
Option C:	u and v both need not be harmonic.
Option D:	<i>u</i> and <i>v</i> both are harmonic.
4.	If $Var(X) = 4$ then $Var(3x+4)$ is
Option A:	12
Option B:	20
Option C:	26
Option D:	36
5.	If $f(x)$ is an even function in the interval $(-l, l)$ then the Fourier coefficients are

Option A:	$a_n = 0, b_n = 0.$
Option B:	$a_n = 0, a_0 = 0.$
Option C:	$a_n = 0, a_0 = 0.$ $b_n = 0$
Option D:	$a_0 = 0, b_n = 0$
6.	$\Gamma = 1 I - 1 \left(\frac{s+2}{s+2} \right)$
0.	Find $L^{-1}\left(\frac{s+2}{s^2+4s+13}\right)$
Option A:	e ^{2t} cos3t
Option B:	$e^{2t}sin3t$
Option C:	$e^{-2t}cos3t$
Option D:	cos3t
7.	Find an analytic function whose real part is $u = x^3 - 6x^2y^2 + y^3$
Option A:	$f(z) = z^3 + c$
Option B:	$3z^{3} + c$
	$\frac{3z^2 + c}{-z^3 + c}$
Option C:	
Option D:	$3z^2 + c$
8.	Find $L^{-1}\left(\frac{1}{3s-7}\right)$
Option A:	
option 71.	$\left(\frac{1}{2}\left(e^{(7/3)t}\right)\right)$
Option B:	$\frac{1}{3}(e^{(7/3)t})$ $\frac{-1}{3}(e^{(5/3)t})$ $\frac{1}{3}(e^{(-7/3)t})$ $\frac{1}{3}(e^{(5/3)t})$
Option D.	$\frac{1}{2}(e^{(5/3)t})$
Option C:	
option c.	$\left(\frac{1}{2}\left(e^{(-7/3)t}\right)\right)$
Option D:	
option D.	$\left(\frac{1}{2}\left(e^{(5/3)t}\right)\right)$
9.	A variate x has the following probability distribution
	x : -3 6 9
	P(x): 1/6 1/2 1/3
	Find $E(X)$.
Option A:	1/2
· · ·	1/2 11/2
Option B:	3/2
Option C:	
Option D:	13/2
10	
10.	If $b_{yx} = 0.7764$, $b_{xy} = 1.2321$ then coefficient of correlation
Option A:	0.9781
Option B:	0.6291
Option C:	1.2307
Option D:	0.0023
11.	Find the Laplace Transform of $\frac{cos2t-cos3t}{t}$
Option A:	$\frac{1}{2}\log\left(\frac{s^2+9}{s^2+4}\right)$
Option B:	$1_{1}(s^2+4)$
_	$\left(\frac{1}{2}\log\left(\frac{s+1}{s^2+9}\right)\right)$

Option C:	$\frac{1}{2}\log\left(\frac{s^2-4}{s^2-9}\right)$
	$\left[\frac{1}{2}^{i0g}\left(\frac{1}{s^2-9}\right)\right]$
Option D:	
option D.	$\left \frac{1}{2}log\left(\frac{s^2-4}{s^2+9}\right)\right $
	$2 (s^2 + 9)$
12.	If two variables oppose each other then the correlation will be
Option A:	Positive correlation
Option B:	Zero correlation
Option C:	Perfect correlation
Option D:	Negative correlation
13.	Parseval's identity for the function $f(x)$ in the interval $(c, c + 2l)$
Option A:	$\int_{c}^{c+2l} [f(x)]^{2} dx = a_{0}^{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}).$
Option B:	$\int_{C} \frac{1}{2} \int_{C} \frac{1}{2} $
-	$\frac{1}{2l}\int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
Option C:	$\frac{1}{2l}\int_{c}^{c+2l} [f(x)]^2 dx = a_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
Option D:	$\frac{1}{2\pi} \int_{c}^{c+2\pi} [f(x)]^2 dx = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$
option 2.	$\frac{1}{2\pi} \int_{c} [f(x)] dx = d_0 + \frac{1}{2} \sum_{n=1}^{\infty} (d_n + b_n).$
14.	The limits for coefficient of correlation are
Option A:	$-1 \le r \le 2.$
Option B:	$-1 \le r \le 0.$
Option C:	$-1 \le r \le 1.$
Option D:	$0 \le r \le 1.$
15.	The value of $\int_0^\infty e^{-2t}(1-t^2)dt$ is
Option A:	1
option m.	$\frac{-}{4}$
Option B:	0
Option C:	
option C.	$\frac{2}{3}$ $\frac{1}{2}$
Option D:	<u> </u>
Option D.	$\frac{1}{2}$
16.	A continuous random variable X has the following probability mass function
	$f(x) = kx^2, 0 \le x \le 2$, then the value of k is
Option A:	$\frac{1}{8/3}$
Option B:	3/8
Option D:	1
Option D:	5/3
Option D.	
17.	π^2 π^2 π^2 π^2 π^2
1/.	If $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ then a_n and b_n are
Option A:	₩ ₩
	$a_n = 4\sum (-1)^n \frac{\cos nx}{n^2} , b_n = 0$
	$n=1$ n^{-}

Option B:	$a_n = 0, b_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ $a_n = 0b_n = \frac{\pi^2}{3}$
Option C:	$a_n = 0b_n = \frac{\pi^2}{3}$
Option D:	$a_n = \frac{\pi^2}{3}, \ b_n = 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$
18.	Find $L^{-1}\left[log\left(\frac{s+1}{s+3}\right)\right]$.
Option A:	$\frac{-1}{t}(e^{-t}-e^{-3t}).$
Option B:	$\frac{\frac{-1}{2t}(e^{-t} - e^{-3t})}{\frac{-1}{t}(e^t - e^{-3t})}.$
Option C:	$\frac{1}{t}(e^t - e^{-3t}).$
Option D:	$\frac{1}{t}(e^{-t}-e^{-5t}).$
19.	Find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$
Option A:	$\frac{1}{4}(1-\cos 2t)$
Option B:	(1 + cos2t)
Option C:	1
Option D:	$\frac{\frac{1}{4}(1-\sin 2t)}{\frac{1}{4}(1+\cos t)}$
20.	Find the constant 'a' if $f(z) = ax^2y - y^3 + i(3xy^2 - x^3)$ is analytic
Option A:	a = 0
Option B:	<i>a</i> = 3
Option C:	a = 6
Option D:	<i>a</i> = 2

Q2.	Solve any Four out of Six5 marks each
(20 Marks)	
	Fit a straight line to the following data
A	(X,Y) = (1,-5),(1,1),(2,4),(3,7),(4,10)
В	Find half range cosine series for $f(x) = x(\pi - x), 0 < x < \pi$
С	Find $L^{-1}\left[\frac{1}{(s+3)(s-4)^2}\right]$ using convolution theorem.
D	Find the orthogonal trajectories of the family of curves $3x^2y + 2x^2 - y^3 - 2y^2 = c$

Е	A discrete random variable has p.d.f. given below X : -2 -1 0 1 2 3 P(X=x): 0.2 k 0.1 2k 0.1 2k Find k and $(P(X \ge 1)$
F	Evaluate $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} dt$

Q3. (20 Marks)	Solve any Four out of Six5 marks each
А	Show that $u = 3x^2y - y^3$ is harmonic. Find the corresponding analytic function.
В	Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$
С	Find the Fourier series for $f(x) = x^3$, in $(-\pi, \pi)$
	Find the expectation and M.G.F. of the following distribution
D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Е	Compute Spearman's rank correlation coefficient from the following data X : 16, 18, 25, 30, 12 Y : 38, 21, 38, 16, 50
F	Find Laplace transform of $te^{-t} \cos t$

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: SE Semester III (For Direct Second Year-DSE)

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	What is a negation of the following statement "8 is even & -11 is negative"?
Option A:	8 is even & -11 is not negative
Option B:	8 is odd & -11 is not negative
Option C:	8 is even or -11 is not negative
Option D:	8 is odd or -11 is not negative
2.	The number of elements in the $P(X)$ of $X = \{\{a\}, \{b\}, \{c,d\}, \{e,f\}\}$ is
Option A:	12
Option B:	8
Option C:	9
Option D:	16
3.	If two sets A and B have no common elements between them, then such sets
	are known as ?
Option A:	Disjoint
Option B:	Intersection
Option C:	Complement
Option D:	Union
4.	Which of the following is not the example of a partial order relation?
Option A:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$
Option B:	$R = \{(a,b) \mid a,b \in \mathbb{Z}, a/b \in \mathbb{Z}\}$
Option C:	$R = \{(a,b) \mid a,b \in P(X), a \subseteq b\}$
Option D:	$R=\{(a,b) a,b \in \mathbb{Z}, a < b\}$
5.	Let a set $S = \{1, 2, 3, 4, 6, 9, 12, 18, 24\}$ and R be the partial order relation of
	divisibility. Number of edges in its Hasse diagram are
Option A:	10
Option B:	11
Option C:	9
Option D:	8
6.	Domain for which the functions defined by $f(x) = 2x^2-1$ & $g(x) = 5-x$ are equal to
Option A:	{2, 3/2}
Option B:	{-2, -3/2}

Option C:	{2, 3/2}
Option C:	
Option D:	{-2, 3/2}
7.	Let G be a simple undirected graph. There are some odd degree vertices. If a node
1.	x is added to G and made it adjacent to each odd degree vertex of G, then the
	resultant graph will be
Option A:	regular
Option B:	Euler
Option D: Option C:	Complete
Option D:	Hamiltonian
Option D.	
8.	A sufficient condition that a triangle T be a right triangle is that $a^2 + b^2 = c^2$. An
0.	equivalent statement is
Option A:	T is a right triangle unless $a^2 + b^2 = c^2$.
Option B:	If T is a right triangle then $a^2 + b^2 = c^2$.
Option D:	If $a^2 + b^2 = c^2$ then T is a right triangle
Option D:	T is a right triangle only if $a^2 + b^2 = c^2$.
	$\frac{1}{10} a \operatorname{Hght} u \operatorname{Hght} 0 \operatorname{Hght} a + 0 - 0$
9.	How many strings of length 8 either begin with 2 zeros or end with 4 ones?
Option A:	80
Option A: Option B:	42
Option C:	76
Option D:	64
Option D.	
10.	Let $A = \{a, b, c, d\}$
10.	$R = \{(a,a), (b,c), (c,b), (d,a)\} \& S = \{(a,d), (c,b), (b,a), (c,d)\}$
	What is the composition of relations RoS ?
Option A:	$\{(a,a), (a,b), (c,c), (a,c)\}$
Option B:	$\{(a,a), (b,a), (c,c), (c,a)\}$
Option D:	$\{(a,d), (b,b), (c,a), (b,d), (d,d)\}$
Option D:	$\{(a,d), (b,b), (c,a), (d,d)\}$
Option D.	$\{(a,u), (b,b), (c,a), (u,u)\}$
11.	What is a length of the walk of a graph?
Option A:	Total number of edges in a graph
Option B:	The number of edges in a walk
Option C:	Total number of vertices in a graph
Option D:	The number of vertices in walk
12.	Which of the following statement is not a tautology?
Option A:	$p \rightarrow (p \lor q)$
Option B:	$(p \land q) \rightarrow (p \rightarrow q)$
Option D: Option C:	$(\mathbf{p} \rightarrow \mathbf{q}) \rightarrow \mathbf{q}$
Option D:	$(p \land q) \rightarrow q$ $(p \land q) \rightarrow (p \lor q)$
Option D.	
13.	Which of the following Poset is a Distributed Lattice?
Option A:	D ₅₀
Option A: Option B:	D ₅₀ D ₃₀
Option D:	D ₂₀
Option C:	D_{20} D_{40}
	1

14	
14.	Which of the following functions f: $Z X Z \rightarrow Z$ is not onto?
Option A:	$\mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{a} - \mathbf{b}$
Option B:	$\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{a} + \mathbf{b}$
Option C:	$\mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{b} $
Option D:	$\mathbf{f}(\mathbf{a},\mathbf{b}) = \mathbf{a}$
15.	Let $A=\{0,1,2,3,4,5\}$ a group under the operation of addition modulo 6 i.e. +6. What is a subgroup generated by the element 2?
Option A:	{0,1,2,3,4,5,6}
Option B:	$\{0,2,4\}$
Option D:	{0,1,4,6}
-	
Option D:	{2,4}
1.6	
16.	If there are 25 rooms in a girls' hostel, what is the minimum number of girls required so that at least 5 are living in one room?
Option A:	85
Option B:	101
Option C:	100
Option D:	90
17.	What is the identity element In the group $G = \{2, 4, 6, 8\}$ under multiplication module 10?
Outien A.	modulo 10? 5
Option A:	
Option B:	6
Option C:	12
Option D:	9
18.	Determine the number of edges in a graph with 6 nodes which contains 2 of
	degree 5, 2 of degree 3 & 2 of degree 2.
Option A:	12
Option B:	10
Option C:	9
Option D:	11
19.	For which of the following, hasse diagram is drawn?
Option A:	lattice
Option B:	partially ordered set.
Option C:	sublattice
Option D:	boolean algebra
	ž
20.	If 35 books in a Department contain total 56351 pages, then one of the books has
	atleast pages.
Option A:	1611
Option B:	1610
Option D:	1598
· · · · ·	
Option D:	1612

Q2.	Solve any Four questions out of Six.5 marks each
(20 Marks)	
А	Let A={i, j, k, l, m} $MR = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ Find the transitive closure of it using Warshall's algorithm.
В	Prove by mathematical induction that $2+5+8+\ldots+(3n-1)=n(3n+1)/2$
С	Explain a distributive lattice with the suitable example. Prove that in a distributive lattice, the complement of any element is unique.
D	What is a bijective function? Find inverse of the following bijection: f: $R \rightarrow R$ defined by $f(x) = (1-2x)/3$
Е	Verify whether $((PVQ) \Lambda_{\Box} P \Lambda_{(\Box} Q V_{\Box} R))V(\Box P \Lambda_{\Box} Q)V(\Box P \Lambda_{\Box} R)$ is tautology.
F	Determine whether following graphs are isomorphic. Justify your answer. $ \begin{array}{c} $

Q3.	Solve any Two Questions out of Three .10 marks each
(20 Marks)	
А	Explain the following terms with the suitable example.i)Hamming Distanceii)Monoidiii)Cyclic Groupiv)group codev)Ring
В	i) What is an adjacency matrix & incidence matrix? Explain both with the suitable example.ii) What is Eulerian path & a circuit? Determine which of the following graphs consist of Eulerian path and/or a circuit.

	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
С	 What is a group? Let S={0,3,6,9,12} i) Prepare the composition table w.r.t. the operation of addition modulo 15. ii) Show that it is an abelian group. iii) Find the inverses of all the elements. iv) Whether it is a cyclic group?

University of Mumbai Examination 2020 under cluster 4 (Lead College: PCE) Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester: III(for Direct Second Year-DSE) Course Code: CSC303 and Course Name: Data Structure

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks					
1	Which among the following is not a linear data structure?					
1. Option A:	Which among the following is not a linear data structure? Stack					
Option B:	Queue Tree					
Option C:						
Option D:	Array					
2.	Using division method, in a given hash table of size 114, the key 131 will be placed at position.					
Option A:	31					
Option B:	17					
Option C:	14					
Option D:	16					
3.	For the implementation of parentheses balancing program using stack. What is the maximum number of parentheses that will remain on the stack [({{ (} })}] [[] { ([]) } ?					
Option A:	0					
Option B:	1					
Option C:	2					
Option D:	3					
4.	Which of the following data structure is based on LIFO principle?					
Option A:	Tree					
Option B:	Graph					
Option C:	Queue					
Option D:	Stack					
5.	If we insert the values 25, 14, 9, 18 and 37 in the Binary Search Tree then degree					
	of root node will be					
Option A:	0					
Option B:	1					
Option C:	2					
Option D:	3					
6.	Given the following input (22, 34, 71, 79, 89, 51, 73, 99) and the hash function x mod 10, which of the following statements are true? i) 79, 89, 99 hash to the same value					

	ii) 71, 51 hash to the same value			
	iii) All elements hash to the same value			
	iv) Each element hashes to a different value			
Option A:	i only			
Option R:	ii only			
Option D:	i and ii			
Option D:	iii or iv			
Option D.				
7.	What will be the front and rear of an initially empty queue after the following operations on it? enqueue(12), enqueue(10), enqueue(3), dequeue(), enqueue(18), dequeue(), enqueue(15), enqueue(15), dequeue()			
Option A:	12, 15			
Option B:	15, 18			
Option C:	18, 15			
Option D:	15, 15			
8.	In a Doubly linked list which statement is correct for dynamically allocating a memory for the node? struct node { { struct node *prev; char data; struct node *next;			
	}; typdef struct node NODE; NODE *ptr;			
Option A:	ptr=(NODE*)malloc(sizeof(NODE));			
Option B:	<pre>ptr=(NODE*)malloc(NODE);</pre>			
Option C:	<pre>ptr=(NODE*)malloc(sizeof(NODE*));</pre>			
Option D:	ptr=(NODE)malloc(sizeof(NODE));			
9.	Which node pointers should be updated if a node B present between node A and node C of a doubly linked list is to be deleted.			
Option A:	NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C and PREVIOUS pointer of C			
Option B:	NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of C and PREVIOUS pointer of C			
Option C:	NEXT pointer of A, PREVIOUS pointer of C			
Option D:	PREVIOUS pointer of A, NEXT pointer of C			
10.	Consider the Binary Search Tree given below and find the result of in-order traversal sequence.			
	14 72 89			

Option A:	60, 30, 14, 78, 72, 89			
Option B:	14, 30, 72, 89, 78, 60			
Option D:	60, 30, 78, 14, 72, 89			
Option D:	14, 30, 60, 72, 78, 89			
Option D.				
11.	You are given a stack with elements 2, 5, 8, 3, 9, 10 where 10 is the top of the stack.			
	The elements are popped one-by-one and enqueued into a queue, until the stack			
	becomes empty. The elements are again dequeued from the queue one-by-one and			
	pushed into the stack. What is the final arrangement of elements in the stack (from			
	top to bottom)?			
Option A:	10, 9, 3, 8, 5, 2			
Option B:	2, 5, 8, 3, 9, 10			
Option C:	2, 3, 5, 8, 9, 10			
Option D:	10, 9, 8, 5, 3, 2			
-				
12.	Which of the following is false about a doubly linked list?			
Option A:	We can navigate in both the directions			
Option B:	It requires more space than a singly linked list			
Option C:	The insertion and deletion of a node take a bit longer			
Option D:	Implementing a doubly linked list is easier than singly linked list			
13.	The Data structure used in the standard implementation of Breadth First Search is?			
Option A:	Tree			
Option B:	Linked List			
Option C:	Queue			
Option D:	Stack			
14.	In the linked list implementation of a queue, where does a new element get			
	inserted?			
Option A:	At the head of the linked list			
Option B:	At the tail of the linked list			
Option C:	At the centre position in the linked list			
Option D:	After the specified position in a linked list			
15.	Which type of linked list begins with a pointer to the first node and each node			
	contains a pointer to the next node, and the pointer in the last node points back to			
	the first node?			
Option A:	Singly linked list			
Option B:	Doubly linked list			
Option C:	Circular singly linked list			
Option D:	Circular doubly linked list			
16.	What will be the topological ordering for the below graph.			

Option A: Option B: Option C: Option D: 17. Option A:	1 23456 1 23456 1 23465 1 23465 1 23465 1 2456 1 2456 1 2456 1 24536 Deletion and Insertion operation in Queue and Stack are known as? Enqueue and Dequeue, Push and Pop
Option B:	Push and Pop, Enqueue and Dequeue
Option C:	Pop and Push, Dequeue and Enqueue
Option D:	Dequeue and Enqueue, Pop and Push
18.	After adding a left child to the node 15 in an AVL Tree below, how many nodes will be unbalanced?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
19.	Degree of a leaf node is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
_	
20.	When the left sub-tree of the tree is one level higher than that of the right sub-tree, then the balance factor is
Option A:	0

Option B:	1
Option C:	-1
Option D:	2

Q2	Solve any Four out of Six5 marks each
А	What is Data Structure? List different data structures along with applications.
В	Write an algorithm to check the well-formedness of parenthesis in an algebraic expression using Stack data structure.
С	 Write functions in 'C' for the following operations of Input Restricted Deque. i) insert_right() ii) delete_left() iii) delete_right()
D	Make a comparison between linked list and linear array. Which one will you prefer to use and when?
Е	Construct Huffman tree and determine the code for each symbol in the string "SUCCESSFUL".
F	Show Depth First Search traversal for the following graph with all the steps.

Q3	Solve any Two Questions out of Three10 marks each					
	Write a program to perform the following operations on doubly linked list:					
	i) Insert a node in the beginning					
Α	ii) Delete a node from the end					
	iii) Search for a given element in the list					
	iv) Display the list					
В	Insert the following elements in an AVL tree: 25, 44, 58, 15, 19, 11, 37, 32. Explain different					
Б	rotations that can be used.					
	Using modulo division method, hash the following elements in a table of size 10. Use					
C	Linear probing and Quadratic probing to resolve the collisions. 28, 55, 71, 67, 11, 10,					
	90, 44					

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Bachelor of Engineering in Computer Engineering

Curriculum Scheme: Rev2019

Examination: DSE SemesterIII

Course Code: **CSC304** and Course Name: **Digital Logic & Computer Architecture**

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.							
1.	Which of the following options represents the correct matching?							
	N		Descrip				8	
	1. Immediate				eld refers	to the ad	dress of a	a word
						ch in-turn		
					e operand			
	2. Direct		B. the a	ddress fi	eld conta	ains the ac	dress (ir	n main
			mem	ory) whe	re the ope	erand is st	ored	
	3. Indirec	t	C. opera	and value	e is prese	ent in the i	nstructio	n itself
				ess field)				
	4. Registe	er Direct	D. the a	ddress fi	eld of the	operand i	s a regis	ter
Option A:	1->A; 2->D; 3->C; 4->B;							
Option B:	1->C; 2->B							
Option C:	1->C; 2->B							
Option D:	1->A; 2->D) ; 3->B;	4->C;					
2.	Consider an example of memory organization as shown in the figure							
	below. Which value will be loaded into the accumulator when the							
	instruction				cuted?			
	Memory	0 1	2	3	4	5	6	7
	Location							
	address							
	Content	10 23	25	20	12	3	1	2
	Content	10 23	25	20	12	3	1	2
		I						
Option A:	3							
Option B:	25							
Option C:	12							
Option D:	20							
_								
3.	For a 0-add	ress inst	ruction for	mat, wha	at would	be the top	element	of the
	stack follow					-		
	ADD; SUB						,	<i>,</i>

Option A:	100					
Option B:	200					
Option C:	10					
Option D:	5					
4.	What is the value of n in Booth's multiplication of 110* 1000?					
Option A:	2					
Option B:	3					
Option C:	4					
Option D:	0					
5.	In restoring division algorithm, after performing operations (1) left shift operation on A,Q and (2) A=A-M, if magnitude of $A > 0$ then ?					
Option A:	Q0=0, A=A+M					
Option B:	A=A+M					
Option C:	Q0=1					
Option D:	A=A-M					
6.	In non-restoring division algorithm, after performing left shift operation on A, Qregisters, if magnitude of $A < 0$ then?					
Option A:	Q0=0, A=A+M					
Option B:	A=A+M					
Option C:	Q0=1					
Option D:	A=A-M					
7.	In single precision, IEEE754 floating point standard exponent represent by bits and mantissa represent by bits.					
Option A:	8,23					
Option B:	7, 24					
Option C:	7,23					
Option D:	8, 24					
8.	How many bits of opcode is required to implement a CPU with 10 arithmetic and logical instructions, 2 control instructions, and 5 data transfer instructions?					
Option A:	2					
Option B:	3					
Option C:	4					
Option D:	5					
9.	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as					
Option A:	D flip-flop					
Option B:	S-R flip-flop					
Option C:	T flip-flop					
Option D:	S-K flip-flop					
-						

10.	The instruction read from memory is then placed in the and contents of program counter is so that it contains the address of instruction in the program.							
Option A:	Program counter, incremented and next							
Option B:	Instruction register, incremented and previous							
Option C:	Instruction register, incremented and next							
Option D:	Address register, decremented and next							
11.	Which is the simplest method of implementing hardwired control unit?							
Option A:	State Table Method							
Option B:	Delay Element Method							
Option C:	Sequence Counter Method							
Option D:	Using combinational Circuits							
•								
12.	Which instruction does the following set of micro-operations refer to: Steps Action							
	1 PCout, MARin, Read, Select4, Add, Zin							
	2 Zout, PCin, Yin, WMFC							
	 3 MDRout, IRin 4 R1out, Yin 							
	5 R2out, SelectY, Add, Zin							
	6 Zout, R1in, End							
Option A:	ADD R2, R1							
Option B:	ADD R1, R2							
Option C:	MOVE R1, R2							
Option D:	MOVE R2, R1							
13.	Which of the following statements is false?							
Option A:	Diagonal micro-instructions encoding requires multiple decoders.							
Option B:	In vertical micro-instructions encoding, more than one control signals							
•	cannot be activated at a time.							
Option C:	Horizontal micro-instructions encoding has a lower cost of							
	implementation.							
Option D:	On one end of a spectrum, a <i>vertical</i> microinstruction is highly encoded							
	and may look like a simple macroinstruction containing a single opcode							
	field and one or two operand specifiers.							
14.	In mapping, the data can be mapped anywhere in the Cache							
	Memory.							
Option A:	Associative							
Option B:	Direct							
Option C:	Set Associative							
Option D:	Indirect							
•								
15.	A second factor in locality of reference is the presence of loops in							
	programs. Instructions in a loop, even when they are far apart in spatial							
	terms, are executed repeatedly, resulting in a high frequency of reference							
	to their addresses. This characteristic is referred to as							

Option A:	Spatial locality.
Option B:	temporal locality
Option C:	branch locality.
Option D:	Equidistant locality
Option D.	
16.	consists essentially of internal flip-flops that store the binary
10.	information.
Option A:	Static RAM
Option B:	Dynamic RAM
Option C:	PROM
Option D:	EEPROM
option D.	
17.	SIMD represents an organization that
Option A:	refers to a computer system capable of processing several programs at the
- F	same time.
Option B:	represents organization of single computer containing a control unit,
-1	processor unit and a memory unit.
Option C:	includes many processing units under the supervision of a common control
Ĩ	unit.
Option D:	similar to Von Neumann architecture.
•	
18.	In parallelization, if P is the proportion of a system or program that can be
	made parallel, and 1-P is the proportion that remains serial, then the
	maximum speedup that can be achieved using N number of processors is
	1/((1P)+(P/N)). This law is called
Option A:	Newton's law
Option B:	Ohms law
Option C:	Amdahl's law
Option D:	Flynn's law
19.	To resolve the clash over the access of the system BUS we use
Option A:	Multiple BUS
Option B:	BUS arbitrator
Option C:	Priority access
Option D:	DMA controller
20.	Select true statement from the following.
Option A:	USB is a parallel mode of transmission of data and this enables for the fast
	speeds of data transfers.
Option B:	In USB the devices can communicate with each other.
Option C:	The type/s of packets sent by the USB is/are Data.
Option D:	When the USB is connected to a system, its root hub is connected to the
	Processor BUS.

Q.2 Solve any Four out of Six.

a)	Briefly describe the Von Neumann Model computer architecture.	5
b)	Write a short note on Interleaved and Associative Memory.	5
c)	Differentiate between hardwired control unit and Microprogrammed Control unit.	5
d)	What is meaning of delayed branch and branch prediction? Write a difference between them.	5
e)	Draw and explain instruction cycle state diagram.	5
f)	Multiply (-10) and (-8) using Booth's algorithm.	5

Q.3 Solve any Two out of Three.

- a) Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using 10 this Algorithm.
- b) Explain with suitable diagrams Flynn's Classification of Computer 10 Architecture.
- c) Consider a Cache memory of 16 words. Each block consists of 4 words. Size 10 of the main memory is 128 bytes. Draw the Associative Mapping and Calculate the TAG and WORD size.

Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 10th April 2021 to 17th April 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III(for Direct Second Year-DSE)

Course Code: CSC305 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks					
	compusory and carry equal marks					
1.	Which one of the following is the primarily used input device?					
Option A:	Keyboard					
Option B:	Scanner					
Option C:	Monitor					
Option D:	Speaker					
•						
2.	The midpoint ellipse drawing algorithm uses to find the pixel points					
	along the ellipse path					
Option A:	8-way symmetry					
Option B:	4-way symmetry					
Option C:	2- way symmetry					
Option D:	6 – way symmetry					
2	Quality of the gisture is					
3.	Quality of the picture is					
Option A:	directly proportional to the density of pixels on the screen.					
Option B:	dependent on the size of a screen					
Option C:	not proportional to the density of pixels on the screen					
Option D:	not dependent on the number of pixels					
4.	The aliasing effect can be minimized by					
Option A:	decreasing resolution of the raster display					
Option B:	By increasing slope of the line					
Option C:	increasing resolution of the raster display.					
Option D:	By decreasing slope of the line					
-						
5.	In DDA algorithm, if slope of the line is less than or equal to one $(m \le 1)$ then the next pixel point along the line path is calculated by					
Option A:	Taking unit steps along the positive x direction and adding slope value to the					
option 71.	previous y coordinate value					
Option B:	Adding and subtracting slope value from the previous x and y coordinate value					
Option C:	Taking unit steps along the positive x direction and y direction					
Option D:	Taking unit steps along the positive x direction and subtracting slope value to the					
1	previous y coordinate value					
6.	Which of the following is the correct representation to define 2D point using					
	homogeneous coordinate [Hint: - (Xw, Yw, w)]					
Option A:	(0,0,0)					
Option B:	(4,4,0)					

Option C:	(0,0,1)							
Option D:	(1.5, 1.8, 0)							
Option D.								
7.	If the scaling factors values of Sx and $Sy = 1$ then							
Option A:	Size of an object remains same							
Option B:	Size of an object is increased							
Option C:	Size of an object is reduced							
Option D:	It slants the shape of an object							
8.	The negative values of 'θ' gives							
Option A:	Anticlockwise Rotation							
Option B:	Clockwise Rotation							
Option C:	Shearing Transformation							
Option D:	Reflection							
option D.								
9.	When the 3D point (x, y, z) is reflected about the XY plane then new coordinates							
	of the point are given by							
Option A:	(-x, -y, z)							
Option B:	$(\mathbf{X}, -\mathbf{y}, \mathbf{Z})$							
Option C:	(y, x, z)							
Option D:	$\frac{(y, x, z)}{(x, y, -z)}$							
Option D.								
10.	In Cohen Sutherland line clipping algorithm, if Bit code for two endpoints of the							
101	line segment is 0101 and 1001 respectively then line is							
Option A:	Partially visible							
Option B:	Completely visible							
Option C:	Completely Inside the clipping boundary							
Option D:								
	I I I I I I I I I I I I I I I I I I I							
11.	is known as generalized line clipping algorithm							
Option A:	Liang Barsky line clipping algorithm							
Option B:	Cohen Sutherland line clipping algorithm							
Option C:	Digital Differential Analyzer algorithm							
Option D:	Bresenham's line drawing algorithm							
12.	defines where the object will be displayed on computer							
-	screen							
Option A:	Window							
Option B:	Viewport							
Option C:	Frame buffer							
Option D:	World coordinate system							
13.	It is the process of changing position of an object along the circular path from one							
	coordinate location to other							
Option A:	Translation							
Option B:	Rotation							
Option C:	Scaling							
Option D:	Reflection							
L								

14.	In 3 D translation, translation factors Tx, Ty, Tz are in to the original					
	coordinates of the polygon					
Option A:	Added					
Option B:	Subtracted					
Option C:	Multiplied					
Option D:	Divided					
Option D.						
15.	In 3D rotation about z- axis, the value of the z coordinate of new object					
Option A:	is doubled					
Option B:	zero					
Option C:	remains same					
Option D:	decreases					
16.	The Surfaces of an object which are oriented away from the viewer are called as					
Option A:	Back surfaces					
Option B:	Front surfaces					
Option C:	Top surfaces					
Option D:	Side surfaces					
17.	Consider equation of the plane, $Ax + By + Cz + D = 0$					
	If $Ax + By + Cz + D > 0$, then point (x, y, z)					
Option A:	lies in the background					
Option B:	lies in the foreground					
Option C:	lies anywhere					
Option D:	lies on the plane					
option D.						
18.	In Z buffer algorithmis used					
10.	I. Z buffer					
	II. Frame buffer					
	III. Vector refresh buffer					
Option A:	Only I					
Option B:	Only II					
Option C:	Only III					
Option D:	Both I and II					
19.	figures are manipulated to appear as moving images					
Option A:	Animation					
Option B:	Rotation					
Option D:	Translation					
Option D:						
	Scaling					
20						
20.	It is a process that are applied in the animation evaluation and do not make					
	permanent changes to the original object					
Option A:	Facial animation					
Option B:	Motion capture					
Option C:	Deformation					
Option D:	Character animation					

Q2. (20 Marks)	
А	Solve any Two5 marks each
i.	Rasterize the line segment using DDA line drawing algorithm. The two endpoint coordinates of the line segment are $P1(0,0)$ and $P2(5, 2)$
ii.	Scale the square ABCD with coordinates A (0,0), B (5,0), C (5,5), D (0,5) by 3 units in x direction and 4 units in y direction
iii.	Define the following terms with example a) Scan Conversion b) Frame buffer
В	Solve any One 10 mark each
i.	Clip the line segment using Cohen Sutherland Line clipping Algorithm, The Coordinates of the line segment are P1(-1, 5) and P2(3, 8) and coordinates of the window boundaries are (Xwmin, Ywmin) = (-3, 1) and (Xwmax, Ywmax) = $(2, 6)$
ii.	What is visible surface detection? Explain Area subdivision method with example

Q3. (20 Marks)	
А	Solve any Two5 marks each
i.	What is homogeneous transformation matrix for 2D. Write homogeneous transformation matrix for Translation, Rotation and Scaling in terms of $P'=P^*T$ (Where P= Original object matrix, and P'=New object matrix and
	T= 2D transformation matrix)
ii.	What is an Animation? Write and explain principles of animation?
iii.	A point has coordinates in the x, y, z direction i.e., P (4, 5, 6). The translation is done in the x-direction and y direction by 2 units and 5 units in the z- direction. Shift the point and find the new coordinates of the point.
В	Solve any One 10 mark each
i.	What is World Coordinate System (WCS) and Physical Device Coordinate System (PDCS)? Obtain viewing transformation matrix to map WCS on to PDSCS
ii.	Derive and explain midpoint ellipse drawing algorithm

Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev 2019

Examination: Second Year Semester III

Course Code: CSC301 and Course Name: Engineering Mathematics-3

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace transform of $\cos(\sqrt{3}t)$ is
Option A:	$\frac{s}{s^2+9}$
Option B:	$\frac{s}{s^2 - 9}$
Option C:	$\frac{s}{s^2+3}$
Option D:	$\frac{s}{s^2 - 3}$
2.	The value of $\int_0^\infty e^{-3t} \left(\frac{\sinh t}{t}\right) dt$ is
Option A:	$\frac{1}{3}ln3$
Option B:	$\frac{1}{3}\ln\left(\frac{1}{3}\right)$
Option C:	$\frac{1}{2}ln 2$
Option D:	$\frac{1}{2}\ln\left(\frac{1}{2}\right)$
3.	Laplace transform of $f(t) = t^2 e^{-t}$ is
Option A:	$\frac{2}{(s-1)^3}$
Option B:	$\frac{2}{(s+1)^3}$

Ortion C.	E(2)
Option C:	$\frac{\Gamma(2)}{(s-1)^3}$
Option D:	Γ(2)
	$\frac{\Gamma(2)}{(s+1)^3}$
4.	Laplace transform of $\int_0^t \sin 2t \cosh 2t dt$ is
Option A:	Laplace transform of $\int_0^t \sin 2t \cosh 2t dt$ is $\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} - \frac{1}{(s+2)^2 - 4} \right]$
Option B:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 - 4} + \frac{1}{(s+2)^2 - 4} \right]$
Option C:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} - \frac{1}{(s+2)^2 + 4} \right]$
Option D:	$\frac{1}{s} \left[\frac{1}{(s-2)^2 + 4} + \frac{1}{(s+2)^2 + 4} \right]$
	$s \lfloor (s-2)^2 + 4 \rfloor$ (s + 2) ² + 4
	c_1
5.	Inverse Laplace transform of $\frac{s-1}{s^2}$ is
Option A:	-1-t
Option B:	-1+t
Option C:	1 + <i>t</i>
Option D:	1-t
6.	$L^{-1}\left[\frac{s+2}{s^2+4s+5}\right]$ is
Option A:	$e^{-2t} \cos t$
Option B:	$e^{-2t}\sin t$
Option C:	$e^{2t}\cos t$
Option D:	e ^{2t} sin t
7.	$L^{-1}(tan^{-1}s)$ is
	sin t
Option A:	$\frac{\sin t}{t}$
Option B:	$\frac{\cos t}{t}$
	t oin t
Option C:	$-\frac{\sin t}{t}$
Option D:	cos t
option D.	$-\frac{t}{t}$
L	

8.	$L^{-1}\left[\frac{s(2s^2-3)}{(s^2+1)(s^2-4)}\right]$ is
Option A:	$\cosh t + \cosh 2t$
Option B:	cos t + cosh 2t
Option C:	$\cos t + \cos 2t$
Option D:	$\cosh t + \cos 2t$
9.	Fourier coefficient a_2 for $f(x)=x$, x belongs to (-1, 1) is
Option A:	-1
Option B:	1
Option C:	0
Option D:	2
10	Equation $a = a f(x) + b = f(x) + a = a = a = a = a = a = a = a = a = a$
10.	Fourier coefficient b_1 for $f(x) = x$. sinx, where $x \in (0, 2\pi)$ is
Option A:	0
Option B:	π
Option C:	$-\pi$
Option D:	$\frac{\pi}{\sqrt{2}} - \frac{\pi}{\sqrt{3}}$
11.	Fourier coefficient a_0 in half range cosine series for $f(x) = e^x$, $x \in (0,1)$ is
Option A:	e+1
Option B:	-e-1
Option C:	-e+1
Option D:	e-1
12.	Value of constant real number m such that $f(z) = f(x + iy) = e^{3mx + 2iy}$ is analytic function is
Option A:	2/3
Option B:	-2/3
Option C:	3/2
Option D:	-3/2

13.	For real variables x, y function $u(x, y) = 2xy$							
Option A:	does not satisfy Laplacian equation.							
Option B:	is not continuous.							
Option C:	is harmonic.							
Option D:	is continuous but not partially differentiable.							
14.	For $f(z) = sinx cosh(y) + i cosx sinh(y)$, where $z = x + iy$, $f'(z)$ is							
Option A:	-sin z							
Option B:	sinh z							
Option C:	COS Z							
Option D:	cosh z							
15.	If coefficients of correlation between variables x, y is 0.5 and coefficient of regression b_{xy} is 0.2 then coefficient of correlation b_{yx} is							
Option A:	1.25							
Option B:	-1.25							
Option C:	2.5							
Option D:	-2.5							
10								
16.	If a straight line is $y=ax+b$ is fitted to following data x 01234							
	y 1 2 3 4 5							
	Then values of a & b are							
Option A:	a=1, b=0							
Option B:	a=1, b=1							
Option C:	a=0, b=1							
Option D:	a=-1, b=1							
17.	The coefficient of rank correlation between two variables with unequal ranks is - 0.9. If the number of pairs is 5, then the sum of squares of differences in ranks is							
Option A:	37							
Option B:	36							
Option C:	39							
Option D:	38							

18.	If random variable X has the probability distribution as							
	X -2		-1	0	1	2		
	P(X=x) 31		2k	2k	k	0.2		
	Then $P(-2 < X \le 2)$	2) is						
Option A:	1							
Option B:	0.7							
Option C:	0.8							
Option D:	0.5							
19. A random variable X has probability distribution with $E(X) = 1.5$, H				$E(X^2) = 3$ then	n			
		then variance is						
Option A:	0.75							
Option B:	1.5							
Option C:	3							
Option D:	5.25							
20.	A continuous random variable X has the probability law $f(x) = k^2 x^3$, $0 \le x \le 3$, $k > 0$ then value of k is							
		$\leq x \leq 3$,	k > 0 then va	alue of k is				
Option A:	2/81							
Option B:	4/81							
Option C:	4/9							
Option D:	2/9							

Q2	Solve any Four ou	it of Six		5	marks ea	ach	
(20 Marks)							
А	Find Laplace transform of $f(t) = sin^2 t cos^3 t$.						
В	Using convolution theorem find the inverse Laplace transform of $ \emptyset(s) = \frac{s}{s^4 - 1} $						
С	Find Fourier series of $f(x) = x \sin x \operatorname{in}(-\pi, \pi)$.						
D	Find an analytic function $\omega = f(z) = u + iv$, where $z = x + iy$, whose real part is $u(x, y) = x^2 - y^2 + 2y - \sin(x) \cdot \sinh(y)$						
Е	Calculate Spearman's coefficient of rank correlation and Pearson'scoefficient of correlation from the following data on height and weights of5 students.Height(in6163656769inches)462657072						

F	The warranty of electronic device in thousand of days has the density function $f(x) = \begin{cases} 4e^{-4x}, x > 0\\ 0, & otherwise \end{cases}$
	Find the expected warranty of the device.

Q3 (20 Marks)	Solve any Four out of Six	5 marks each	
А	Given $f(t) = \begin{cases} 4, & 0 \le x < 3 \\ 0, & x > 3 \end{cases}$. Find $L[f(t)]$, $L[f'(t)]$.		
В	Find inverse Laplace transform of $\emptyset(s) = \frac{3s^2 + 11s + 11}{s^3 + 6s^2 + 11s + 6}$		
С	Find half range sine series for $f(x) = e^{-x}$, $0 < x < 1$.		
D	In the polar coordinates, let $\omega = u + iv$, $u(r, \theta) = r^2 sin 2\theta$. Show that u satisfies Laplace's equation and find $v(r, \theta)$.		
	Fit a second degree parabolic curve to the followin	g data.	
Е	x 0 1 2 3 4	5 6	
	y 1 1 3 7 13	21 31	
F	A random variable X has the probability distribution $P(X = x) = \frac{1}{16} (4_{C_x})$, $x = 0,1,2,3,4$. Write Probability distribution and find standard deviation.		

Examination 2020 under cluster 4 (Lead College: PCE, New Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures and Graph Theory

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	
1.	Let $A = \{2,3,4,5,6\}$ and let R1,R2 be relations on A such that $B = \{(a,b) \mid a, b=2\}$ and
	$R1=\{(a,b) a-b=2 \}$ and $R2=\{(a,b) a+1=b \text{ or } a=2b\}$
	Find the composite relation R2.R1?
	The the composite relation K2.K1:
Option A:	{(4,3),(5,4),(6,2),(6,5)}
Option B:	$\{(3,2),(5,4),(4,3)\}$
Option C:	{(5,2),(6,3)}
Option D:	$\{(2,3),(3,4),(4,5),(5,6)\}$
2.	Which of the following is the correct representation of the sentence "Someone is
	liked by everyone ".
Option A:	$(\exists x)(\exists y)$ likes(x,y)
Option B:	$(\forall x)(\forall y)$ likes(x,y)
Option C:	$(\exists y)(\forall x)$ likes(x,y)
Option D:	$(\forall x)(\exists y)$ likes(x,y)
3.	Draw the Hasse diagram of D30.
	i) It is Complemented Lattice
	ii) It is Distributive Lattice
	Which of the above statement is True?
Option A:	Only i
Option B:	Only ii
Option C:	Both i and ii
Option D:	Neither i nor ii
4.	Consider the set N of positive integers, and let * denote the operation of least
	common multiple(lcm) on N. Which of the following sentence is True?
Option A:	(N,*) is not a Semi group.
Option B:	(N,*) is commutative Semi group
Option C:	(N,*) is not commutative Semi group.
Option D:	None of the Above.
5.	How many two digits or three digits numbers can be formed using the digits

	1,2,3,4,5,6,7,8 and 9, if no digits are repeated ?	
Option A:	210	
Option B:	24	
Option D:	212	
Option D:	252	
Option D.		
6.	Consider the following subsets of the positive integers N. Which of the following is not closed under multiplication operation?	
Option A:	A={0,1}	
Option B:	$E = \{1, 3, 5, \dots\}$	
Option C:	C={x: x is prime}	
Option D:	$F = \{0, 1, 2\}$	
•		
7.	If every vertex of simple graph has same degree it is called as	
Option A:	Bipartite Graph	
Option B:	Regular Graph	
Option C:	Planner Graph	
Option D:	Sub graph	
•		
8.	The less than relation, <, on real is	
Option A:	A Partial ordering since it is asymmetric and reflexive.	
Option B:	A partial ordering since it is anti-symmetric and reflexive.	
Option C:	Not a partial ordering because it is not asymmetric and not reflexive.	
Option D:	Not a partial ordering because it is not anti-symmetric and not reflexive.	
9.	Consider set of integers from 1 to 250. Find how many of these numbers are divisible by 5 or 6 but not by 8?	
Option A:	83	
Option B:	69	
Option C:	100	
Option D:	31	
10.	Consider G={1,5,7,11,17} under multiplication modulo 18. Find inverse of 5, 7 and 17?	
Option A:	11,17 and 13	
Option B:	11,13 and 17	
Option C:	11, 17 and 7	
Option D:	13,11 and 7	
11.	The following graph is	
	A B C	
Option A:	Bipartite Graph	
Option B:	Complete Bipartite Graph	
Option C:	Eulerian Graph	
Option D:	Eulerian but not Bipartite Graph	
L		

12.	The set of integers Z with binary operation '*' defined as $a*b=a+b+1$ for $a, b \in Z$,	
	is a group. The identity element of this group is	
Option A:	0	
Option B:	1	
Option C:	-1	
Option D:	12	
opuon 2.		
13.	How many persons must be chosen in order that at least five of them will have birthdays in the same calendar month?	
Option A:	28	
Option B:	69	
Option C:	49	
Option D:	52	
14.	Which of the following is true for above graph? i) It is Eulerian Graph ii) It is Hamiltonian Graph	
Option A:	Only i	
Option B:	Only ii	
Option C:	Both i and ii	
Option D:	Neither i nor ii	
15.	A Poset in which every pair of elements has both a least upper bound and a	
	greatest lower bound is termed as	
Option A:	Walk	
Option B:	Trail	
Option C:	Sub lattice	
Option D:	Lattice	
16.	State the type of function for following example	
	"To each country assign the number of people living in the country"	
Option A:	Many-One	
Option B:	One-Many	
Option C:	One-One	
Option D:	Many-Many	
17.	Let P: We should be trustworthy. Q: We should be committed. R: We should be overconfident. Then 'We should be trustworthy or committed but not overconfident.' is best represented by?	

-	$P V Q \wedge R$
	~PV~QVR
Option C:	$P V Q \land \neg R$
Option D:	$P \land \sim Q \land R$
18.	Total how many Cut Vertex exists in the following graph?
	a b f e g d i h
Option A:	2
	4
	3
Option D:	1
19.	The binary relation {(a,a), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b)} on the set {a,b,c}
	is
Option A:	irreflexive, symmetric and transitive
Option B:	reflexive, symmetric and transitive
Option C:	irreflexive and antisymmetric
Option D:	neither reflexive, nor irreflexive but transitive
20.	Which rule of inference is used in this argument?
	"No humans can fly. John is human. Therefore John can not fly."
Option A:	Universal instantiation
Option B:	Existential instantiation
Option D.	Existential instantiation
Option C:	Universal generalization

Q2	
А	Solve any Two 5 marks each
i.	Let $A=\{1,2,3,4,5\}$, $R=\{(a,b) (a+b) \text{ is even}\}$. R is a relation on set A. Check whether R s an equivalence relation?
ii.	X={2,3,6,1,24,36}
	R on X = {(x,y) \in R, x divides y}
	a) Construct Hasse diagram
	b) Maximum and Minimal elements?
	c) Give Chain and Ant chains.
	d) Maximum length of chain?
	e) Is a poset lattice?
iii.	Define the following with suitable example
	a)Ring b) Cyclic Group c) Monoid d)Normal Subgroup e) Planner Graph

В	Solve any One 10 marks each
i.	Define with example Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit. Determine if following diagram has Euler path, Euler circuit, Hamiltonian path and Hamiltonian circuit and state the path/circuit.
ii.	Find the number of code word generated by the parity check matrix H given below. Find all the code words generated. $H = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{vmatrix}$

Q3.		
A	Solve any Two	5 marks each
i.	Define Isomorphic Graph. Determine if following graph isomorphic or not.	
ii.	Convert into CNF: $((P \rightarrow Q) \rightarrow R)$	
iii.	<pre>Functions f,g,h are defined on a set X={a,b,c} as f={(a,b),(b,c),(c,a)} g={(a,b),(b,a),(b,b)} h={(a,a),(b,b),(c,a)} i) Find fog, gof . Are they equal? ii) Find fogoh and fohog?</pre>	
В	Solve any One	10 marks each
i.	Prove that $(z5,+5)$ is a Abelian group.	
ii.	Solve the recurrence relation for Fibonacci sequence 1,1	1,2,3,5,8,13.

Examination 2020 under cluster 4 (Lead College: PCE, Panvel)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: COMPUTER ENGINEERING

Curriculum Scheme: Rev2019

Examination: SE Semester: III

Course Code: CSC303 and Course Name: DATA STRUCTURE

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which data structure has fixed size?
Option A:	Array
Option B:	Linked List
Option C:	Graph
Option D:	Tree
2.	The result of evaluating the postfix expression 59+84-*8/
Option A:	6
Option B:	7
Option C:	5
Option D:	4
3.	What will be the output of the following program?
	void main ()
	{
	char str [] ="STRUCTURE";
	int len = strlen(str);
	int i;
	for (i=0; i <len; i++)<="" td=""></len;>
	<pre>push(str[i]); // pushes an element into stack</pre>
	for (i=0; i <len; i++<="" td=""></len;>
	pop (); //pops an element from the stack
	}
Option A:	ERUTCURTS
Option B:	CTURESTRU
Option D:	EUCRSTUTR
Option D:	STRUCTURE
Option D.	
4.	Which data structure is also known as a head tail linked list because elements can
4.	be added to or removed from the front (head) or back (tail)? However, no element
	can be added or deleted from the middle.
Option A:	Circular queue
Option A:	
Option B:	Stack
-----------	---
Option C:	Deque
Option D:	Priority queue
5.	A circular queue is implemented using an array of size 15. The array index starts with 0, front is 10, and rear is 14. The insertion of next element takes place at which array index?
Option A:	15
Option B:	1
Option C:	0
Option D:	11
•	
6.	What will the output of the following function if nodes present in linked list are $6 \rightarrow 5 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow \text{NULL}$ and START points the first node.
	void fun (struct node* START) {
	if (START == NULL) return;
	fun (START \rightarrow next);
	printf ("%d ", START→data);
	}
Option A:	6,5,2,8,9
Option B:	9,8,2,5,6
Option C:	9,6,5,2,8
Option D:	9,8,2,6,5
7.	What is the output of following function if start pointing to first node of following linked list? $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow \text{NULL}$
	void fun (struct node* start)
	$\int_{0}^{1} if(start == NULL)$
	return;
	printf ("%d ", start→data);
	princi (700 , Suit 7 Guiu),
	if (start \rightarrow next! = NULL)
	fun(start \rightarrow next);
	printf ("%d ", start→data);
	}
Option A:	6,5,4,3,2,1,6,5,4,3,2,1
Option B:	1,3,5,5,3,1,1,3,5,5,3,1
Option C:	1,3,5,2,4,6,1,3,5,2,4,6
Option D:	1,2,3,4,5,6,6,5,4,3,2,1
8.	Which type of linked list has no beginning and no ending.
Option A:	Circular Linked List
Option B:	Doubly Linked List
Option C:	Singly Linked List
Option D:	Multi Linked List
1	

9.	In a doubly linked list, the number of pointers affected for an insertion operation.
9.	In a doubly linked list, the number of pointers affected for an insertion operation
	in middle will be
Option A:	1
Option B:	4
Option C:	0
Option D:	2
10.	struct node *ptr = start->next;
	what "ptr" will contain if it is variable of type struct node? (start points to first
	node)
Option A:	Address of second node
	Address of second node
Option B:	
Option C:	Data of second node
Option D:	Data fields of second field
11.	What are the number of nodes in left and right sub-tree of the root node if the data
	is inserted in the following order in binary search tree 45, 15, 8, 56, 64, 65, 47,
	12, 59, 10, 73, 50, 16, 61?
Option A:	6,7
Option B:	7,6
Option C:	8,5
Option D:	5,8
Option D.	
12.	Consider the following code segment in C to traverse a binary tree using the
12.	preorder
	preorder
	void progrador (rodo *troo)
	void preorder (node *tree)
	if (t)
	Statement1
	Statement2
	Statement3
	}
	}
	The above Statements should be,
Option A:	printf("%d", tree->info);
_	preorder(tree->right);
	preorder(tree->left);
Option B:	preorder(tree->left);
- r	preorder(tree->right);
	[F
	printf("%d", tree->info):
Ontion C.	<pre>printf("%d", tree->info); preorder(tree->left);</pre>
Option C:	preorder(tree->left);
Option C:	preorder(tree->left); printf("%d", tree->info);
-	<pre>preorder(tree->left); printf("%d", tree->info); preorder(tree->right);</pre>
Option C: Option D:	preorder(tree->left); printf("%d", tree->info); preorder(tree->right); printf ("%d", tree->info);
-	<pre>preorder(tree->left); printf("%d", tree->info); preorder(tree->right);</pre>

13.	A BST is traversed in the following order recursively: Right, root, left
	The output sequence will be in,
Option A:	Ascending order
Option B:	Descending order
Option C:	No specific sequence
Option D:	Random sequence
option D.	
14.	What is the maximum possible number of nodes in a binary tree at level 6?
Option A:	64
Option B:	32
Option C:	48
Option D:	80
Option D.	
15.	Assume that a structure for a Binary Search Tree exists. What does the following
15.	function do?
	int function(root)
	ptr = root;
	while (ptr->left!= NULL)
	ptr = ptr -> left;
	}
	return(ptr->data);
	}
Option A:	Leftmost child of BST
Option B:	Rightmost child of BST
Option C:	It gives error
Option D:	Root of BST
16.	When in-order and post-order traversing a tree resulted D, B, E, A, C, G, F and D,
	E, B, G, F, C, A respectively. the pre-order traversal would return:
Option A:	A, B, C, F, G, D, E
Option B:	A, D, E, B, C, F, G
Option C:	A, B, D, E, C, F, G
Option D:	A, B, G, F, D, E, C
•	
17.	What is the number of edges present in a complete graph having n vertices?
Option A:	(n*(n+1))/2
Option B:	n
Option C:	(n-1)/2
Option D:	$(n^{*}(n-1))/2$
18.	What is the maximum possible number of edges in a directed graph with no self-
	loops having 7 vertices?
Option A:	28
Option B:	35
Option C:	42
Option D:	56
Option D.	

19.	Using division method, in a given hash table of size 153, the key of value 172 be placed at position.
Option A:	19
Option B:	72
Option C:	17
Option D:	15
20.	What are the values of $h1(k)$ and $h2(k)$ in the double hashing?
Option A:	$h1(k) = (m \mod k) \text{ and } h2(k) = 1 + (m' \mod k)$
Option B:	$h1(k) = (1 + (m \mod k)) \text{ and } h2(k) = m' \mod k$
Option C:	$h1(k) = (k \mod m) \text{ and } h2(k) = k \mod m'$
Option D:	$h1(k) = (k \mod m) \text{ and } h2(k) = 1 + (k \mod m')$

Q2	Solve any Four out of Six5 marks each	
(20 Marks Each)		
А	Write a C program to test if a string is a palindrome or not using a stack data structure (Note: palindromes ignore spacing, punctuation, and capitalization)	
В	Write a C program that compresses a string by deleting all space characters in the string using queue data structure	;
С	Give the breadth-first traversal of the graph for following graph, starting from vertex 0. Show all the steps.	
D	Consider a hash table with size = 10. Using quadratic probing, insert the keys 27, 72, 63, 42, 36, 18, 29, 101 into the table. Take $c1 = 1$ and $c2 = 3$.	
E	Explain types of data structure with example	
F	Write an algorithm to convert infix expression to postfix expression. Show stepwise execution of algorithm for converting infix expression to postfix expression for following expression $A * B + C * D$	

Q3.	Solve any Two Questions out of Three10 marks each	
(20 Marks Each)		
	Create an AVL tree using the following data entered as a	sequential set.
А	Show all the steps. 15, 20, 24, 10, 13, 7, 30, 36, 25. Show	wwhich rotations
	are used while constructing AVL tree.	
	Write a C program for Singly Linked list for performing	following
	operations	
Л	i. Create SLL	
В	ii. Display SLL	
	iii. Delete a node from SLL	
	iv. Append two SLLs	
C	Draw the B-tree of order 3 created by inserting the follow	wing data arriving
С	in sequence: 92 24 6 7 11 8 22 4 5 16 19 20 78	

University of Mumbai

Examination 2020 under cluster __(Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC304 and Course Name: Digital Logic and Computer Architecture

Time: 2 hour

Max. Marks: 80

Q1. 40 Marks	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks (2 marks each)
1	
1.	Convert number(723.17) ₈ into equivalent hexadecimal number
Option A:	(0D3.3C)16
Option B:	(1D3.3C)16
Option C:	(1E3.3C)16
Option D:	(1D3.4C)16
2.	What is the equivalent of $(52)_{10}$ in Gray code
Option A:	110100
Option B:	1011101
Option C:	111000
Option D:	101110
3.	As per_Boolean Laws which of the expressions results in 0 (i) A+A (ii) A.A (iii)A.0 (iv) A. 1
Option A:	ii only
Option B:	ii &iii
Option C:	iii only
Option D:	ii,iii,iv
4.	For 4 bit number what is the range of 2's complement representation? Also perform $(5)_{10}$ - $(7)_{10}$ using 2's complement method
Option A:	-7 to +7 , 1101
Option B:	-8 to +8 , 1110
Option C:	-8 to +7 , 1110
Option D:	-7 to +8 , 1101
5.	Arrange the steps for obtaining IEEE representation of floating point in proper

	format
	1) calculate the biased exponent
	2) convert to binary
	3) convert to normalized form
Option A:	
	1,2,3
Option B:	3,2,1
Option C:	2,3,1
Option D:	2,1,3
6.	In Destaving division Algorithm, if A (0 then which of the following is immediate
0.	In Restoring division Algorithm if A<0 then which of the following is immediate
Ontion At	step (Assume M as Dividend Q as Divisor and A as result)
Option A:	
Option B:	A= A +M
Option C:	Q ₀ = 0 & A=A-M
Option D:	Q ₀ =0 & A=A+M
7.	In full adder, Boolean expression of sum will be
Option A:	S=A XOR B
Option B:	S=A XOR B
Option C:	S = A XOR B XOR C
Option D:	S = A XOR B XOR C
8.	Which of the following Twos Complement binary numbers is equivalent to decimal –75 ?
Option A:	1001011
Option B:	1001100
Option C:	0001100
Option D:	0110101
9.	Identify the type of addressing mode
	Instruction
	OPCODE Address
	memory
	Pointer to operand
	Operand
Option A:	
	Register Addressing mode
Option B:	Register Indirect Addressing mode
Option B: Option C: Option D:	

10.	Choose appropriate sequence of instruction cycle
Option A:	Instruction fetch, Instruction address calculation, Instruction decode, operand
1	address calculation, fetch operand, data operation, operand address calculation,
	operand store
Option B:	Instruction address calculation, Instruction fetch, operand address calculation
Ĩ	fetch operand, Instruction decode, data operation, operand address calculation and
	operand store
Option C:	Instruction address calculation, Instruction fetch, Instruction decode, operand
	address calculation , fetch operand, data operation , operand address calculation,
	operand store
Option D:	Instruction address calculation, Instruction fetch, Instruction decode, operand
	address calculation, fetch operand, operand address calculation, operand store,
	data operation
11.	Basic task for control unit is
Option A:	To perform logical operations
Option B:	Execution
Option C:	To initiate the resources
Option D:	To decode instructions and generate control signal
12.	A micro instruction has
Option A:	Control field
Option B:	Address field
Option D:	Status field
Option D:	Both control and address field
Option D.	
13.	Microprogram consisting of is stored in control memory of control unit
Option A:	instructions
Option B:	micro instructions
Option C:	micro program
Option D:	macro program
14.	In memory Hierarchy which is the fastest memory
Option A:	SRAM
Option B:	DRAM
Option C:	Register
Option D:	Cache
15.	The correspondence between the main memory blocks and those in the cache is
	given by
Option A:	Mapping function
Option B:	Hash function
Option C:	Locale function
Option D:	Assign function
16	Consider a direct manned cache of size 64. KD with black size 46 bytes. The CDU
16.	Consider a direct mapped cache of size 64 KB with block size 16 bytes. The CPU
	generates 28-bit addresses. The number of bits needed for cache indexing are

	respectively are:
Option A:	13
Option R:	10
Option D: Option C:	12
Option D:	12 11
Option D.	11
17.	In Instruction Pipelining Structural Hazard means
Option A:	any condition in which either the source or the destination operands of an
Option A.	instruction are not available at the time expected in the pipeline
Option B:	a delay in the availability of an instruction causes the pipeline to stall
Option D: Option C:	the situation when two instructions require the use of a given hardware resource at
Option C.	the same time.
Option D:	When a data gets overwritten by branching
Option D.	when a data gets over written by branching
18.	Identify the Type of Flynn's Classification of Parallel Processing
10.	
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream
	Instruction Stream Data Stream
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream Data Stream
	Instruction Memory Control Unit Processing Unit Data Memory
	Instruction Stream Data Stream
Option A:	SISD
Option B:	SIMD
Option C:	MISD
Option D:	MIMD
19.	To resolve the clash over the access of the System Bus we use
Option A:	BUS arbitrator
Option B:	Multiple BUS
Option C:	Priority access
Option D:	virtual access
20.	SIMD represents an organization that
Option A:	refers to a computer system capable of processing several programs at the same
1	
	time.
Option B:	time. represents organization of single computer containing a control unit, processor unit
Option B:	
Option B: Option C:	represents organization of single computer containing a control unit, processor unit

Q2 20 Marks	Solve any Four out of Six (5 marks each)
А	Show the mathematical step for the following conversion

	i) Convert decimal (123.25) to its equivalent octal
	ii) Convert decimal (123.25) to its equivalent hexadecimal
	iii) Convert Hexadecimal (ABCD) to its equivalent binary
	iv) Convert binary (10111100) to equivalent gray code
	v) Convert decimal (1543) to Excess-3 code
В	Write short note on Von-Neumann Model
G	Explain the single and double precision format for representing floating point
C	number using IEEE 754 standards
D	Define Instruction cycle. Explain it with a detailed state diagram.
Е	Differentiate between static RAM and dynamic RAM.
F	What are the functions of following Register
Г	1. IR 2. PC 3. MAR 4. MDR 5. SP

Q3.			
20 marks			
Α	Solve any Two Questions out of Three (5 marks each)		
i)	Write micro program for the instruction ADD A, B (Register A and B are added and result is stored at Register A.)		
ii)	Differentiate between Hardwired control unit and Micro programmed control unit		
iii)	Explain memory Hierarchy		
В	Solve any One Question out of two (10 marks each)		
i)	A program having 10 instructions (without Branch and Call instructions) is executed on non-pipeline and pipeline processors. All instructions are of same length and having 4 pipeline stages and time required to each stage is 1nsec. (Assume the four stages as Fetch Instruction ,Decode Instruction, Execute Instruction, Write Output) i. Calculate time required to execute the program on Non-pipeline and Pipeline processor. Ii Show the pipeline processor with a diagram.		
ii)	Draw the flowchart of Restoring Division Algorithm & perform 10 /3 using this Algorithm		

University of Mumbai

Examination 2020 under cluster __ (Lead College: _____)

Examinations Commencing from 23rd December 2020 to 6th January 2021 and from 7th January 2021

to 20th January 2021

Program: Computer Engineering

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: CSC305 and Course Name: Computer Graphics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	In mid point ellipse method, coordinate of points lying on ellipse are calculated i		
Option A:	One quadrant first and others by successive rotation		
Option B:	One quadrant first and others by successive reflection		
Option C:	One quadrant first and others by successive translation		
Option D:	All quadrants		
2.	In DDA line drawing method, for lines having negative slope with absolute value greater than 1 and taking right end point as starting point, the X and Y coordinate increments are		
Option A:	1/m and -1		
Option B:	-1/m and 1		
Option C:	-1 and -m		
Option D:	1 and m		
3.	In Homogenous Coordinate System, all Transformations are captured by		
Option A:	Addition		
Option B:	Subtraction		
Option C:	Multiplication		
Option D:	Division		
4.	In Liang Barsky line clipping method, for a parallel lines, k indicates window boundary if		
Option A:	$P_k > 0$		
Option B:	$P_k < 0$		
Option C:	$P_k = 0$		
Option D:	$P_k \neq 0$		
•			
5.	What is the 1 st point on the circumference of the circle centered at (10,10) with		
	radius = 10, using midpoint circle method		
Option A:	(0, 10)		
Option B:	(1,10)		
Option C:	(1,9)		
Option D:	(10,20)		
•			
6.	Coordinates of clipping window are $(4,4)$ and $(9,8)$. A line is drawn from point A(2,2) to point B(12,9). The result of logical AND operation on the region code		

	is		
Option A:	0101		
Option B:	1010		
Option D:	1111		
Option D:	0000		
Option D.			
7.	A circle is drawn at (30,30) with radius = 10. Its mirror image cannot be obtained		
	by		
Option A:	Rotation by 90 ⁰ .		
Option B:	Reflection about Y-axis		
Option C:	Translation by $T_x = 60$ and $T_y = 0$		
Option D:	Scaling by $S_x = -1$ and $S_y = 1$		
opuon 21			
8.	A conceptual line is drawn starting from the particular point and extending to a		
	distance point outside the coordinate extends of the object in direction of X-axis,		
	the line intersects twice with the polygon edges and once with the polygon vertex.		
	Then according to inside outside test, the point lies		
Option A:	Outside the polygon		
Option B:	Inside the polygon		
Option C:	On the boundary of the polygon		
Option D:	Cannot say		
9.	To clip concave area, which of the following algorithm is best suited		
Option A:	Cohen Sutherland line clipping method		
Option B:	Liang barsky line clipping method		
Option C:	Sutherland Hodgeman polygon clipping method		
Option D:	Weiler Atherton polygon clipping method		
10.	In depth buffer method, when $z >$ depth of (x,y)		
Option A:	Point is visible		
Option B:	Z value is not stored in depth buffer		
Option C:	Z value is stored as surface intensity value		
Option D:	Z value is stored in depth buffer		
11.	Give the series of transformation required to rotate an object about any arbitrary		
	axis not parallel to any one of the coordinate axes in 3D space		
Option A:	$R = [T] [R_x][R_y] [R_z] [R_y^{-1}] [R_x^{-1}] [T^{-1}]$		
Option B:	$R = [T] [R_y][R_z] [R_x] [R_x^{-1}] [R_y^{-1}] [T^{-1}]$		
Option C:	$R = [T] [R_y][R_z] [R_x] [R_y^{-1}] [R_z^{-1}] [T^{-1}]$		
Option D:	$R = [R_x][R_y][R_z][T] [R_x^{-1}] [R_y^{-1}] [R_z^{-1}]$		
12.	In window to viewport manning, which of the following set of transformations		
12.	In window to viewport mapping, which of the following set of transformations are involved		
Option A:			
Option A: Option B:	Translation and scaling Scaling and rotation		
Option B: Option C:	Scaling and reflection		
Option D:	Rotation and translation		
13.	What happens when in 3D space uniform scaling with respect to origin is		
15.	performed,		
	I) Original shape of object may change		

	II) Original position of object may change		
Option A:	Only I		
Option B:	Only II		
Option C:	Both I and II		
Option D:	Neither I nor II		
14.	Which of the following input is accepted only by Boundary Fill method and not		
	by Flood fill method		
Option A:	Fill color		
Option B:	Background color		
Option C:	Edge color		
Option D:	Seed pixel		
1.5			
15.	To convert a square into a parallelogram, which transformation is used		
Option A:	Scaling		
Option B:	Shear Society followed by rotation		
Option C:	Scaling followed by rotation Rotation		
Option D:	Kotatioli		
16.	Which of the following is not a property of Bezier curve		
Option A:	Bezier curves are multivalued.		
Option B:	A Bezier curve is independent of the coordinate system used to measure the		
Option D.	location of control points.		
Option C:	Bezier curves provide global control.		
Option D:	Bezier curves are not variation diminishing		
opuon 2.			
17.	Which of the following statement does not define computer graphics		
Option A:	The technology that deals with designs and pictures on computers.		
Option B:	Visual images or designs on some surface such as wall, paper to inform, illustrate		
	or entertain.		
Option C:	Almost everything on computer that is not text or sound.		
Option D:	It is an art of drawing pictures on a computer screen with the help of		
	programming.		
18.	First reflect a point about x-axis, then perform a counter clock wise rotation of		
	90 [°] , this is equivalent to		
Option A:	Reflection about a line X=Y		
Option B:	Reflection about a line X=-Y		
Option C:	Rotation about a line X=Y		
Option D:	Rotation about a line X=-Y		
19.	What is the length of Koch curve after second Approximation		
Option A:	16/9		
Option B:	24/9		
Option D:	8/6		
Option D:	64/27		
20.	Let N be the normal vector of the plane surface with N=(A,B,C). For a plane to be		
	a back face		
Option A:	C <= 0		
-	·		

Option B:	C >= 0
Option C:	C < 0
Option D:	C > 0

Q.2 A	Solve any Two 5 marks each	
i.	What is computer graphics? Discuss application areas in computer graphics	
ii.	Write a boundary fill procedure to fill a polygon using 8-connected approach.	
iii.	Derive the composite matrix to scale an object with respect to a fixed point	
Q.2 B	Solve any One10 marks each	
i.	Given radius $r = 12$ and center coordinates (50,50), compute the coordinates of points lying on the circle using Mid point circle algorithm	
ii.	Derive transformation matrix for perspective projection.	

Q.3 A	Solve any Two 5 n	narks each
i.	What is aliasing and explain any one antialiasing technique.	
ii.	Prove that 2D rotations are additive	
iii.	Define the following terms with suitable example/diagram	
	a. Variation diminishing property	
	b. Order of continuity	
Q.3 B	Solve any One10 m	narks each
i.	Define window, viewport and derive the equations for window to	o viewport
	transformation	
ii.	What is keyframing and explain character and facial animation	