University of Mumbai Examination 2021 under cluster 8 (Lead College: PHCET)

Examinations Commencing from 16th June 2021 to 28th June 2021

Program: Automobile Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: AEC501 and Course Name: Internal Combustion Engine

Time: 2 hour

Max. Marks: 80

1. Scavenging process is carried out during stroke. in 2	
1. Scavenging process is carried out during stroke, in 2	
1 1. 1 Stavenging process is carried out during shoke. If Z	stroka
angina	suoke
Option A: suction	
Option B: compression	
Option C: expansion	
Option D: Dilution	
2. Main purpose of LHR engine is to engine coolant heat losses, engine performance.	, hence
Option A: Reduce, Increases	
Option B: Reduce, Reduce	
Option C: Increase, Increase	
Option D: Increase, Reduce	
3. Engine works on thermodynamic cycle with constant volume heat a	addition
process.	
Option A: Diesel	
Option B: Cl	
Option C: Gas turbine	
Option D: Petrol	
4. Carburetor should provide air-tuel mixture in idling range.	
Option A: rich	
Option B: stoicniometric	
Option C: lean	
Option D: Chemically corrected	
5 Eval is injected in intelse manifold in case of injection av	stom in
5. Fuel is injected in intake mannold in case of injection sys	stem m
Option A: Timed	
Option B: Continuous	
Option C: direct	
Option D: Pulsating	
6 Auxiliary valve is used in carburetor to richness of air-fuel r	nixture
Ontion A: Prevent	

Option B:	increases
Option C:	accelerate
Option D:	decelerate
-	
7.	Ignition delay period in S.I. engine and ignition
	delay period in C.I. engine is desirable to avoid knocking.
Option A:	More, lesser
Option B:	Lesser, more
Option C:	More. more
Option D:	Lesser, lesser
8.	Combustion chamber is not used in SI engine.
Option A:	T-head type
Option B:	L-head type
Option C:	Toroidal
Option D:	F-head type
9.	Ignition quality of Diesel is expressed by
Option A:	Cetane number
Option B:	
Option C:	Self-ignition temperature
Option D:	
10	Ignition delay is duration between start of
10.	of fuel
Option A:	ignition injection
Option B:	injection, ignition
Option C:	injection, flame propagation
Option D:	ignition. flame propagation
1	
11.	Open combustion chambers are type of combustion chamber.
Option A:	Direct injection
Option B:	Direct ignition
Option C:	Indirect injection
Option D:	Indirect ignition
12.	Volumetric efficiency is in induction swirl as compared to
	compression swirl in combustion chamber.
Option A:	Low
Option B:	high
Option C:	equal
Option D:	Better
12	
13.	A tour cylinder tour stroke engine develops 250 kW at 3000 r.p.m. Its b.s.f.c. is
	300 g/kwn. Fuel consumption per cylinder is kg/h.
Option A:	18./3
Option B:	y.5/3 27.5
Option C:	57.5 75
Option D:	
1	

14.	lubrication system is cheapest among all lubrication systems in
	I.C. Engine.
Option A:	Mist
Option B:	Dry sump
Option C:	Wet sump
Option D:	Cross
1.7	
15.	Supercharging air compressor is driven by
Option A:	Exhaust gases
Option B:	Engine itself
Option C:	Separate electric motor
Option D:	Generator
1.6	
16.	Cooling system is used in motor bikes.
Option A:	Air
Option B:	water
Option C:	Thermo syphon
Option D:	Pressurized
17	
17.	If engine produces 8 kW brake power and absorbs 2 kW power to overcome the
	frictional losses by consuming 4 Kg/hr fuel. Then iste of an engine is
	Kg/kwn.
Option A:	2/5
Option B:	1/3
Option C:	2.5
Option D:	1/4
18	Heat balance sheet is an account of supplied and utilized
10.	in various ways in the system/engine
Option A:	Heat work
Option R:	Work Heat
Option C:	Heat Heat
Option D:	Work work
Option D.	Work, work
19	ECU receives signal from
Option A:	Sensors
Option R:	Actuators
Option C:	Ignition coil
Option D:	Fuel injector
option D.	
20	Biodiesel blend B20 consist of % of biodiesel and B5 consist of
20.	% of petroleum diesel
Option A:	20.95
Option B:	20.5
Option C:	80.95
Option D:	80.5
opuon D.	

Q2	Solve any Four out of Six5 marks each
А	Illustrate construction and working of battery ignition system with the help of neat
	SKetch.

В	Describe construction and working of thermosyphon cooling system with the help
	of Sketch.
С	State the advantages and disadvantages of Hydrogen and LPG as a fuel.
D	Differentiate 2-stroke engine and 4-stroke engine.
Е	Describe construction and working of CRDI injection system with the help of
	sketch.
F	Differentiate knocking in SI engine and CI engine.

Q3	Solve any Two Questions out of Three 10 marks each
А	A four stroke engine using 0.272 kg/kWh fuel of 32 ⁰ API develops 15 kW per cylinder at 2000 r.p.m. The fuel injection pressure is 120 bar and the combustion chamber pressure is 30 bar. If the duration of injection is 25° of crack travel and velocity coefficient is 0.9. Determine the diameter of the fuel orifice. Take Specific gravity = $\frac{141.5}{1315 + API}$
В	In a trial of single cylinder oil engine working on duel cycle, the following observation were made: Compression ratio = 15 Oil consumption = 10.2 kg/h Calorific value of fuel = 43890 kJ/kg Air consumption = 3.8 kg/min Speed = 1900 r.p.m. Torque on the brake drum = 186 N-m Quantity of cooling water used = 15.5 kg/min Temperature rise = 36^{0} C Exhaust gas temperature = 410^{0} C Room temperature = 20^{0} C Cp for exhaust gas = 1.17 kJ/kgK Determine the required parameters and draw heat balance sheet.
С	An 8 cylinder 4 stroke engine of 9 cm bore and 8 cm stroke with a compression ratio of 7 is tested at 4500 rpm on a dynamo-meter which has 54 cm arm. During a 10 minutes test the dynamo-meter scale beam reading was 42 kg and the engine consumed 4.4 kg of gasoline having a calorific value of 44000 kJ/kg. Air at 1 bar and 27° C was supplied to the carburetor at the rate of 6 kg/min. Determine (i) brake power, (ii) brake mean effective pressure, (iii) brake specific fuel consumption, (iv) brake specific air consumption, (v) brake thermal efficiency, (vi) volumetric efficiency and (vii) air fuel ratio.

University of Mumbai Examination 2021 under cluster 08 (Lead College: PHCET)

Examinations Commencing from 16th June 2021 to 28th June 2021

Program: Automobile Engineering

Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: AEC502 and Course Name: MMC

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
1.	If the instrument input is increased gradually from zero, there will be some minimum value below which no output change can be detected. The minimum value of input is called
Option A:	Hysteresis
Option B:	Threshold
Option C:	Drift
Option D:	Dead zone
•	
2.	The "dead zone" in a certain pyrometer is 0.125 percent of span. The calibration is 400 ° C, to 1000 ° C. What temperature change might occur before it is detected
Option A:	0.65° C
Option B:	0.75° C
Option C:	0.35° C
Option D:	0.86° C
-	
3.	A moving coil voltmeter has a uniform scale with 100 divisions, the full scale reading is 200 V and 1/10 of a scale division can be estimated with a fair degree of certainty. The the resolution of the instrument in volt is
Option A:	0.2 V
Option B:	2 V
Option C:	2.2 V
Option D:	0.4 V
1	
4.	Rotameter is a
Option A:	drag force flow meter
Option B:	variable area flow meter
Option C:	variable head flow meter
Option D:	rotating propeller type flow meter
_	
5.	Thermopile is a
Option A:	combination of a number of thermocouples connected in series
Option B:	combination of a number of thermocouples connected in parallel

Option C:	combination of a number of thermocouples some of which are connected in series
	and some in parallel
Option D:	single thermocouple
6.	A flow meter that measures flow rates which are independent of density is
Option A:	Rotameter
Option B:	electromagnetic flow meter
Option C:	Venturimeter
Option D:	orifice meter
7.	In a generalized measurement system, the function of a variable manipulation element is to
Option A:	convert the measurand into an analogous signal
Option B:	change the magnitude of the input signal retaining its nature
Option C:	perform linear operations
Option D:	perform non-linear operations
8.	A stroboscope is used to measure
Option A:	Angular Velocity
Option B:	Pressure
Option C:	Strain
Option D:	Flow
9.	Bonded wire strain gauges are
Option A:	Exclusively used for construction of transducers
Option B:	Used for both stress analysis and construction of transducer
Option C:	Pressure measurement
Option D:	Exclusively used for stress analysis
10.	Nozzle flapper is used as controller
Option A:	Pneumatic
Option B:	Hydraulic
Option C:	Electric
Option D:	Robotic
11.	Seismic transducer is used for measurement of
Option A:	angular velocity
Option B:	linear velocity
Option C:	acceleration
Option D:	pressure
12.	Consider a negative feedback closed loop system whose open loop transfer
	function is $\frac{2(s+10)}{s^2+9s-10}$. The open loop poles are
Option A:	-1 and 10
Option B:	1 and -10
Option C:	-1 and -10
Option D:	1 and 10

13.	Velocity error constant (K_v) of a system is measured when the input to the system
	is unit function
Option A:	Parabolic
Option B:	Ramp
Option C:	Impulse
Option D:	step
14.	The closed loop transfer function for a given system is given $\frac{C(S)}{R(S)} = \frac{5K}{R^2 + 505}$
	$k = \frac{1}{k} + $
	and the static velocity error constant is $\frac{1}{10.1}$. Natural frequency is
Option A:	√5k
Option B:	5k
Option C:	$\sqrt{50.5}k$
Option D:	k
_	
15.	The open loop transfer function for a given system is given $G(S) = \frac{20}{20}$.
	domning ratio is
Option A:	0.51
Option B:	0.51
Option C:	0.75
Option D:	1
Option D.	
16	Ear a positive feedback system the ferror function $C(S) = \frac{3}{3}$ and
	For a positive feedback system the forward transfer function $O(S) = \frac{1}{S(S+4)}$ and
	feedback transfer function $H(S) = 3S$, the characteristic equation is
Outing As	
Option A:	(5-5) = 0
Option B:	(5+5) = 0
Option C:	
Option D:	(5-4)=0
17	The closed loss two sfor function for a unity feedback queter is given by T.F.
17.	The closed loop transfer function for a unity feedback system is given by $1.F = 5S+10$
	$\frac{1}{s^2 + 6s + 10}$, steady state error for unit ramp input is
Option A:	0.1
Option B:	0.2
Option C:	0.3
Option D:	0.4
18.	is the time required for the response to reach 50 % of the final
	value in first attempt.
Option A:	Peak time
Option B:	Delay time
Option C:	Settling time
Option D:	Rise time

19.	For a stable system
Option A:	gain margin must be positive but phase margin can be positive or negative
Option B:	phase margin must be positive but gain margin can be positive or negative
Option C:	both gain margin and phase margin must be positive
Option D:	one of them must be zero
20.	If the Poles of the system lies on right hand side of the S plane then the system is
	said to be
Option A:	Unstable
Option B:	Stable
Option C:	Marginally stable
Option D:	Unpredictable

Q2	Solve any Four out of Six5 marks each
А	A system is represented by the characteristic equation $P(S) = S^5+2S^4+2S^3+4S^2+S+1 = 0$, predict the stability of the system by using Routh's criterion.
В	Define desired input, modifying input and interfering input for measuring instruments.
С	A unity feedback system has $G(S) = \frac{20(S+3)}{S(S+1)(S+4)}$, determine (i) static error coefficients and (ii) steady state error for a ramp input of magnitude 5.
D	Illustrate with neat diagrams the working principle of electromagnetic flow meter with its applications
Е	Define the terms ' precision' and 'accuracy', 'span' and 'range' w.r.t static characteristics of measuring instruments.
F	While measuring the speed of a steam turbine with stroboscope single line images were observed for stroboscope setting of 30000, 4000 and 5230 r.p.m. Calculate the speed of the turbine.

Q3.	Solve any Two Questions out of Three 10 marks each
А	The open loop transfer function of a unity feedback control system is given by $G(S) = \frac{K}{S(ST+1)}$, determine (i) by what factor 'k' be multiplied so that damping ratio is increase from 0.2 to 0.8. (ii) by what factor 'T' should be multiplied so that damping ratio is reduced from 0.9 to 0.3.
В	Illustrate with neat diagrams the construction and working principle of (i) McLeod Gauge and (ii) Bridgeman Gauge for pressure measurement with its industrial applications.
С	Draw the root locus and predict the stability of the system having $G(S)H(S) = \frac{K}{S(S+2)(S+4)}.$

University of Mumbai Examination 2020 under cluster 8 (Lead College: PHCET) Examinations Commencing from 15th June 2021 to 28th June 2021

Program: Automobile Curriculum Scheme: Rev - 2016 Examination: TE Semester V Course Code: AEC503 and Course Name: Heat Transfer

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Due to which of the following reasons most metals are good conductors of heat?		
Option A:	Presence of many free electrons and frequent collision of atoms		
Option B:	Capacity to absorb free energy electrons		
Option C:	Energy transport due to molecular vibration		
Option D:	Migration of neutrons from hot end to cold end		
2.	The overall coefficient of heat transfer is used in the problems of		
Option A:	Conduction		
Option B:	Convection		
Option C:	Conduction and convection		
Option D:	Radiation		
3.	ε -NTU method is particularly useful in thermal design of heat exchangers		
	when		
Option A:	outlet temperature of the fluid stream is known as a priori		
Option B:	the outlet temperature of the fluid streams is not known as a priori		
Option C:	the outlet temperature of the hot fluid streams is known but that of the cold fluid		
	streams is not known as a priori		
Option D:	inlet temperatures of the fluid streams are known as a priori		
4.	How can the temperature drop in a plane wall with uniformly distributed heat		
	generated be decreased ?		
Option A:	By reducing thermal conductivity of wall material		
Option B:	By reducing wall thickness		
Option C:	By reducing convection coefficient at the surface		
Option D:	By reducing heat generation rate		
5	Unto the critical radius of insulation		
Ontion A:	added insulation will increase heat loss		
Option R:	added insulation will decrease heat loss		
Option C:	convection heat loss will be less than conduction heat loss		
Option D:	heat flux will decrease		
option D.			
6.	A furnace is made of a red brick wall of thickness 0.5 m and conductivity 0.7		
	W/mK. For the same heat loss and temperature drop, this can be replaced by a		
	layer of diatomite earth of conductivity 0.14 W/mK and thickness		
Option A:	0.05 m		

Option B:	0.1 m
Option C:	0.2 m
Option D:	0.5 m
7.	A steam pipe is covered with two layers of insulating materials, with the better insulating material forming the outer part. If the two layers are interchanged, the heat conducted
Option A:	will decrease
Option B:	will increase
Option C:	will remain unaffected
Option D:	may increase or decrease depending upon the thickness of each layer
_	
8.	Addition of fin to the surface increases the heat transfer if $(hA/kP)^{1/2}$ is
Option A:	equal to one
Option B:	greater than one
Option C:	less than one
Option D:	greater than one but less than two
option 21	
9.	 Consider the following statements pertaining to large heat transfer rate using fins: 1. Fins should be used on the side where the heat transfer coefficient is small. 2. Long and thick fins should be used. 3. Short and thin fins should be used. 4. Thermal conductivity of fin material should be large.
	Which of the above statements are correct?
Option A:	1 2 and 3
Option B:	1, 2 and 3
Option C:	2 3 and 4
Option D:	1 3 and 4
option D.	
10	What does transient conduction mean?
Ontion A:	Heat transfer for a shot time
Option B:	Conduction when the temperature at a point varies with time
Option C:	Very little heat transfer
Option D:	Heat transfer with a very small temperature difference
Option D.	Treat transfer with a very small temperature unreferee
11	In which of the following access most unsteady heat flow occurs?
Option A:	Through the wells of a furnace
Option R:	Through lagged pipes corrying steem
Option D.	Through the well of a refrigerator
Option D:	During appealing of costing
Option D.	
10	France de composition in a l'ancid hadh is composition
	Forced convection in a inquite data is caused by
Option A:	density difference brought about by temperature gradients
Option B:	molecular energy interaction
Option C:	Flow of electros in a random fashion
Option D:	intense stirring by an external agency
13.	In transient heat conduction, the two significant dimensionless parameters
	arenumber and number.
Option A:	Fourier, Reynolds

Option B:	Reynolds, Prandtl
Option C:	Biot, Fourier
Option D:	Reynolds, Biot
i	
14.	Choose the wrong statements with respect to Nusselt number and convective heat transfer coefficients:
Option A:	Nusselt number represents the ratio of the temperature gradient at the surface to an overall of reference temperature gradient
Option B:	Nusselt number represents the dimensionless slope of the temperature distribution curve at the surface
Option C:	The convective coefficients can be evaluated from a knowledge of fluid temperature distribution in the neighborhood of the surface
Option D:	For a given Nusselt number, the convective coefficient is inversely proportional to thermal conductivity of the fluid
15.	In case of laminar flow over a plate, the convective heat transfer coefficient
Option A:	decreases with increase in free stream velocity
Option B:	increases with distance
Option C:	increases if a higher viscosity fluid is used
Option D:	increases if a denser fluid is used
16.	 Consider the following statements pertaining to heat transfer through fins: 1. Fins are equally effective irrespective of whether they are on the hot side or cold side of the fluid. 2. The temperature along the fin is variable and hence the rate of heat transfer varias along the element of the fin
	 The fin may be made of materials that have a higher thermal conductivity than the material of the wall.
	4. Fins must be arranged at right angles to the direction of flow of the working fluid.
	Of these statements:
Option A:	1 and 2 are correct
Option B:	2 and 4 are correct
Option C:	1 and 3 are correct
Option D:	2 and 3 are correct
·	
17.	An automobile radiator is type of heat exchanger
Option A:	cross-flow
Option B:	regenerator
Option C:	counter-flow
Option D:	Recuperator
1.5	
18.	Due to which of the following reasons cork is a good insulator?
Option A:	It is a porous material
Option B:	Its density is low
Option C:	It can be powdered
Option D:	It is a non-porous material
19.	Absorptivity of a body will be equal to its emissivity
Option A:	at critical temperature
Option B:	for a polished body

Option C:	at all temperatures	
Option D:	when the system is under thermal equilibrium	
20.	In a counter flow heat exchanger, the product of specific heat and mass flow rate	
	is same for the hot and cold fluids. If NTU is equal to 0.5, then the effectiveness	
	of the heat exchanger is	
Option A:	1.0	
Option B:	0.5	
Option C:	0.33	
Option D:	0.2	

Q2.	Solve any Four out of Six5 marks each		
А	State Basic laws of Conduction, Convection and Radiation. Write mathematical equation of these laws.		
В	Show that the temperature distribution in a slab or plane wall is a linear function of its thickness.		
С	A longitudinal fin of rectangular profile is exposed to surroundings with a temperature of 65 °C and a heat transfer coefficient of 44 W/m ² k. The temperature of the fin base is 100 °C. The fin is made up of steel with thermal conductivity 30 W/mK and is 10 cm long, 1 cm thick and 1 m wide. Using insulated end determine the fin efficiency		
D	Show by dimensional analysis for free convection, $Nu = \phi(Pr \times Gr)$.		
E	Define shape factor. Explain its properties.		
F	Derive an expression for LMTD in case of counter flow heat exchanger.		

03.	Solve any Two Questions out of Three	10 marks each	
А	A counter-flow tubular oil cooler is to be designed to cool 1500 kg/h of oil from temperature 90 °C to 30 °C by means of water entering the cooler at 20 °C and leaving the cooler at 50 °C. Calculate the amount of water flow rate required and the heat transfer area. Take specific heat of oil as 3 kJ/kgK and overall heat transfer coefficient equal to 1200 W/m ² K.		
В	A body having area 1000 cm ² has an effective temperature (i) the total rate of energy emission, (ii) the intensity of n (iii) intensity of radiation along a direction at 60 °C to the the wavelength of maximum monochromatic emissive pow	e of 900 K. Find normal radiation, e normal and (iv) er.	
С	Find the heat transfer from 60 W incandescent bulb at 100°C to ambient at 20°C. Assume the bulb as a sphere of 50 mm diameter. Also find t percentage of power lost by convection. C The correlation is given by: Nu = 0.6 $(Gr \times Pr)^{1/4}$ Take the following properties of the fluid: k = 0.002964 W/mK; v = 20.02 × 10 ⁻⁶ m ² /s & Pr = 0.694		

University of Mumbai Examination 2021 under cluster 8 (Lead College: PHCET, Rasayani)

Examinations Commencing from 16th June 2021 to 28th June 2021

Program: Automobile Engineering Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: AEC504 Time: 2 hour Course Name: Automotive System Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are			
1	What happens when clutch is disengaged?			
Option A [•]	Engine & flywheel get disconnected			
Option B:	Brakes pads & brake drum get disconnected			
Option C:	Differential & transmission get disconnected			
Option D:	Engine & transmission get disconnected			
F				
2.	In case of clutch, which statement is correct?			
Option A:	Inertia of the rotating components of the clutch should be maximum			
Option B:	Inertia of the rotating components of the clutch should be minimum			
Option C:	Lower component weight increases the inertia of clutch assembly			
Option D:	Higher component weight reduces the inertia of the clutch assembly			
3.	In case of disc type clutch, the clutch disc acts as a			
Option A:	driving member			
Option B:	driven member			
Option C:	neutral member			
Option D:	non rotating member			
4.	What among the following is not a function of gear box for front engine rear			
	wheel drive arrangement?			
Option A:	To vary the speed of output shaft			
Option B:	To vary the torque at output shaft			
Option C:	To vary the direction of rotation of output shaft			
Option D:	To vary the engine power output			
5				
D.	When does the torque multiplication in torque converter becomes unity?			
Option A:	When turbing speed equals impeller speed			
Option B:	When turbing speed is lower than impeller speed			
Option C:	When turbine speed is lower than impelier speed			
Option D:	when imperier speed is greater than wheel speed			
6	In what type of gear box synchromesh device is used?			
Option A:	Synchromesh gear box			
Option B:	CVT box			
Option C:	Constant mesh gear box			
Option D:	Sliding mesh gear box			
option D.				

7.	What among the following is not the advantage of synchromesh gear box over		
	sliding mesh gear box?		
Option A:	Jerk free engagement of gears		
Option B:	Higher torque transmission		
Option C:	Reduction in operating noise		
Option D:	Availability of infinite number of gear ratios		
8.	If any one member in an epicyclic gear box is rotated and the remaining two		
	members are allowed to run free, what is the condition?		
Option A:	Direct Drive		
Option B:	Forward drive		
Option C:	Reverse drive		
Option D:	Neutral		
9.	Which among the following is not a manual transmission?		
Option A:	Sliding mesh gear box		
Option B:			
Option C:	Constant mesh gear box		
Option D:	Synchromesn gear box		
10	Why differential is used in outemphile?		
10.	To increase the speed of road wheel		
Option B:	To avoid skidding at straight road		
Option C:	To avoid skidding while turning		
Option D:	To avoid skidding while turning		
Option D.			
11.	When power has to be transmitted at an angle, what is used?		
Option A:	Slip joint		
Option B:	Centrifugal Clutch		
Option C:	Gear Box		
Option D:	Universal Joint		
12.	Why propeller shaft is made hollow?		
Option A:	To reduce whirling effect		
Option B:	To reduce the aesthetic look		
Option C:	To increase whirling effect		
Option D:	To increase the aesthetic look		
13.	What is the function of brake value?		
Option A:	To control the flow of compressed air from air reservoir to air chamber		
Option B:	To control the flow of compressed air from master cylinder to air chamber		
Option C:	To control the flow of compressed air from air reservoir to master cylinder		
Option D:	To control the flow of compressed air from master cylinder to air reservior		
•			
14.	What is spring rate?		
Option A:	Load required to break the spring		
Option B:	Load required to deflect the axle by spring		
Option C:	Load required to deflect the spring per unit distance		
Option D:	Load required to provide rigidity to the spring		

15.	What will happen if brakes of only one side get applied for a running car?		
Option A:	Car will continue its motion		
Option B:	Car will be pulled to that side on which brakes does not get applied		
Option C:	Car will be pulled to that side on which brakes get applied		
Option D:	Pitching movement will occur for a car		
16.	What is brake bleeding?		
Option A:	Process of removing air from the hydraulic brake system		
Option B:	Process of adding air into the hydraulic brake system		
Option C:	Process of removing oil from air brake system		
Option D:	Process of adding oil into air brake system		
17.	What suspension system does?		
Option A:	It helps to increase the speed of vehicle		
Option B:	It provides more torque in uptrend		
Option C:	It absorbs heat energy in down trend		
Option D:	It provides cushioning action		
18.	What is a condition called when the vehicle move away from its desired path		
	during cornering and to keep it on the right path there is need to steer a little		
	more?		
Option A:	Understeer		
Option B:	Oversteer		
Option C:	Reversibility		
Option D:	Irreversibility		
19.	When the top of the wheel is tilted outward, then it is called as		
Option A:	King pin inclination		
Option B:	Positive camber		
Option C:	Negative camber		
Option D:	Caster angle		
20.	Where does wear occur for under inflated tyre?		
Option A:	Near center		
Option B:	Near the edge		
Option C:	In the cross direction		
Option D:	In the lateral direction		

Q2	Solve any Four out of Six	(05 marks each)
А	Explain the clutch plate construction.	
В	Explain the construction of sliding mesh gearbox.	
С	Explain the role of constant velocity joint in automobile.	
D	Explain the any one type of rear axle arrangement in deta	ail.
E	Explain the working of master cylinder with neat labeled	l diagram.
F	Explain the rack & pinion steering gear.	

Q3	Solve any Four out of Six	(05 marks each)
А	Write short note on centrifugal clutch	

В	Write short note on overdrive
С	Write short note drive line arrangements.
D	Write short note on transfer case.
E	Write note on types of adaptive suspension system.
F	Write short note on types of road wheels.

University of Mumbai Examination 2021 under cluster 8 (Lead College: PHCET)

Examinations Commencing from 16th June 2021 to 28th June 2021

Program: BE **Automobile** Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester V

Course Code: AEDLO5011 and Course Name: Press Tool Design

Time: 2 hour ____

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are	

(40	compulsory and carry equal marks
(40 Marks)	
11111115)	
1.	In Cutting operations, the workpiece is stressed beyond its
Option A:	Tensile Pressure
Option B:	Viscosity
Option C:	Ultimate Strength
Option D:	Young's Modulus
2.	The workpiece obtained after one or more press operations is called a
Option A:	Metal Wrapping
Option B:	Metal Stamping
Option C:	Metal Shaving
Option D:	Metal Lancing
3.	guiding components ensures the accurate alignment of the upper shoe
	with the die shoe in operations
Option A:	Guide Posts and Punch Holder
Option B:	Punch Holder and Die holder
Option C:	Bushings and Die-Blocks
Option D:	Guide posts and Bushings
4.	In blanking operation, clearance is applied on to form the desired
	blank.
Option A:	Punch
Option B:	Die-Opening
Option C:	Guide Post
Option D:	Die-Block
5.	The tonnage of mechanical press is determined by
Option A:	Piston area * oil pressure in the cylinder
Option B:	Die-Opening * Punch holder
Option C:	Ultimate pressure * Ultimate stress
Option D:	Shear strength of the crankshaft material * the area of the crankshaft bearings
6.	The maximum force F(max) required to cut a material is given by,
Option A:	F(max) = Punch travel
Option B:	F(max) = Sheared area * Shearing strength

Option C:	F(max) = Punch travel * Clearance
Option D:	F(max) = Shearing strength * Shearing stress
7.	Find the force required to shear a 50 mm diameter hole in a 4 mm thick M.S.
	sheet.(Ultimate Shear strength = 400 N/mm^2)
Option A:	251.327 kN
Option B:	151.423 kN
Option C:	352,534 kN
Option D:	101 555 kN
option D.	
8	To find out the back scrap in a strip layout which formula is used?
Option A:	a = h + 0.015t
Option B:	$a = t_{-} 0.015h$
Option C:	a = t + 0.015h
Option D:	a = 0.015h = t
Option D.	
0	is used for the nurpose of correcting the feed error immediately before
2.	is used for the purpose of confeeting the feed effor minimulately before
Option A:	Stripper
Option R.	Stock ston
Option C:	Knockout
Option D:	Dilot
Option D.	
10	Guiding components such as guide post and husbes are made up of
Ontion A:	
Option R.	
Option D.	
Option C:	Cast IIOII Mild Steel
Option D:	
11	The farming healt' affect in mass working is
11.	The spring back effect in press working is
Option A:	partial recovery of the sheet metal
Option B:	Fleate of stored energy in the sheet metal
Option C:	Elastic recovery of the sneet metal after removal of the load.
Option D:	regaining the original shape of the sheet metal
12	
12.	Which formula is used to calculate blank size in the drawing process,
	where thin gauge stock is used and the shell has a sharp inside corner?
	(Condition : $d/r \ge 20$, r is radius of bottom corner)
	D = Flat Blank Diameter
	d = Finished Shell diameter
	h = Height of the finished shell
Option A:	$D = \sqrt{(d^2 + 4dh)}$
Option B:	$D = \sqrt{(d^2 + 4h)}$
Option C:	d = √(D*2 + 4Dh)
Option D:	h = √(D*2 + 4d*D)

13.	Select the correct formula for calculating Bend allowance.
	B = Bend allowance along neutral axis, cm
	α = Bend angle in degree
	r = Inside radius of bend, cm
	k = Distance of neutral axis from inside surface of the bend
Option A:	$B = (\alpha/360) * (\pi (2r + k))$
Option B:	$B = (\alpha/360) * (2\pi (r + k))$
Option C:	$B = (\alpha/360) * (\pi (r + k))$
Option D:	$B = (\alpha/360) * (2\pi (r + 2k))$
14.	During the bending operation, the outer surface of the material is in
	and the inside surface is in
Option A:	compression and tension
Option B:	tension and compression
Option C:	frictional and squeezing
Option D:	squeezing and frictional
15.	The process of making cup-shaped parts from a flat sheet metal blank is known as
Option A:	Angle Drawing
Option B:	Length Drawing
Option C:	Wire Drawing
Option D:	Deep Drawing
16.	In a compound die
Option A:	Two or more operations are performed simultaneously at the single stroke of the
	punch
Option B:	Two or more cutting operations are performed at one station of the press in every
	stroke of the punch
Option C:	Both cutting and non-cutting operations are performed at one station of the press
	in every stroke of the punch
Option D:	Only one operation is performed at each stroke of the punch
17.	In which type of die both cutting and non-cutting operations are performed at one
	station of the press in every stroke of the punch
Option A:	Compound die
Option B:	Embossing die
Option C:	
Option D:	Coining die
10	
18. Orti 1	die produces a raised readable mark on the flat workpiece.
Option A:	Embossing
Option B:	
Option C:	Combination
Option D:	Progressive
10	Undersalie masse is most suitable for
19.	Hydraulic press is most suitable for
Option A:	Deep-urawing Displain a
Option B:	Blanking
Option C:	Piercing

Option D:	Trimming
20.	The greatest source of accidents in automation press shop is
Option A:	Hand driven machine
Option B:	Tool with flat edge
Option C:	Power driven machine
Option D:	Tool with sharp edge

Q2. (20 Marks)	Attempt any Four out of Six Questions	(5 marks each)
А	Classify press working operations and explain notching neat diagram	operation with a
В	Differentiate between blanking operation and piercing ope	ration
С	What is spring back in bending operation and explain a compensate the spring back.	nyone method to
D	Explain working and construction of embossing die.	
E	Differentiate between compound die and combination die	
F	Write safety precautions taken in the press shop.	

Q3. (20 Marks)	Solve any Two out of Three Questions(10 marks each)
А	Find the total pressure, dimensions of tools to produce a washer of 5.5 cm outer diameter with 2.5 cm diameter hole, from a material of 4 mm thickness, having shear strength of 350 N/mm ² . (Assume Clearance 10% of stock thickness)
В	A symmetrical-cup workpiece with a height of 50 mm and a diameter of 50 mm, the inner corner radius is 1.6 mm. The workpiece material is cold-rolled steel of 0.8 mm thick. Make necessary calculations for designing the drawing die for this part.
С	Find the centre of pressure for the following blanks. Find the centre of pressure for the following blanks. $ \begin{array}{c} & 20 \\ & 20 \\ & 60 \\ $